k-EXTENSIBILITY AND WEAKLY k-EXTENSIBILITY FOR SOME SPECIAL TYPES OF GRAPHS

K. ANGALEESWARI, M. PERUMAL, G. PALANI MURUGAN and V. SWAMINATHAN

Department of Mathematics
Saraswathi Narayanan College
Madurai 22, Tamil Nadu
E-mail: aadeshangal@gmail.com
Department of Mathematics
Rev. Jacob Memorial Christian College
Ambilikkai-624 619, Tamil Nadu
E-mail: perumalmani100@gmail.com
Department of Mathematics
Pasumpon Muthuramalinga Thevar College
Sangaran kovil, Tamil Nadu
E-mail: gpnmaths@gmail.com
Ramanujan Research Centre
Saraswathi Narayanan College
Madurai - 22, Tamil Nadu
E-mail: swaminathan.sulanesri@gmail.com

Abstract

In this paper we discuss the k-extensibility and weakly k-extensibility for some special types of graphs like Bull graph, Butterfly graph, Durer graph, Friendship graph, Crown graph and Banana tree. Also some theorems, lemmas and corollaries are discussed.

1. Introduction

A simple graph is a finite non-empty set of object called vertices together with a set of unordered pairs of distinct vertices called edges. A graph G with
vertex set $V(G)$ and edge set $E(G)$ is denoted by $G=(V, E)$. The edge $e=\{u, v\}$ and is denoted by $e=u v$ and it is said that e joins the vertices u and v; and u and v are called adjacent vertices; u and v said to be incident with e. If two vertices are not joined by an edge, then they are said to be nonadjacent. If two distinct edges are incident with a common vertex, then they are said to be adjacent to each other. A set of vertices in a graph G is independent if no two vertices are adjacent and independent number is denoted by $\beta_{0}(G)$. An independent set is said to be maximal, if it is not a subset of any larger independent set. Let $G=(V, E)$ be a simple graph. Let k be a positive integer. G is said to be k-extendable if every independent set of cardinality k in G is contained in a maximum independent set of G.

Let G be a graph. Let k be a positive integer, $1 \leq k \leq|V(G)| . G$ is said to be weakly k-extendable if every non-maximal independent set of cardinality k of G is contained in a maximum independent set of G.

2. Bull Graph

Definition 2.1. The bull graph is a planar undirected graph with 5 vertices and 5 edges. In the form of a triangle with two distinct pendent edges

Example 2.2. Let G :

Figure 1
The β_{0}-set is $\left\{v_{1}, v_{4}, v_{5}\right\}$. Here $\beta_{0}(G)=3 .\left\{v_{2}\right\},\left\{v_{2}, v_{5}\right\}$ are all independent set of cardinality 1 and 2 . Which is not contained in the above β_{0} - sets of G. Therefore bull graph is not 1 -extendable and not 2 extendable. It is only $\beta_{0}(G)$ - extendable graph. It is also not weakly 1 -extendable, not weakly 2 -extendable for all $k, 1 \leq k \leq\left(\beta_{0}(G)-1\right)$.

Advances and Applications in Mathematical Sciences, Volume 20, Issue 4, February 2021

3. Butterfly Graph

Definition 3.1. The butterfly graph also called the bowtie graph and the hourglass graph is a planer undirected graph with 5 vertices and 6 edges.

Example 3.2. Let G :

Figure 2
The β_{0}-sets are $\left\{v_{1}, v_{3}\right\},\left\{v_{1}, v_{4}\right\},\left\{v_{3}, v_{5}\right\},\left\{v_{4}, v_{5}\right\}$. Here $\beta_{0}(G)=2$. Since $\left\{v_{2}\right\}$ independent set of cardinality 1 and non-maximal independent set of cardinality 1 which is not contained in any of the above β_{0} - sets of G. Hence G is not 1 extendable as well as not weakly 1-extendable.

4. Durer Graph

Definition 4.1. The Durer graph is an undirected graph with 12 vertices and 18 edges.

