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Abstract

The (o, B) -metric is a Finsler metric made up of a Riemannian metric o and a differential
I-form P, that has been studied in theoretical physics. In this paper a special (o, B) metric is
considered known as generalised Z. Shen’s metric. Here, the hypersurface of generalised Z.
Shen’s (o, B) metric on hyperplane of 1st, 2nd and 3+ kind is discussed. The results indicated
that the hypersurfaces obtained are hyperplanes 1st and 2»d kind, but not of the 3 kind for Z.

Shen’s (a, B) metric.

1. Introduction

Definition 1.1[5]. Let M™ be an n-dimensional smooth manifold and

L(x, y) is a fundamental function, which satisfies the following conditions.
(1) L(x, y) > 0 for (x, y)e D

(2) L(x, Ay) = | 1| L(x, y) for any (x, y) € D and A € R(x, Ly) € D
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1060 DEEPAK K S and AVEESH S T
(8) The D tensor field g;j(x, y) = %6i8jL2(x, y)

Then F =(M", L) is called Finsler space furnished with fundamental

function L(x, y) on M", where & = ij is non degenerated on D.
oy

Definition 1.2 (Finsler Space with the (a, B)-metric) [15, 22]. The

fundamental function L of a Finsler space F" =(M", L) is called a

n-dimensional Finsler space with an (o, B) metric, here L is a positive

o1
homogeneous function of two arguments af(x,y) = (a;(x)y'y’ )2, Bx, ¥)

= bi(x)yi, where o is a Rimaninian fundamental function and B is a

differential 1-form.

2
Let L(a, B) = @ is called Z. Shen’s square metric. In this paper, we

have considered a generalized Z. Shen’s (a,p) metric, L(a, )

_ M(n > 0).

an

Definition 1.3 (Hypersurface of Finsler Space) [6]. Finsler hypersurface
F'l — (M™, L(u,v)) of a Finsler space F™ =(M", L(u, v)) can be

o

parameterized as an equation, x' =x'(u®), here u® are Gaussian

coordinates of F™ ! and Greek indices take values from 1 to n — 1.
Hyperplanes of the 1st, 2nd and 3rd kind [7].
Definition 1.4. If each path of a F™ 1 with respect to the induced

connection is besides a path of the enclosing space F" then Finsler

hypersurface F nlisa hyperplane of 1st kind.

Definition 1.5. If each path of a F"1 with respect to the induced
connection is also a h-path of the enclosing space F’ then Finsler

hypersurface F”*~! is a hyperplane of 2 kind.
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curve of F™! thenitisa hyperplane of the 3rd kind.
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Definition 1.6. The unit normal vector of F™! is parallel along each

Table 1. Summary of various types of (o, B) metrics and their results in
hyperplanes.
Sl | Types of Metrics Hyperplane Hyperplane Hyper Reference
No of 1st kind of 2rd kind plane of
3rd kind
1. (o + B)z BQ yes yes no [1]
Lo, B) = ——— + ——
(o, B) a F-a)
(Deformed Berwald-Infinite
Series Metric)
2. B2 yes yes no [2]
L(a, B) = o+ g +pg =
(Generalized (o, B) -Metric)
3. p2 yes yes no (3]
L(a, B)ZOH'EB"'KF"'B
(Randers Change of
Generalized (o, B) Metric)
4. 2 yes yes no [4]
Ll a, = (X— +
( I?’) ((X — B) B
(Matsumoto Metric)
5. BN +1 yes yes no [5]
Lo, B)=a + B+ N
o
(Special (a, B)-Metric)
6. B yes yes yes [6]
L = LelL
(exponential metric)
. 2
7 P (o +P) B yes yes no [7]
o
(Finsler Square Metric)
8. o2 yes yes no [8]
L=—%
(vo - op)
(Matsumoto Metric)
9. B B yes yes yes [9]
L(o, B) = ae® + Be @
(exponential form of (a, B))
10. | o2 yes yes no [10]
Lo, B)=0+P++—=
(o, B B @—p
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1062 DEEPAKK S and AVEESHS T

(Special (o, B)-metric)

