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Abstract

In this paper, we study the following fractional order neutral stochastic functional

differential equations with random impulses which is given as,

oDV 9% (v) = Y(y, 9y)] = [NO(y) + %y, 9y)Idy + o(y, 9y)dM(Y), v > Y0, ¥ # Es
9(&r) = b ()9 ), 9%(&r) = br(tr)9%(ER) k=1, 2, ..., )
9,0 = & 9%(r0) = ¥,

where NX: D(N) = $ — 6 is the infinitesimal generator of a strongly continuous cosine family
{¥(y), vy = 0}. W() is a given @-Winer process with a finite trace nuclear covariance operator
@ > 0. 7} is a random variable defined from Q to Dy, = (0, di) for £ =1, 2, .... The aim of the

present paper is to study existence and uniqueness of mild solutions of equation (1) by using the
non compact measurement strategy and the Monch fixed point theorem.
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1. Introduction
For our convenience and later use, we first recall definition of fractional
derivative as follow.

Definition 1.1 Riemann-Liouville definition [6, 7, 8, 9]. For

a € [n—1, n) the a-derivative of fis

D) = iy G [

n— OL) dt" Ja (t _ x)a—n+1 '

Definition 1.2. Caputo definition [6, 7, 8, 9]. For a € (n —1, n) the a-

derivative of fis

L A N
(o — n) Ia (t - ,E)(x—n+1 )

DY) =

The random impulsive fractional differential equations also have been
discussed in [1, 2, 3, 4, 5], which is given by equation (1). As i # j,
(3,j=1,2,...), and hence 1; and 1 ; are independent of each other. As
k=12 ..., then impulsive moments &; are random variables and §

= &j,_1 +15. Obviously, {£,} is a processes with independent increments.
0<ty=& <& <& <...<&p <...<limy_, & =oo, and 9(x)=limy ¢, , 8(y).
bp:Dp - %, for each k=1,2... The time history 9,(0)
= {9(y + ©®) : —1 < © < 0} with some given t > 0. Moreover, Y, y, ¢ and ¢, ¥
will be specified later.

Let $ and K are two Hilbert spaces over real field with in norm and inner
product are denoted by || and () respectively. Let L(K, )
={d: K> 9|¢ is bounded linear operators} and (Q, F, P) denote a

complete probability space equipped with a normal filtration {fy} .7-',50

Y270’
containing all P-null sets. Suppose that counting process {N(y), y = yo} is
generate by {€, & > 0} and FS) denote the minimal c-algebra generated by

{N(r), r < y}. We suppose {(W(y), v = yo} is a K-valued wiener process and
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denote the .7-"52) = o{W(r), r <y}. Suppose that FO, 72 and Fy, -are
mutually independent, and F, = fy(l) ny@).
Let {B,(y)}(rn=1,2,...) be a sequence of real valued Brownian motions

mutually independent over (Q, F, P). Let N@ -wiener process is defined as

Wi(y) = z:=1 JnBru(V)en, (v 2 0). As y e L(K, §), then we define

lw1g = TrwQy") = > [ nye, I
n=1

If ||1/)||2) <o then 9 is called a @-Hilbert-Schmidt operator. Let,

T e (YO’ +OO)7 J = [YO7 T]? Jk = [E.\k’ é;k+1)’ k= 0,1.., J = {Y ‘Y€ J7 Y # ék’
k=1,2, ..}. We denote Lo(Q, ) the collection of all square integrable,
fy -measurable, 9-valued random variables, with the norm
1
[ 9] Ly = (E||9]*)z, where the expectation E is defined by
9 2
E|9|? = [ I 8]*dP.

Definition 1.3. For a given 7 e (yq, +®), a Fy -adapted process function

{9 € B, yg —1 <y <7} is called a mild solution of system (1), if
@) 9,,(v) = §(v) € LY(Q, B) for ~t<v <0

(i) 8%(vo) = ¥(y) € LY(Q, $) for vy € J;

(it) the functions Y(v, 8,), x(v, 8,), o(v, 8,) are integrable, and for a.e.

y € J, the following integral equation is satisfied:

~+00

k k
8 = 2| | [oe)¥r = 70)00) + | Joute)Str = vo)lo - Y00, 4]

k=0 i=1
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k. k & (n)
Z H 1 YY(v, 9, )dv 1
+ . . bJ(T]) F(—(l _ I’L) E)JA ‘P(y - V) (Y _ V)—owlfn + F(—(x — n)