Example 4.2. Let G :

Figure 3

Advances and Applications in Mathematical Sciences, Volume 20, Issue 4, February 2021

Here $\beta_{0}(G)=4$. The β_{0} - sets are $\left\{v_{1}, v_{3}, v_{5}, v_{8}\right\},\left\{v_{1}, v_{3}, v_{5}, v_{10}\right\},\left\{v_{1}, v_{3}, v_{5}, v_{12}\right\}$ $\left\{v_{2}, v_{4}, v_{6}, v_{7}\right\},\left\{v_{2}, v_{4}, v_{6}, v_{9}\right\},\left\{v_{2}, v_{4}, v_{6}, v_{11}\right\},\left\{v_{3}, v_{5}, v_{7}, v_{8}\right\},\left\{v_{4}, v_{6}, v_{7}, v_{8}\right\}$, $\left\{v_{4}, v_{6}, v_{8}, v_{9}\right\},\left\{v_{1}, v_{5}, v_{8}, v_{9}\right\},\left\{v_{1}, v_{5}, v_{9}, v_{10}\right\},\left\{v_{2}, v_{6}, v_{9}, v_{10}\right\},\left\{v_{2}, v_{6}, v_{10}, v_{11}\right\}$, $\left\{v_{1}, v_{3}, v_{10}, v_{11}\right\},\left\{v_{1}, v_{3}, v_{11}, v_{12}\right\},\left\{v_{2}, v_{4}, v_{11}, v_{12}\right\}$. Any independent set of cardinality k is contained in any one of the above β_{0} - sets of G. Therefore G is k-extendable for all $k, 1 \leq k \leq \beta_{0}(G)$ and it is also weakly k-extendable for all $k, 1 \leq k \leq\left(\beta_{0}(G)-1\right)$.

5. Friendship Graph

Definition 5.1. The friendship graph (or Dutch windmill graph or n-fan) F_{n} is a planer undirected graph with $2 n+1$ vertices and $3 n$ edges.

Lemma 5.2. Let $G=F_{n}$ be Friendship, F_{n} is k-extendable graph for all $k, 2 \leq k \leq \beta_{0}(G)$ except at $k=1$.

Proof. Let $G=F_{n}$ be a Friendship graph. Let D be an independent set of G cardinality $k, D=\left\{u_{i 1}, u_{i 2}, u_{i 3}, \ldots, u_{i r}\right\} \cup\left\{v_{j 1}, v_{j 2}, v_{j 3}, \ldots, v_{j s}\right\}$, where $r+s=k$ and $i_{e} \neq j_{m}$ for all l, m. The maximum independent set is $D \cup\left\{u_{s i}: i \neq i_{a}\right.$ and $i \neq j_{a}$ for all $\left.a, b, 1 \leq a \leq r \quad 1 \leq b \leq s\right\}$ which contains any independent set of cardinality k, for all $k, 2 \leq k \leq \beta_{0}(G)$. Also, G contains only one-full degree vertex, which is not contained in D. Therefore G is not one-extendable. Hence G is k-extendable graph for all $k, 2 \leq k \leq \beta_{0}(G)$, except at $k=1$.

6. Crown Graph

Definition 6.1. The n-Crown graph an integer $n \geq 3$ is the graph with vertex set $\left\{x_{0}, x_{1}, x_{2}, \ldots, x_{n-1}, y_{0}, y_{1}, y_{2}, \ldots, y_{n-1}\right\} \quad$ and edge set $\left\{\left(x_{i}, y_{i}\right): 0 \leq i, j \leq n-1, i \neq j\right\}$.

Theorem 6.2. Let G be a crown graph, $(n \geq 3) G$ is k-extendable graph for all $k, 1 \leq k \leq \beta_{0}(G)$ except at $k=2$.

Proof. Let G be a crown graph with vertices ($n \geq 3$).

