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Abstract 

A lot of papers based on numerical techniques used in the area of computational 

electromagnetic have been studied. Based on the study, a flow chart of the algorithm used by 

Euler’s method, runga-kutta method and taylor series in the solution of problems has been 

presented in this paper. Besides these, wavelet methods for solving electromagnetic problems 

have also been discussed in this paper. Because now a days a very fast method i.e. wavelet is 

being used in solving computational problems based on differential/integral/integro-differential 

equation. 
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1. Introduction 

Differential equations (DEs) are often used to model electromagnetic field 

phenomena. These are useful approaches for describing the natural 

occurrences in scientific and engineering models. DEs are used in physics to 

describe heat transfer and wave propagation, for instance. As a result of this, 

many engineering applications are mathematically modelled as DEs with 

beginning and limit conditions. In nuclear reactor dynamics, population 

models, dispersion of a chemically reactive material, and many other physical 

phenomena, DEs are used [1-8]. 

A wide range of engineering issues were analyzed in order to develop 

DEs. In the second part of the 20th century, linear and nonlinear differential 

equations (DEs) had their foundations well established. The study of DE 

issues is being conducted by scientists and mathematicians who are actively 

interested in their research. In particular, it plays a major role in applied 

mathematics, mathematics, and electromagnetics in the 21st century. 

Determining the solution to linear/non-linear issues has been done using a 

number of methods, including the system of characteristics, spectrum 

methods, and disruption techniques. For linear and nonlinear DEs, however, 

there is no universal approach. The solution of these equations requires novel 

numerical methods. As a result, all traditional approaches for solving DEs 

and the application of these methods are becoming more and more essential 

[9-19]. 

In electromagnetism, differentiable forms are closely related to geometric 

images and give a more spatial perspective. Electromagnetic theory is 

combining physical, statistical, and geometrical ideas. In today’s fast-paced 

environment, geometric model’s visualization capabilities encourage new 

ideas and concepts. After the development of differential forms notation or 

external calculus, the relationship between mathematical and geometric 

knowledge of field and source quantities was well described in 

electromagnetic issues literature [20-29]. 

Calculus, trigonometry and other classical techniques should be used to 

determine the behavior of differential equations. Different circumstances can 

be used to understand the differential equations activity in relation to these 

solutions. Empirical approaches are employed to determine the precise 
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answer. Even still, it’s limited to the most fundamental computations. And 

therefore it is exceedingly difficult to obtain exact solutions to differential 

equations of higher order with complex coefficients. Numerical methods are 

required to solve these equations. For ordinary differential equations, there 

exist unique initial-limit value issues in a number of different fields. As a 

result, many original and constrained value issues cannot be solved only by 

computational methods. Even while collocating approaches based on wavelets 

are highly successful numerically, collocating is one of the most commonly 

utilised numerical schemes for solving differential equations in these 

circumstances [30-42]. 

On the one hand, the Euler’s technique, Runge-Kutta methods and Taylor 

Expansions are discussed, as well as the Haar Wavelet and Legendre Wavelet 

methods, the Chebyshev Wavelet method, Hermite Wavelet method and the 

Petrov-Galerkin method. A total of two parts comprise the whole document. 

First, we looked at numerical approaches’ algorithms, and then we looked at 

wavelet methods. Organization of this paper is such a way that section 2 

discusses about different numerical method algorithm for solving 

computational problems. Section 3 tells about wavelet methods for solving 

computational problems. Discussion and conclusion is given section 4. 

2. Numerical Methods 

Numeral methods are mathematical tools used in numerical analysis. As 

a computer language, numerical algorithm refers to the implementation of an 

acceptable numerical technique with a convergence check. Methods for 

approximating mathematical operations (example of a mathematical 

procedure is an integral). As a result of inability to solve the technique 

analytically (such as the standard normal cumulative distribution function) 

or intractability of the analytical method, we must make approximations 

(example is solving a set of a thousand simultaneous linear equations for a 

thousand unknowns for finding forces in a truss) [42-44]. 

