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Abstract 

In this paper, we study the following fractional order neutral stochastic functional 

differential equations with random impulses which is given as, 
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where ( ) HH→ D:  is the infinitesimal generator of a strongly continuous cosine family 

( ) .0,   ( )t  is a given Q-Winer process with a finite trace nuclear covariance operator 

.0Q  k  is a random variable defined from  to ( )kk dD ,0  for .,2,1 =k  The aim of the 

present paper is to study existence and uniqueness of mild solutions of equation (1) by using the 

non compact measurement strategy and the Mönch fixed point theorem. 
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1. Introduction 

For our convenience and later use, we first recall definition of fractional 

derivative as follow. 

Definition 1.1 Riemann-Liouville definition [6, 7, 8, 9]. For 

 )nn ,1−  the -derivative of f is 
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Definition 1.2. Caputo definition [6, 7, 8, 9]. For ( )nn ,1−  the -

derivative of f is 
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The random impulsive fractional differential equations also have been 

discussed in [1, 2, 3, 4, 5], which is given by equation (1). As ,ji   

( ),,2,1, =ji  and hence i  and j  are independent of each other. As 

,,2,1 =k  then impulsive moments k  are random variables and k  

.1 kk += −  Obviously,  k  is a processes with independent increments. 

,lim0 2100 == → kkkt   and ( ) ( ).lim
0

=
−→

−
ktk  

,: H→kk Db  for each .,2,1 =k  The time history ( )  

( ) 0: −+=  with some given .0  Moreover,  ,,  and ,  

will be specified later. 

Let H and  are two Hilbert spaces over real field with in norm and inner 

product are denoted by   and ,  respectively. Let ( )H,L  

 →= |: H  is bounded linear operators} and ( )P,,   denote a 

complete probability space equipped with a normal filtration  
00

, t   

containing all P-null sets. Suppose that counting process  ( ) 0, N  is 

generate by  0,  kk  and 
( )1
  denote the minimal -algebra generated by 

( ) ., rrN  We suppose  ( ) 0,   is a -valued wiener process and 
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denote the ( ) ( ) .,2 = rr  Suppose that ( ) ( ),, 21
   and 

0
 -are 

mutually independent, and ( ) ( ).21
 =  V  

Let  ( )( ),2,1= nn  be a sequence of real valued Brownian motions 

mutually independent over ( ).,, P  Let Q -wiener process is defined as 

( ) ( ) ( )


=
=

1
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n nnn eW  As ( ),, HL  then we define  
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1
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If 
2
Q  then  is called a Q-Hilbert-Schmidt operator. Let, 

( )    )  ,,:
~

,,1,0,,,,:,, 100 kkkk JJkJJ ====+ +    

.,2,1 =k  We denote ( )H,2 L  the collection of all square integrable,    

 -measurable, H-valued random variables, with the norm 

( ) ,2

1
2

2
= EL  where the expectation E is defined by 

 = .22 dPE   

Definition 1.3. For a given ( ),,0 +  a  -adapted process function 

  − 0,  is called a mild solution of system (1), if 

(i) ( ) ( ) ( ),0
20
= L  for ;0−  

(ii) ( ) ( ) ( )H,0
20 = L  for ;J  

(iii) the functions ( ) ( ) ( )  ,,,,,  are integrable, and for a.e. 

,J  the following integral equation is satisfied: 
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( ) ( ) ( ) ( )
=

−− =

k
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iikkkkjj bbbb ,11   

and ( )I  is the index function, i.e., 
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Lemma 1.4[10]. If the set ( ( )) ( )  ,,; HQ
p LJLD  is a Q-wiener 

process, then for any  ,,,2 0 p  Hausdorff non compactness measure 

 then we have, 
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Lemma 1.5[11]. Let D is a bounded convex subsets of H, with .0 D  If a 

map H→D:  is continuous, and if there exist a countable set ,D  

  ( )( ),0  oc  such that   is a compact set then  has a fixed point 

in D. 