The vertex set of G be $V(G)=\left\{x_{0}, x_{1}, x_{2}, \ldots, x_{n-1}, y_{0}, y_{1}, y_{2}, \ldots, y_{n-1}\right\}$ and the edge set of G be $E(G)=\left\{\left(x_{i}, y_{i}\right): 0 \leq i, j \leq n-1, i \neq j\right\}$. The maximum independent sets of G are $\left\{x_{0}, x_{1}, x_{2}, \ldots, x_{n-1}\right\},\left\{y_{0}, y_{1}, y_{2}, \ldots, y_{n-1}\right\}$. Here $\beta_{0}(G)=n$. By the definition of Crown graph, there is no edge between $\left(x_{i}, y_{j}\right)$ where $i=j$. That is $\left\{x_{i}, y_{i}\right\}$, is the independent set of cardinality two which is not contained in the above maximum independent set of G. Therefore G is not 2 -extendable. From the construction of the maximum independent sets of G, it is clear that G is k-extendable for all $k, 1 \leq k \leq \beta_{0}(G)$ except at $k=2$. Hence the proof.

Corollary 6.3. In crown graph $(n \geq 3)$, we have n number of maximal independent sets of cardinality two. So we have non-maximal independent set of cardinality one, that clearly contains in any one of the maximum independent set of G. Therefore G is weakly 1-extendable.

7. Banana Tree

Definition 7.1. An ($B_{n, k}$) banana tree graph obtained by connecting one leaf of each of n copies of an k-star graph with a single root vertex that is distinct from all the stars.

Theorem 7.2. Let $G=B_{n, k}$, if $\beta_{0}(n, k)=n k-n$, then G is not extendable for all $k, 1 \leq k \leq(n k-(2 n-1))$ and it is not weakly extendable for all $k, 1 \leq k \leq(n k-(2 n))$.

Proof. Let $G=B_{n, k}$. To prove this theorem by using induction on n, Let $n=2, G=B_{2, k}$. The vertex set of $B_{2, k}$ be $V_{1}=\left\{v_{1}, v_{2}, \ldots, v_{2 k+1}\right\}$. The graph of $G=B_{2, k}$ is given below,

Figure (4)
From the above graph, we seen that the maximum independent set is, $\left\{v_{2}, v_{3}, \ldots, v_{k}, u_{2}, u_{3}, \ldots, u_{k}\right\}, \beta_{0}\left(B_{2, k}\right)=2 k-2 \cdot\{u\},\left\{u, v_{3}\right\},\left\{u, v_{3}, v_{4}\right\}$,
$\left\{u, v_{3}, v_{4}, v_{5}\right\}, \ldots,\left\{u, v_{3}, v_{4}, v_{5}, \ldots, v_{k}\right\},\left\{u, v_{3}, v_{4}, v_{5}, \ldots, v_{k}, u_{3}\right\},\left\{u, v_{3}, v_{4}\right.$, $\left.v_{5}, \ldots, v_{k}, u_{3}, u_{4}\right\}, \ldots,\left\{u, v_{3}, v_{4}, v_{5}, \ldots, v_{k}, u_{3}, \ldots, u_{k}\right\}$ are all independent set of cardinality k, for all $k, 1 \leq k \leq(2 k-3)$, which is not contained in the above β_{0}-sets of $B_{2, k}$. Therefore $B_{2, k}$ is not k-extendable for all $k, 1 \leq k \leq\left(\beta_{0}\left(B_{2, k}\right)-1\right)$.

$$
\left\{u, v_{3}, v_{4}, v_{5}, \ldots, v_{k}, u_{3}, u_{4}\right\}, \ldots,\left\{u, v_{3}, v_{4}, v_{5}, \ldots, v_{k}, u_{3}, \ldots, u_{k-1}\right\} \text { are }
$$ all non-maximal independent set of $B_{2, k}$, which is not contained in the above β_{0}-sets of $B_{2, k}$. Hence $B_{2, k}$ is not weakly k-extendable for all $k, 1 \leq k \leq\left(\beta_{0}\left(B_{2, k}\right)-2\right)$. Suppose $n=3, G=B_{n, k}$. The vertex set of $B_{3, k}$ be $V_{2}=\left\{v_{1}, v_{2}, \ldots, v_{3 k+1}\right\}$. The graph of $G=B_{3, k}$ is given below,