11. 3, a3 yes yes no [11]
- a” +p

FEP ep

(Special (o, B)-metric)

12. . [35 yes yes yes [12]
L =a+pp+v =+ B
o

(Special (o, B)-metric)

13. Lix, y) = acosh% B yes yes no [13]
(Special (o, B)-metric)

14. Lo B) = (o + B)Z yes yes no [14]

o

(Square Metric)

15. (o + B)Z a yes yes no [15]
L(a, B)zT"’ B-o)

16. B yes yes no [16]
L(a, B) = Ar(ce®) + (o0 + B)
(special (o, B) -metric)

17. Bn+1 yes yes yes [17]
L+oa+

(a-p)"

(special (o, B)-metric)

18. B yes yes no [18]

L=oae% +p

(Exponential (o, B) -Metric)

19. 19
Hopart | [

(special (o, B) -metric)

In this paper we intend to consider the generalised Z. Shen’s (a, B)

metric [14] and verify the results in the hyperplane.

2. Preliminaries

We take into account the Finsler space (M", L), where L is the

generalised Z. Shen’s metric that is given by

Lo, B) = —(“O;B) 2.1)
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Differentiating equation (2.1) partially with respect to o and B up to
second order, we get

(n +1)(a + BYa” — n(o + B)n+1(ln+1
(an)Z

L, =

ki

Iy = é(n 1 1) (o + B,

[n(n +1)(a + [3)"_1 o +(n+1)(a+B)a™t —n(n+1)(a + B)la™t

_ —(n-Dnfa + BY " Lo 2]~ [(n + 1) (40c +B) " — n(a + B) a1 ]2na?"

L(la
1 n—1
Lgp = —n(n+1)(a+B)* ",

an

Lyg = # [n(n+ 1) (o + B o — n(n +1)(a + B) o] 2.2)

In Finsler space (M", L), the [; = % and h;; [21] are given as,
13

L = % + Lgb; (2.3)
hij = pajj + qobib; + q1(Biyj + bjyi) + 425y (2.4)
where the coefficients are defined and calculated as follows
i = aijyj )

LL, (n+1)(o+B" o — nlo + By 2a!
o OL3n+1

p:

>

qo = Llgp = ﬁ n(n+1)(a + B)zn, (2.5)

LLg  n(n+1)(a+ B)Qnoc" -n(n+1)(a+ [3)2n+10c"_1
a a3n+1

b

q =
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1064 DEEPAKK S and AVEESHS T

n(n+1)(a+p)a”
( (0 + B)MJ +(n+1) (o + Yo
a” —n(n+1)(o +B)at
—(n-Dn(a + By Lo 2

—[(n+1) (o + B)*a™ — n(o + B)* a1 ]2n0 T

1

-9 (2.6)

2 a4n

: 1 3°L : n
The fundamental metric tensor g;; = = ——— of Finsler space (M", L),
T 25y
is defined by [21]

8ij = pajj + pobbj + p1(by; +bjy;) + Poyiy; 2.7)

Where the coefficients p, py, p; and py are defined and calculated as

follows:
LL, (n+1)(o+B)*" o™ - n(a+ B 2a"t
p="o - - , 2.9)
o n+
o
Po =0 + I3 = —nln+1)(a+ B2 + (n+ 1) (‘“B) , (2.9)
o?
pLﬁ
b=q + I

n(n +1) (o + B Ha + (n+1) (o + B2t - n(n + 1) (a + B)** Lo T

= (n _ 1) ((1 i B)2n+2qn 2 4 2n(n 4 1) (0( 4 ﬁ)2n+1a3n—1 4 2n2((x 4 B)2n+2a3n—2
h 5n+2 ’
o

(2.10)

p2_q2+L2
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n(n+1)(a+ B o + (n+1)(a+ B —n(n +1)(a + )" Ha

|- (n _ 1) (OL i B)2n+2 0Ln—2 + Zn(n + 1) (O( 4 B)2n+1 aSn—l + 2n2(a + B)2n+2a3n—2
- 5n+2
o

(n . 1) ((x " B)2n+1(xn _ n(a n B)2n+2an] 5 a2n @2.11)