== i—1
X k. k
Y(n)(v 9, )dv 1 & X(n)(V 9,)dv
Pl =)t bj(tj) w——— (y = v) ———
é[e (v, v) 1 ; . I T(-a - n) J.E;il (y—v) 1
1 i % (v 9, )dv k
e ) St Ee e ZHb] e
Er i=1 j=i
E_’.
JA S(y-v) (n)(v ) )dW(v) 1 ].S(y ) g(")(v, 9, )dW(v)
&1 (y-v) atl-n [(-o - n) (y _V)—a+1—n
Iigy,, tp0)() ¥ € Yo, T
where

k
Hbj(Tj) = by () b1 (t-1) - bi(1;),
j=i

and Iy() is the index function, i.e.,

Lify e\,
0,if y ¢ N.

It - |

Lemma 1.4[10]. If the set D c IP(J; Ly(K, ), WIy) is a Q-wiener

process, then for any p > 2,y € [yo, 7}, Hausdorff non compactness measure

o [ Dlokawe < 7 - 10) Batoro)

Y0

O then we have,

where

Jy D(v)dWv = {j Yu(v)de : forallu € D, y € [y, T]}
Y0 0
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Lemma 1.5[11]. Let D is a bounded convex subsets of $, with 0 € D. If a
map F : D — $ is continuous, and if there exist a countable set M < D,
M c co({0} U F(M)), such that M is a compact set then F has a fixed point
in D.

2. Main Result

To prove the existence of the mild solutions of (1), we set the following
assumptions.

H; : As S(y), ¥(y)(y € J) are equicontinuous and 3 positive constants
N, N such that

sup| ¥(y)| < N, sup| ()| < V. @)
ved yed

H, : Let 3 : J xC — $ be the function such that.

(i) Vyed,vel, the functions y(y,:):C — $ and y(,v):J — H are
continuous and measurable respectively.
(i) If (v, v) € J x C, then 3 a continuous function m(y) € L}(J, R*), and

O, : Rt > R*, such that

x
E| 5", o) [P < m()0,(E]v]2),
and 0, satisfying

€]
lim infﬁ =
r—>w r

0.

(1)) For arbitrary bounded subset @ — C,3 a positive function

K, (y) € INJ, R), and B satisfies

Bt Q) < K, () sup B(QX0)).

Hjy: Let Y:dJ xC — $ be the function such that:
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(i) Vy ed, Vv e C, the functions Y(y,-): C — $ and Y(, v):J — § are

continuous and measurable respectively.

(ii) 3 continuous functions n(y) € LX(J, R"), and ©y : R — R*, such
that

E| Y™y, 0) |” < n(y)0r(E[v]2)

and the function O, satisfying

lim inf@)YT(r) _o.

r—>0
(iii) for arbitrary bounded subset @ < C, 3 a positive function }Cx(y)

e I}(J, R), and B satisfies
BT, Q) = K(y) sup BQUO).

Hy : Let 6:J xC — Lg(K, ) be the function such that.

() If yed,veC then the functions oft,-):C — Lg(K, ) and

o, v) : J = L(K, $) are continuous and measurable respectively.

(i) 3 a continuous function u(y) € I}J, R"), and a continuous positive

nondecreasing function @, : R — R", such that
2 2
E| o™y, v) P < nly)0(E[v]2)

for arbitrary (y, v) € J x C, and the function ©, satisfying

lim infGGT(r) _o.

r—>0

(iii) For arbitrary bounded subset Q < C,3K,(y) e C(J, R"), the

Hausdorff non-compact measure p satisfies

B(6™(y, Q) < Kq(y) sup B(QO)). K5 = supKo(y)
—1<0< ye
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Hj : If t; € Dij(j =1, 2, ...), then 3 constants M, such that
k
Bymax [ J10;() I < M
j=i

H = 2N max{l, M}| Ky |3y g+ + 2N M} Ky 3 5

+ 2N max {1, MJKEJ(T —v0)Tr(@Q) < 1.

Theorem 2.1. If assumptions (H,)— (Hg) are satisfied, then there exists

Hg : Let

at least one mild solution of the system (1).