In mathematics and computer science, numerical analysis is the process 

of creating, analyzing and implementing methods for numerically solving 

problems in continuous mathematics. As a result of real-world algebra, 

geometry, and calculus applications in the actual world, these issues feature 
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variables that are constantly changing. Problems of this nature can be found 

in all fields of scientific and social sciences, as well as in medical, engineering 

and business. A dramatic increase in the capacity of digital computers in 

science, health, engineering, and business began in the 1940s, and numerical 

analysis of increasing sophistication has been required to solve these 

increasingly precise and sophisticated mathematical models. The formal 

academic subject of numerical analysis ranges from highly theoretical 

mathematical research to computer science concerns relating to the influence 

of computer hardware and software on the execution of certain algorithms, 

among other things. Figure 1 illustrates the types of numerical approaches 

that are available in the literature for solving mathematical problems [45-47].  

2.1. Euler’s Method  

Euler’s Method is a technique for analyzing differential equations that 

relies on the notion of local linearity or linear approximation. The Euler 

method is a first-order numerical approach for solving ordinary differential 

equations (ODEs) with a given starting value in mathematics and computer 

science. As seen in Figure 2, the algorithm is described [48-49]. 

 

Figure 1. Types of Numerical methods. 
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Figure 2. Euler’s methods [50-51]. 

2.2. Runge-Kutta Methods 

In differential equations, the Runge-Kutta technique is an effective and 

commonly used approach for addressing initial-value issues. A high order 

numerical technique may be constructed using the Runge-Kutta method 

without the necessity for high order derivatives. Figure 3 and 4 discusses the 

Runge-Kutta algorithm for 1st and 2nd order differential equation based 

computational problem [52-53]. 

 

Figure 3. Algorithm for 1st order equation (Runge – Kutta Method) [53-54]. 
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2.3. Taylor Expansion Method 

An approximation Taylor series uses simpler polynomial functions to 

approximate a complex function. To represent complex (yet well-behaved) 

functions, a sequence of rising powers is used. Figure 5 and 6 tells about the 

taylor expansion method based algorithm for computational problem [55-58].  

 

Figure 4. Algorithm for 2nd order equation (Runge – Kutta Method) [51-56].  

 

Figure 5. Taylor Program [51-56]. 
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Figure 6. Taylor system Program [51-59]. 

3. Wavelets 

Localized waves or tiny waves are called wavelets. Instead of continuing 

to oscillate indefinitely, they come to a halt. As a novel area of mathematical 

research, wavelets theory is gaining popularity. Applications include signal 

analysis for wave form representation and segmentation as well as temporal 

frequency analysis and harmonic analysis, among other technical fields. 

Many functions and operators may be accurately represented with wavelets. 

Wavelets are considered to be continuous-time basis functions  ., xji  Basis 

is a collection of linearly independent functions that may be used to create all 

acceptable functions, such as  ,tf  by combining them. The wavelet basis has 

the unique property that all functions  xji,  are built from a single function 

termed the mother wavelet  x  which is a tiny pulse. Translation and 

dilation of a mother wavelet generate a collection of linearly independent 

functions (basis). For the solution of singular initial value and boundary 

value issues, many approaches were devised. Wavelet analysis technique, an 

efficient wavelet-based spectrum approach, Wavelet Galerkin, Haar wavelet 
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collocation, Legendre wavelet method, Adomian decomposition method, 

Lagurre wavelets method, etc. are few examples. Figure 7 describes the types 

of wavelet method for computational problem [60-64]. 

 

Figure 7. Wavelet Techniques. 

4. Discussion and Conclusions 

In this paper, we have studied conventional numerical methods and 

wavelet methods for solving differential equation based computational 

electromagnetic problems. Algorithm related to Euler’s method, runge-kutta 

method and taylor series expansion has been discussed in flow chart manner. 

Types of wavelet methods has been presented in this paper for application in 

the solution of CEM problems. 
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