[
+ (a3n+1)2 (OL " B)2n+2

In addition, the reciprocal tensor gij of fundamental metric tensor 8ij 1s

given by the relation [21]
.. ij .. A .. ..
g = % — Spb't! —S_1(B'y! +by") - S_9¥'y’, (2.12)

where the coefficients &', Sy, S_1 and S_, are defined as follows:

b = a”bj,
2y 2
Sy = 2P0~ (Pops — PP ) , (2.13)
pg
2
S, =Pt (PoP2 — PI)B (2.14)
e
2\1,2
S , = Pp2t(pops = PLB” (2.15)
pg
¢ = p(p + pob® + piB) + (pop2 — p) (070 — B7), (2.16)
where b2 = a“b'b/.
8 ..
Now, the Av-torsion tensor Cijk = %il}i 1s defined by [21]
8y
Cyk _ pl(hijmk + h]kml + hklm]) + ylmimjmk ’ (217)

2p

where the coefficients y; and m; are defined as
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S .
1= pﬁ - 3pQp, m; = b; - y4§ (2.18)
P a

where m; is non-zero covariant vector orthogonal to ¥
Now consider,
2El] = bl] + bjl (219)

2K = b - by,

where bl] = iji' (220)
Let CT = (F;;f;, ok, ;k) be the Cartan connection of F".

The difference tensor D}k = F]*;i - Fjl:k of the Finsler space F" is given by
(21]
', = B'Ej;, + FiB; + FIBj, + Bibyj, + Biby; — bomg' B, — Cip A
— Ch AT — CpmAI'g™ +25(C',,CsE™ + Cj,,CT — CTCL,) (2.21)
where

By, = pobr + P1Yk

iy op
P Qi - 12J]+$Omimj
B = . ,
2
I _ SR,
Bk_ ng]’
B = g¥Bj;,

A]’gn = B;enEOO + BmEkO + BkFén + BoFk{n,
A" =B™ + EOO + 2BOF0m,

Ff = gk]Fji,
By = BY'.

Here 0 will be denoted the tensorial contraction with yi except the

quantities qq, pg and Sy.
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3. Induced Cartan Connection of F"!(c)

Let F™ = (M", L) be a Finsler space, and F"(c) be its hypersurface
having equation x' = xi(u“ 1=123,...,(n—-1). Let the matrix of
St

— and its rank is (n-1). The tangential
du

projection factor be B(ix =

component of element of support yi of Finsler space F" along its

hypersurface F n_l(c) is given by
y' = B} (u)v®. (3.1)
Here v* is the component of support of F ”_l(c) at u”. The tensor g.p

BBl

and hv-torsion tensor C,g, of F"(c) are given by Sap = Sij

Copy = Cyn BLBYL.

Now, the unit normal vector N i(u, v) at an arbitrary point u®* of F*7}(c)

is defined by the following property
8ij@(u, v), Y, V)BENY = 0, gij(x(u, v), y(u, V)N'N/ =1 (3.2)
the angular metric tensor #;; is defined as
hop = hi;BLBS, hyiBLN’ = 0, hyN'N/ =1 (3.3)
Let (B*, N;) be the inverse of (B}, N), then we have

B = g*Pg;;B}

{, BLB =8, B*N' =0,

BYN; =0, N; = g;N', Bf = g¥B;;, B,B} + N'N, =&,

The induced Cartan connection ICT = (T E;,*, Gg, Cé‘y) on F "_1(c) induced

from the Cartan’s connection CT = (F;;i, G, C]Lk) is given by [3] (3.4)
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I3y = BH(Bj, + TjB{By) + M{H,,
G§ = BBy + 5B},
C§, = BI'CiBiBY,
where
My, = N,CiyBiy",
My =g aﬁMBv’
Hy = N;(Blg + T5iB}),

_ 5B}
sUY

i

By

Bbg = Blgv®

(3.5)

(3.6)

The quantities My, and Hp appeared in above equations are called the

second fundamental v-tensor and normal curvature [20].