Proof. We define the operator ® : B — B by ®, such that

(@9)(y) = o(v), v € [vo — % Yol

«mw—zhpqumm [pnwymemM

k=0Li=1

k& & (n)
YY(v, 9, )dv 1
+ ZHbJ F(—a n) J‘ ¥y -v) (y - V)fowlfn * (- — n)

=1 j=i i
J“P( Y (v 9, )dv Zﬁb J‘ (”)(v, 9, )dv
e 0”1 n P J -0 — n) (y_v)fowrlfn
1 2, 9,)dv
+F(—a—n)JS(y_ (y - )a+1 n ZHb (T F( a-—n)
& =1 j=i
j" Sty — vy 20 )W) I Sty — vy 20 )W)
(y_v)*o“rl*n -0 — n) Y V)fowl n

Ity &) () ¥ € Yo, 71
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Now the problem of finding mild solutions of problem (1) is reduced to
finding the fixed point of ®. We divide the proof into several steps as follows:

Step I. Claim. There exits r such that ® maps B, into B,.

For y € [yg, 7}, we have

o k 2
EJ@9)(1)|? < 5E[ZH|| bi(ee) 11— 70) 1 6O) . gkﬂ)m]

=1 i=1

- ,
+58| > [ o o= 10, 9) 1, f,,m)(y)]

Li=1 i=1

~

[ o kR k
| Y, 9,) dv
o ZLHH i ”)"J e ma— v

1=1 ]:1

2
v | Yy, 9,) dv
o 1ew - )
Lk | (o — )y — v) o3 | [ B Be)

kE k
| X", 9,) v
b:(r: S
PN BT j st =l e

(n)(y, v ?
e[ sty - — AT B }ng gwm}
Ek

| Do = n)(y = v) >+ |

Rk k
| s™(v, 8,) |dW(v)
b:(t S
E | ||| (])II_[ I S( )"||r(—a—n)(y—v)—°°+1—” ]

. £, 9,) ldv }, T A
I MEY G e s =52 R

where
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2
R <N E{maX{Hllb(n n}} E| §0)[? < N2ALE] 4(0) .

=1

k 2
Ry < N?E{ma {Hn bi(x;) ||H E] o~ (0. )|

=1

< M2N?E| ¢ - (0, 9) |,

2
Ry <N E{max{l HII b;(x )IIH (T - YO)J'YYO E| Y™ (v, 9,)|? %

] i

Y d
< N? max {1, M?} L n(y)O(E| 9 ||3)€—j,
0

2 2
Ry < NZE{max{l Hnb(r ||}} U Ex™(v, 9,) | dv}

< N? max, mjy m(y)®,(E| 9 | )

k 2 2
~ Y
s el [Tt ] o022

zdv

< N2 max {1, Mz}Tr(Q)J. E| 0(’1)( )|

< N max(t, MYTHQ) | wven (B9 &

Also where I'(—a. —n)(y — v)_aﬂ_n =Cand |{]|=C

If we assume that ®(B,) & B,, then for r > 0,3 a 9" e B,, such that

E| (®9") ||?3 > r. Therefore
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r< sup E| (@)% <5
Yo<y<T i

< 5IN*ME| §(0) [* + MPN?E| ¢ = Y(0, ) |* + N* max {1, M*}(T ~ o)
| 2011, y®r(r) + N? max{l, M*}(T = v0)| ml 3y, @)
+ N? max {l, M3} Tr(Q)| m| . )@ ()]}

Since

tim inf € Z 0 lim inf

=0, lim in
r—o r r—

r—>0

Oyr) £ Oolr) _

taking these limits and above equation, which gives that 1<0, a

contradiction.

Thus 3r > 0, ®(B,) < B,.
Step II. Claim. ® is continuous in B,.