2. Main Result 

To prove the existence of the mild solutions of (1), we set the following 

assumptions. 

:1H  As ( ) ( ) ( )J ,  are equicontinuous and  positive constants 

NN
~

,  such that 

( ) ( ) .
~

sup,sup NN
JJ




  (2) 

:2H  Let H→ J:  be the function such that. 

(i) ,,  vJ  the functions ( ) H→ :,  and ( ) HJv → :,  are 

continuous and measurable respectively. 

(ii) If ( ) ,,  Jv  then  a continuous function ( ) ( ),,1 +− RJLm  and 

,: ++
 → RR  such that 

( )( ) ( ) ( ),, 22
 vEmvE n  

and   satisfying 
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(iii) For arbitrary bounded subset  ,Q  a positive function 
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:3H  Let H→ J:  be the function such that: 
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(i) ,,  vJ  the functions ( ) H→ :,  and ( ) H→ Jv :,  are 

continuous and measurable respectively. 

(ii)  continuous functions ( ) ( ),,1 +− RJLn  and ,: ++
 → RR  such 

that  

( )( ) ( ) ( ),, 22
 vEnvE n  

and the function g  satisfying 
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(iii) for arbitrary bounded subset  ,Q  a positive function ( )  
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:4H  Let ( )H,:  QLJ →  be the function such that. 

(i) If  vJ,  then the functions ( ) ( )H,:,  QLt →  and 

( ) ( )H,:, QLJv →  are continuous and measurable respectively. 

(ii)  a continuous function ( ) ( ),,1 + RJL  and a continuous positive 

nondecreasing function ,: ++
 → RR  such that 

( )( ) ( ) ( ),, 22
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:5H  If ( ),,2,1 = jDjj  then  constants , such that 
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Theorem 2.1. If assumptions ( ) ( )61 HH −  are satisfied, then there exists 

at least one mild solution of the system (1). 
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Now the problem of finding mild solutions of problem (1) is reduced to 

finding the fixed point of . We divide the proof into several steps as follows: 

Step I. Claim. There exits r such that  maps rB  into .rB  

For  ,,0   we have 

( ) ( ) ( ) ( ) ( )  )( )

2

1 1

,0
2

1
05














− 



= =

 +

i

k

i

ii kk
IbEE  

 ( ) ( )  )( )

2

1 1

, 1
,05














−+ 



= =

 +

i

k

i

ii kk
IbE  

( ) ( )
( )( )

( ) ( )













−−−


−+   



= = =



 −+−


−1 1 1
1

1

,
5

i

k

i

k

j
n

n

jj

i

i n

d
bE  

( )
( )( )

( ) ( )
 )( )

2

,1 1

,














−−−


−+

+



 −+−


 kk
k

I
n

d
n

n

 

( ) ( )
( )( )

( ) ( )













−−−


−+   



= = =



 −+−


−1 1 1
1

1

,
5

i

k

i

k

j
n

n

jj

i

i n

d
bE   

( )
( )( )

( ) ( )
 )( )

2

,1 1

,














−−−


−+

+



 −+−


 kk
k

I
n

d
n

n

  

( ) ( )
( )( ) ( )

( ) ( )













−−−


−+   



= = =



 −+−


−1 1 1
1

1

,
5

i

k

i

k

j
n

n

jj

i

i n

d
bE


  

( )
( )( )

( ) ( )
 )( ) 

=





 −+−
 =














−−−


−+

+

5

1

2

,1
,5:

,
1

i

in

n

RI
n

d
kk

k

  

where 



ANALYSIS OF MILD SOLUTION OF FRACTIONAL … 

Advances and Applications in Mathematical Sciences, Volume 22, Issue 7, May 2023 

1425 

( ) ( ) ( ) ,00max 2222

2

1

2
1 

























 
=

ENEbENR

k

i

ii
k

  

( ) ( ) ,,0max
~ 2

2

1

2
2 −

























 
=

EbENR

k

i

ii
k

 

( ) ,,0
~ 222 − EN  

( ) ( ) ( )( )