The second fundamental h-tensor Hp, is defined as [20]

Hp, = Ni(By, + THB{BY) + MH,,

Co
Where Mp = N;Cj;, B{N".

(3.7

(3.8

The relative h-covariant derivative and v-covariant derivative of

projection factor B(i)t with respect to induced Cartan connection ICT are

respectively given by
By = HopN',
By = MopN'

It is obvious that Hp, is not always symmetric and

Advances and Applications in Mathematical Sciences, Volume 22, Issue 6, April 2023
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Hy, - Hyy = MgH, ~ M, Hp, (3.10)

Implying that

Hy, = H,, H

s0 = H, + M,H,. (3.11)

We utilize the following lemma to prove our hypothesis. The following
lemma has already been derived by M. Matsumoto [20]:

Lemma 3.1. The normal curvature Hy = HBU13 vanishes iff normal
curvature vector Hg vanishes.
Lemma 3.2. F""Y(c) is a hyperplane of 1s kind iff H,=0.

Lemma 3.3. Fn_l(c) is a hyperplane of 274 kind with respect to CT iff
H, =0 and Hy = 0.

Lemma 3.4. Fn_l(c) is a hyperplane of 3*4 kind with respect to CU iff
H, =0,H, =0 and Myg = 0.

4. Hypersurface F"71(c) of the Generalised Z. Shen’s Finsler Metric

Let F"!(¢c) whose equation is given by b(x)=c, where ¢ is a fixed
constant. Thus the gradient of the function representing F"!(c) is given by
in tensor notation b&(x)=5b and parametric equation x' =x'(u®) of
F"Yc). Differentiating the equation of hypersurface b(x(w)) =c¢ with
respect to parameter u®, we get 8,b(x(u)) = 0 = ;B.. It is clear that b;(x)
are the covariant component of normal vector field of F"1(c).

Furthermore, we have

BB, =0 (4.1)

biyi =0 (42)

Advances and Applications in Mathematical Sciences, Volume 22, Issue 6, April 2023



1070 DEEPAKK S and AVEESHS T

The induced metrics L(u, v) from the special Finsler space (M", L) on

the F"71(c) is given by
L(u, v) = aaﬁv“vﬁ, where a,g = aijBéBé. (4.3)

The induced metric in equation (4.3) do not have B component, (i.e.
B= biyi = 0), of the Finsler metric of the original space (M", L), therefore
induced metric in equation (4.3) is a Riemannian metric. Therefore at any
point on Fn_l(c) equations (2.5), (2.6), (2.8), (2.9), (2.10), (2.11), (2.13), (2.14),
(2.15) and (2.16) reduce to

1
p=1q9=nn+1),q =0, qy =—5 Do :n(n+1)(n+1)2,
o

1
=) (4.4)
o
Sy = n(n +1) .S, - n(n +1) S,
1+n(n+1)b a1 + n(n +1)b%)
2
(n+1) ,T =1+n(n+1)b? (4.5)

" 21+ n(n +1))

Using the values of p, Sy, S_;, S_g substitute in equation (2.12), we have

ij 1) i 2 iJ o i

g =ai - —PrD) iy byl + by

YO Tinn + 102 ol + n(n +1)b%) ( )
(n+1)” iy (4.6)

12(1 + n(n +1)b%)

Multiplying equation (4.6) by b;b; and using the fact that B = biyi =0, it

becomes

b2

gl = — &
T 14 n(n +1)p?

Thus we get

Advances and Applications in Mathematical Sciences, Volume 22, Issue 6, April 2023
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b2
b; = [—— N, 4.7
) \1+n(n+1)6% ° @D

Where b is the length of the vector b'. Now from (4.6) and (4.7) we get

.. R 2 .
b = alb; = 621 + n(n + PN’ + % 3 (4.8)

Theorem 4.1. In F”_l(c) the induced metric is a Riemannian metric
given by (4.3) and the scalar function b(x) is given by (4.7) and (4.8) for the
generalised Z. Shen’s (o, B) metric.