Let {9, — 8} in B, (as n — ), then

E[(@9")(y) - (@9)(y) |

+o | k k
1 i (v, 97) = YW(v, 9,))dv
<3E b:i(t;)——-o- Y(y — v v
|| ]; le"[ 1D e ], Y S
+ 1 J-\{/(.Y _ V) (Y(n)(v’ SC) - Y(n)(v’ 9y ))dV T ('Y) "2
[(-o —n) : (y - V)—oc+1—n [Ek Ek1)
k
+0 | k k
1 i (M (v, 87) - %My, 8,))dv
+ 3| b)) e [ Str-v) R
Z; Zlnf PTa=n) g, (y - vyt
Y
1 (v, 9%) = 2", 9,)dv 5
" [(—a —n) g"S(y ) (y — vy ot1n Tyt |
k
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+o| kB k
1 & (v, 81) = (v, 8,))dv
DYDMo N Ve
=0[1=1 j=1

(6™ (v, 87) - 6M(v, 9,))dv
(o vy T g er) 0

Y
- F(—()Ll—n) .[S(Y_V) §
€

By the continuity of functions Y, y, ¢ in the assumptions of (Hy)— (Hy),
and by Lebesgue dominated theorem, for y € [yg, 7] we have

E| (@9")(y) - (@9) () |* < N? max {1, M*}(T - v0)* sup E[ r"(v, 87)
yo<y<T

Y™y, 9,) |2

< N?max {1, M*}(T —yo)? sup E|7™(v, 87)-x"(v, 8,) |7 -0,
Yo<Y<T

(asn — o).

Therefore, | (©3")(y)— (®I)(y) ||?3 — O(asn — ©), which implies that ®

is continuous in B,.

Step III. Claim. The operator ®(B,) is equicontinuous on every

[&k > (:k+1 )

Let &, <vyy <79 <&py1,2=0,1,2,... and 9 € B, then for any fixed

9 € B,, we have

k
E] @9)(1) ~ (@9)(r2) [* < 52] | [5:(x) (¥ ~ v0) ~ ¥lrz ~ 10)16(0) [P
=1

k
+5E| | Jou(z) [t - v0) - Strz = 7)o - Y(0, )] |
=1
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Si Yy, 9,)dv
o1 Y [ ] IR R R R et

=1 j=i

1 Y Y(")(v, 9, )dv
" TCa=n) L}k [Fly2 = v) =¥y - V)] W

v, dv
e ] IR (y(v)%inu

k & Vv, Vv
w1 Y] [ e o), ISt =)= S0 - )]%

k
1=1 j=i

; Y V) - —v M
+ Ta—n) jik [S(yo )—Sn ) (v - V)—a+1—n

Si s (v, v ) AWV
o) Y] [ i j I8t~ St~ 7R

i=1 j=i (

(v, 9,)dWv
("/ _ V)—a+1—n

T ), [ =) =St V]

1 V2 B (v, 9, )dWv
e, S T

2
I

By the equicontinuity of ¥(y), S(y) the assumption (H;), (Hs)— (Hs),

and Lebesgue dominated theorem, as yq — y1, on every [, Ep41)

E| (@x)(y;) - (©x)(y2) |* - 0.

This proves that (®(B,)) is equicontinuous on J.

Step IV. Claim: The Ménch’s condition holds.

Let B =co({0} U®(B,)). For any D — B, without loss of generality, we

Advances and Applications in Mathematical Sciences, Volume 22, Issue 7, May 2023
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assume that D ={9"}’ ;. Then clearly ® maps D into itself and
D < co({0} U ®(B,)) is equicontinuous on J},.

Sub Claim. As B is the Hausdorff measure of non compactness then

B(D) =0
Here, for convenience, we denote ® = ®; + @y + O3 where

k

(®19) (y)—Z[Hbl T )W (Y~ 70)0 <o>+1_[b(r )S(r = 7o) [o — Y(0, 9)
k=0 =1

=1

k _k 5% (n)
1 TV (v, 9, )dv
ST e | ‘P”‘“)w—%ﬁ

\%
=L j=i &1

1 Yy, 9, )dv
(-0 —n) J-\P(y V) y - V)ot+3n I[§k>§k+1)(Y)’

v

w| &k § )y, v
(@29)(1) = ZH%)@J‘ Sl - >g‘y()—93d

Y,
1 9, )d
P J. S(y - )_(X (V%zz Iy ) (),

k & (n)
1 a"(v, 9, )dWv
@90 =3 ST [0 ey | S St

k=0 i=1 j=i &

(n)
1 o (v, 9, )dWv

* F(—(X - n) JS(Y a V) (Y _ V)70L+17n I[Eak’ik+1)(Y)'
k

By Lemma [4], Lemma 1.4 and the assumptions of (H;)— (Hj), we have
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(v, 9= D g,