Figure 5

Advances and Applications in Mathematical Sciences, Volume 20, Issue 4, February 2021

From the above graph, we seen that the maximum independent set is, $\left\{v_{2}, v_{3}, \ldots, v_{k}, u_{2}, u_{3}, \ldots, u_{k}, w_{2}, w_{3}, \ldots, w_{k}\right\}, \beta_{0}\left(B_{3, k}\right)=3 k-3$.

$$
\{u\},\left\{u, v_{3}\right\},\left\{u, v_{3}, v_{4}\right\},\left\{u, v_{3}, v_{4}, v_{5}\right\}, \ldots,\left\{u, v_{3}, v_{4}, v_{5}, \ldots, v_{k}\right\},\left\{u, v_{3}, v_{4},\right.
$$

$\left.v_{5}, \ldots, v_{k}, u_{3}\right\},\left\{u, v_{3}, v_{4}, v_{5}, \ldots, v_{k}, u_{3}, u_{4}\right\}, \ldots,\left\{u, v_{3}, v_{4}, v_{5}, \ldots, v_{k}, u_{3}, \ldots\right.$, $\left.u_{k}\right\},\left\{u, v_{3}, v_{4}, v_{5}, \ldots, v_{k}, u_{3}, \ldots, u_{k}, w_{3}, w_{4}, \ldots, w_{k}\right\}$ are all independent set of cardinality k, for all $1 \leq k \leq(3 k-5)$, which is not contained in the above β_{0}-sets of $B_{3, k}$. Therefore $B_{3, k}$ is not k-extendable for all $k, 1 \leq k \leq\left(\beta_{0}\left(B_{3, k}\right)-2\right) \cdot\left\{u, v_{3}, v_{4}, v_{5}, \ldots, v_{k}, u_{3}, u_{4}\right\}, \ldots,\left\{u, v_{3}, v_{4}, v_{5}, \ldots, v_{k}, u_{3}\right.$, $\left.\ldots, u_{k}\right\},\left\{u, v_{3}, v_{4}, v_{5}, \ldots, v_{k}, u_{3}, \ldots, u_{k}, w_{3}\right\}, \ldots,\left\{u, v_{3}, v_{4}, v_{5}, \ldots, v_{k}, u_{3}, \ldots, u_{k}\right.$, $\left.w_{3}, w_{4}, \ldots, w_{k-1}\right\}$ are all non-maximal independent set of $B_{3, k}$, which is not contained in the above β_{0}-sets of $B_{3, k}$. Hence $B_{3, k}$ is not weakly k extendable for all $k, 1 \leq k \leq\left(\beta_{0}\left(B_{3, k}\right)-3\right)$. Suppose the result is true for $n, B_{n, k}$ is not k-extendable for all $k, 1 \leq k \leq n k-(2 n-1)$. Also $B_{n, k}$ is not weakly k-extendable for all $k, 1 \leq k \leq n k-(2 n)$. Since the result is true for n, that means β_{0} - set of $B_{n, k}$ contains $(n k-n)$-vertices. In $B_{n+1, k}$, the graph $B_{n+1, k}$ is partition into two graphs one is $B_{n, k}$ and another one is a subgraph which is nothing but $K_{1, n-1}$. Let $B_{n+1, k}$. The vertex set of $B_{n+1, k}$ be $V=\left\{v_{1}, v_{2}, \ldots, v_{(n k+1)+k}\right\}$. The graph of $G=B_{n+1, k}$ is given below,

u
Figure 6

From the above graph, we seen that the maximum independent set is,

$$
\left\{v_{2}, v_{3}, \ldots, v_{k}, u_{2}, u_{3}, \ldots, u_{k}, w_{2}, w_{3}, \ldots, w_{k}, \ldots, z_{1}, z_{2}, \ldots, z_{k}, s_{1}, s_{2}, \ldots, s_{k}\right\} .
$$