Using the values of p, pg, p; and py from equation (4.4) into equation

(2.7), Finsler metric tensor of F™ reduces to

1
gij = + n(n + 1) (n + I)Zbibj + n(nO:_ )(biyl- + bjy]) (4.9)

and using the value of p, gy, ¢ and g9 in equation (2.4), angular metric

tensor of F" reduces to

1
hij = aij +n(n + 1)bb; — —5 ¥;y; (4.10)
[0

From equations (4.10), (4.2) and (3.3) it follows that if h&%) denotes the
angular metric tensor of Riemannian aij(x), then along hypersurface

F™"e), hop = h((l%). Thus along the hypersurface F"7(c), above equation

Spy _ (n(n+1)+ (n + 1)2)2n(oc 4 [3)2”71

OLZn

reduces to and (2.18) also reduces to

v1 =0, m; =b,. Using the values of p, p;, vy and m; in equation (2.17),

hv-torsion tensor in hypersurface F n_l(c), becomes

h’t]bk + h]kbL + hklb]
(04

Cijk = (4.11)

Using equations (4.1) and (4.11) in equation (3.4), we get

Advances and Applications in Mathematical Sciences, Volume 22, Issue 6, April 2023
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M-t v, (4.12)
P 1+n(n+1)b op

Again, using equations (4.1) and (4.11) in (3.5), we get
M, =0 (4.13)
Using equation (4.13) in equation (3.10), it shows that H,g = Hp, i.e.,

H,g 1s symmetric. As a result, we can derive the following theorem.

Theorem 4.2. The second fundamental v-tensor of F"7(c) is considered

in the equation (4.12) and (4.13) and the second fundamental h-tensor Hp is

symmetric for the generalised Z. Shen’s (a, ) metric. Now differentiating

equation (4.1) with respect to B, we get

[)L|J.B(Lx + bLB(lx“'j =0 (414)

Using equation (3.6) and b;; = B[{ + biUNjHB, equation (4.14) reduces to

by B{BY, + by N’ HyB,, + biH,gN' = 0. (4.15)

Since b;; = —thL-h-, from (3.5), (4.7) and (4.13) we get

. b2
by BINY = |— %m0
e 1+nn+1)62 °

Using the above expression in equation (4.15), we get

.. b2
b:B/Bt + [——~—— _H ,=0. (4.16)
1o a V1+n(n+ 1)b2 op

It is obvious that &;); is symmetric. Contracting now (4.16) with oP first

and then with v* respectively and using the equations (3.1), (3.9), and (4.13)

.o b2
byiBly + |— 2 _H, =0 (4.17)
P 1+nn+1)p% *

Advances and Applications in Mathematical Sciences, Volume 22, Issue 6, April 2023
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.o b2
byiy'yt + |———-H, =0. (4.18)
g \1+n(+1)p2 *

According to Lemma (3.1), and Lemma (3.2), a hypersurface F n_l(c) isa

hyperplane of 1st kind if and only if the normal curvature vanishes i.e.,
Hy =0. Using the value H;=0 in equation (4.18) we find that

hypersurface F n_l(c) is again a hyperplane of 1st kind if and only if
b;) jyiyj = 0. This &); is the covariant derivative with respect to Cartan

connection CT of Finsler space F". Since b; is a gradient vector, from

equations (2.19) and (2.20), we have

E;j = by,

F;; =0, sz =0 (4.19)
Using equation (4.19) into equation (2.21), we get
Dl =bp.B" +boB; + by;jB}, — bopmg" " Bji, — AL, Cin — Af*Clomn — A" Ciem8"™
+ 25(CIRCEyy + CICYy — CllCTR) (4.20)

Using the equations (4.2), (4.4), (4.5), and (4.6) into equation (2.22), we

get
B, =n(n+1)(n+2)b "‘My,Bi:Mbi
= n(n+1)(n +2)b Yk T s 1
n(n +1) ; W)
ol + n(n +1)b?)
1 1 n(n +1)
Bij =g i =gyt = bbj (4.22)
1(ei 1 (n +1) ;
Bj=+ 5‘——y‘y~) bib;
7o ( Ta27 ) e+ n+1p?)
(A + )+ (2 (3%, s

o?(1 + n(n +1)b2) !