A1) (1) < 2mas 1, MV L n)jﬁ((y S

1 tK (v)sup_.<p<o B({97(0)},,—1 )dv
< 2max{l, M} N Co—7) J L p(y _ev)ofaﬂ,n L
0

< 2max{l, M| Ky (s, ) SUpB(S" (70,
YE

1 n)J‘B (" v, 9) 5

B{(@29™) (1)}—y) < 2max {1, MIN s
(y-v)

< 2max {1, M| £, | (J,R") Su}]) BUS™ (M1 )
ye

B{(@39")(y)},—1) < max {1, M} NB {{ ) J‘yo o(n) (V 92)aw(v),, 4 }J

V) a+l-n
< 2max {1, M} NJ(T - 'YO)Tr(Q)ICG(Y)_S;gi . B9y ()}7—1)

< 2N max {1, MW(T — 10 THQ)K; sup BUS™(V)ey)
Thus,
@S () < B9 ) + B9 () + B9 )1
< 2N max {l, M| Ky |3y, gr) + 2N max {1, M} Ky |20y, g

+ 2N max {1, M} (T — yO)Tr(Q)/CZ;]su5 B (Mn=1)
ve

< fJSllpyeJ B(D(Y))
By Lemma [4] and assumption (Hg), we know

B(D) < B(co({0} U (D)) = B(P(D)) < 55§u§> B(D(y)) = HB(D) < B(D)
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which implies B(D) = 0, the set D is a relatively compact set. By Lemma 1.5,
® has at least one fixed point 3 in B, and hence the system (1) has at least a

mild solution.
3. Application

In this section, we will discuss an example which illustrate the
application and validity of our main results. For this, we consider the
fractional neutral stochastic functional partial differential equation of the
form,

a+1 o 0
0" uly, 9) _9 ﬂJ. MVw(y + v, 9)dv
a,Y(x+1 a,YOL 5 -0

oty ao (0 ag [°
= FTW + ?2 J_Q Lo (Vw(y, S)d\/} dy + ?3 I_Q Az (Viw(y, 8)dW(y),

’YZ’Yo,’YiE_,k,SE[O,TC],
('O(E:k’ 8) = P(k)Tk@(a, 8)’_ 3
0 w(éf, 9) _ o(R)s 0 w(E_,f, 9)

oy oy
w(yg, 9) = ¥(0, 9), 6 € [0, 0], $ € [0, =], r > O,
0“w(yo, 9)

’

= ¢(8)7 S e [O’ TC],

w(y, 0) = w(y, ©) = 0.

Let 1, be a random variable defined on D), = (0, d,) where 0 < dj, < 400
for k=1, 2, .... Suppose 1; and 7; are independent of each other as 1 # j for
Lj=12..,&=7y9>0 and &, =&, 4 +1, for k=12, .... Let W(y)
denotes a standard cylindrical wiener process in ,C2([0, n].. By suitable
choices A, A;, o, we firstly reduce the equations (3) into (1). Let o be a

function of k and m; : [-g, 0] > R are positive functions and A; >0 for
i=123. |¥(y)| | S(y)| are bounded on R.

We assume that

0
(i) The function A(0) is continuous on [—p, 0], J. 2;(0)d(0) < o(i =1, 2, 3).
Y
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. k N
@) max; [ | Bl oG P < M
Under the above assumptions, and by choosing some suitable functions

0 0
(O)dO). £, =52 | 13(0)d(),
—Q —Q

_rq

M, Ag, A3, p, we can show that L, =55

0
c, =T% v3(0)d(8). We assume that the functions Aq, Ag, Ag, p, in (3)

P 25 -0
satisfy all the assumptions of the Theorem 2.1 then the above problem (3) can
be written as,

0Dy 9% (v) = Y(v, 8,)] = [NO(y) + x(v, 8)ldy + o(v, 8,)dW(Y), ¥ > Y0, ¥ # &k,
9(&) = bp(11)9(ER ) 9%(Er) = bp(1)9"(Er) K =1, 2, ...,
8y, = 9%(v0) = ¥,

Hence by the Theorem 2.1, can be applied to guarantee the mild solution
of the equation (3).

4. Conclusion

In this work, we discussed existence result of fractional order neutral
stochastic functional systems with random impulses by using the non
compact measurement and the Monch fixed point theorem. Moreover, we
obtained the mild solution of an equation (3), which demonstrate the validity
and application of the main result.
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