Therefore $\beta_{0}\left(B_{n+1, k}\right)=n k-n+(k-1) \cdot\{u\},\left\{u, v_{3}\right\},\left\{u, v_{3}, v_{4}\right\},\left\{u, v_{3}, v_{4}, \ldots, v_{k}\right\}$,
$\ldots,\left\{u, v_{3}, \ldots, v_{k}, u_{3}, \ldots, u_{k}, \ldots, z_{1}, \ldots, z_{k}, S_{3}, \ldots, S_{k}\right\}$ are all independent set of $B_{n+1, k}$, which is not contained in the above β_{0}-sets of $B_{n+1, k}$. Therefore
$B_{n+1, k}$ is not k-extendable for all $k, 1 \leq k \leq 1+(n k-2 n)+(k-2)\{u\}$, $\left\{u, v_{3}\right\},\left\{u, v_{3}, v_{4}\right\},\left\{u, v_{3}, v_{4}, \ldots, v_{k}\right\}, \ldots,\left\{u, v_{3}, \ldots, v_{k}, u_{3}, \ldots, u_{k}, \ldots, z_{1}, \ldots\right.$, $\left.z_{k}, s_{3}, \ldots, s_{k-1}\right\}$ are all non-maximal independent set of $B_{n+1, k}$, which is not contained in the above β_{0}-sets of $B_{n+1, k}$. Therefore $B_{n+1, k}$ is not weakly k extendable for all $k, 1 \leq k \leq 1+(n k-2 n)+(k-3)$. Hence the proof.

References

[1] K. Angaleeswari, P. Sumathi and V. Swaminathan k-extensibility in graph with Unique Maximum Independent Set, Global Journal of Pure and Applied Mathematics, ISSN 0973-1768 Volume 9 (2013),pp 567-574.
[2] K. Angaleeswari, P. Sumathi and V. Swaminathan k-extendable graphs Weakly kextendable graphs, Journal of Modern Science ISSN No. 2277-7628 Volume 1(May 2014),pp 61-70.
[3] K. Angaleeswari, Studies in Graph Theory with Special Reference to Domination, Independent and Extensibility, Ph.D Thesis, MK University, 2014.
[4] K. Angaleeswari, P. Sumathi and V. Swaminathan k-extensibility in graphs, International Journal of Pure and Applied Mathematics, ISSN No. 1311-8080 volume 101 No. 5(2015),pp 801-809.
[5] K. Angaleeswari, P. Sumathi and V. Swaminathan Trivially Extendable Graphs, Turkin Mathematical Society Journal of Applied and Engineering Mathematics 5(2) (2015), 307313.
[6] K. Angaleeswari, P. Sumathi and V. Swaminathan weakly k-extendable Graphs, International Journal of Pure and Applied Mathematics, ISSN No. 1311-8080 Vol 109(6) (2016), 35-40.
[7] K. Angaleeswari, M. Perumal and V. Swaminathan, Study on k-extensibility graphs and Weakly kextensibility in Harary graphs $\left(H_{m, n}\right)$ for specific values of m and n International Journal of Mathematics Trends and Technology. ISSN 2231-5373 May (2018),pp 101-108.
[8] K. Angaleeswari, M. Perumal, G. Palani Murugan and V. Swaminathan Study on k extensibility graphs and Weakly k-extensibility in Harary graphs ($H_{m, n}$) for all values of m and n Journal of Applied Science and Computation. ISSN 1076-5131, Vol 4, April (2019), pp 170-179.
[9] R. B. Allan and R. C. Laskar, On domination and independent domination numbers of a graph, Discrete Math. 23 (1978), 73-76.
[10] C. Berge, Theory of graphs and its applications, Dunod, Paris, 1958.
[11] F. Harary, Graph Theory, Addison Wesley, Reading Mass (1972).
[12] Teresa W. Haynes, Stephen T. Hedetniemi and Peter J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker Inc. (1998).
[13] K. Angaleeswari, M. Perumal and V. Swaminathan, Study on k-extensibility graphs and Weakly k-extensibility in Harary graphs ($H_{m, n}$) for all values of m and n applied to social network analysis, International Conference on Mathematical computing Engineering, ISSN 978-93-81899-94-6. Nov 2018.