 

=



−






























0

2
0

2

,

2
3 ,,1max

d
ETbENR n

k

ij

ii
ki

 

  ( ) ( ) ,,1max
0

222




 





d
EnN   

( ) ( )( )
2

2

2

,

2
4

0

,,1max
~










































 



 

=

d
EbENR n

k

ij

ii
ki

 

  ( ) ( ) ,,1max
0

222




 





d
EmN   

( ) ( )( )
( )

2
2

,

2
5

0

,,1max
~




 

=


































d
EbENR n

k

ij

ii
ki

 

  ( ) ( )( ) ,,,1max
0

222




 





d
EQTrN n  

  ( ) ( ) ( ) .,1max
0

222




 





d
EQTrN   

Also where ( ) ( ) =−−−
−+− nn 1

 and .=  

If we assume that ( ) ,rr BB   then for  ,0r  a ,r
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By the equicontinuity of ( ) ( ) ,  the assumption ( ) ( ) ( ),, 521 HHH −  

and Lebesgue dominated theorem, as ,12 →  on every  )1, + kk  

( ) ( ) ( ) ( ) .02
21 →− xxE  

This proves that ( ( ))rB  is equicontinuous on J. 

Step IV. Claim: The Mönch’s condition holds. 

Let (  ( )).0 rBocB =   For any ,BD →  without loss of generality, we 
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assume that   .1
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By Lemma [4], Lemma 1.4 and the assumptions of ( ) ( ),51 HH −  we have 
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which implies ( ) ,0= D  the set D is a relatively compact set. By Lemma 1.5, 

 has at least one fixed point  in rB  and hence the system (1) has at least a 

mild solution. 

3. Application 

In this section, we will discuss an example which illustrate the 

application and validity of our main results. For this, we consider the 

fractional neutral stochastic functional partial differential equation of the 

form, 

( )
( ) ( )

( )
( ) ( ) ( ) ( ) ( )

 

( ) ( ) ( )

( )
( )

( )

( ) ( )    

( )
( )  

( ) ( )
























==

=




−=



=





=



+







+




=









+




−

















−−+

+

−



+

+





.0,0,

,,0,
,

,0,,0,0,,,,

,
,,

,,,

,,0,,

,,
5

,
5

,

,
5

,

0

0

0

0

3
3

0

2
2

1

1

0

1
1

1

1

ww

w

ryw

w
k

w

k

dw
a

ddw
aw

dw
aw

k
k

k

kkk

k









 (3) 

Let k  be a random variable defined on ( )kk dD ,0=  where + kd0  

for .,2,1 =k  Suppose i  and j  are independent of each other as ji   for 

0,,2,1, 00 == ji  and kkk += −1  for .,2,1 =k  Let ( )  

denotes a standard cylindrical wiener process in  ( ).,02   By suitable 

choices ,,,  i  we firstly reduce the equations (3) into (1). Let  be a 

function of k and   Ri →− 0,:   are positive functions and 0i  for 

.3,2,1=i  ( ) ( ) ,  are bounded on R. 

We assume that 

(i) The function ( )  is continuous on   ( ) ( ) ( )− =−
0

.3,2,1,0,


 idi  
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(ii)   ( )  .max 2
,  =

k

ij
jki jE  

Under the above assumptions, and by choosing some suitable functions 

,,,, 321   we can show that ( ) ( ) ( ) ( ) − −
 ==

0 0
2
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22
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,
25  

d
ra

d
ra
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d
ra

  We assume that the functions ,,,, 321   in (3) 

satisfy all the assumptions of the Theorem 2.1 then the above problem (3) can 

be written as, 
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Hence by the Theorem 2.1, can be applied to guarantee the mild solution 

of the equation (3). 

4. Conclusion 

In this work, we discussed existence result of fractional order neutral 

stochastic functional systems with random impulses by using the non 

compact measurement and the Mönch fixed point theorem. Moreover, we 

obtained the mild solution of an equation (3), which demonstrate the validity 

and application of the main result. 
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