Advances and Applications in Mathematical Sciences, Volume 22, Issue 6, April 2023
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A" = B'byo + B"byg, X' = B™y. (4.24)
Using the tensor contraction operation on equations (4.24) and (4.25) by
yj, we get By =0, B(i) = 0. Further contracting equation (4.26) by yk and
using the fact that B(’) =0, we get AJ' = B™byg. Contracting equation (4.20)
by y* and using the facts By, =0, B =0, AJ' = B™by, and CJ =0,

C(i)m =0, C% = 0 obtained by contracting (3.2) and (3.7), we get

Dl = B'bjoBiby — bogB™Clyi (4.25)

n(n +1) bibe & n(n +1) i

Dho = ¥ (4.26)
R T R R A R

Multiplying equation (4.25) by b; and then using equations (4.2), (4.21),
(4.22), and (4.23), we get

. 2 2 .
Dl = n(n +1)b b + 1+(n+2)(n+ 32)b biboo — n(n +21) + B"Ch b
1+n(n+1)p a1+ n(n +1)b%)
(4.27)
Now multiplying (4.26) by b; and then using equation (4.2) we get
; n(n +1)b>
bDho = ———— boo (4.28)
1+(n+1)b
From equation (4.11), it is clear that
b"b,Cl Bl = b M, = 0 (4.29)

Contracting the expression &;; = b;; —b,Dirj by yi and yj respectively
and then using equation (4.28) we get

1

b’y = Do = ——————boo
g " 1+ n(n +1)b?

Using equations (4.27) and (4.29), equations (4.17) and (4.18) can be

expressed as

Advances and Applications in Mathematical Sciences, Volume 22, Issue 6, April 2023
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1 B +VbH, =0 (4.30)
V1 +n(n +1)b?
! boo + VO2H,, = 0 (4.31)

V1+n(n +1)b?

From the equation (4.31), it is clear that the condition Hy =0 is
equivalent to byg = 0, where b;; is independent of yi. Since yi satisfy
equation (4.2), the condition can be expressed as bl-jyiyi = (biyi)(cjyj ) for
some c;j(x), so that we have

Zbij = bicj + bjci. (4.32)

Contracting (4.32) and using the fact that bl-yj =0, we get byg = 0.
Multiplying equation (4.3) by B(i)L and then Bé and using equation (4.1) gives
bijBéBé = 0. Similarly we get bl-jBéyi = 0. This further gives biOB(ixyj =0.

Using this in equation (4.30) gives H, = 0. Again contracting (4.32) and then

2
using equation (4.2) gives b;y = b2co . Now using (4.23) and (4.24) and using
bpo =0 and bijB(ixBBj =0 we get A" =0, A;:Bé =0 and
i i 1 . .
BB = — —
Bl]B(XBB . haB thus using equations (4.6), (4.7), (4.8), (4.12) and
(4.20) we get
b, DBLB] = cob” hg (4.33)
r-t o N
PO (4 1)Pa + n(n + 1B

Thus using the relation &;; = b;; — er{"j and equations (4.33) and (4.16)

reduces to

cob” b*
0 o5 P+ |5 Hyp = 0. (4.34)
n(n +1)a(l + n(n + 1)b%) 1+n(n+1)d

Hence F"!(c) is umbilic. Thus, we have the following result.
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Theorem 4.3. Equation (4.32) fulfils both the essential and satisfactory
condition for F"(c) to be a 1st kind of hyperplane and its second

fundamental tensor is proportional to its angular metric tensor.
From the Lemma 3.3, F"!(¢) is a hyperplane of 2nd kind, iff H, =0 and

H,g = 0. Therefore from equation (4.32), we get ¢y = ci(x)yi = 0. Thus there

exists a function e(x) such that ¢;(x) = e(x) = b;(x). Therefore, from equation
(4.32) we have

bi' = eblb] (4.35)

Theorem 4.4. Equation (4.35) satisfies both the necessary and sufficient
condition for F"71(c) to be a 20 kind of hyperplane.

Finally, from equation (4.12) and Lemma 3.4, we deduce that F*7}(c) is
not a hyperplane of 3rd kind.

Theorem 4.5. The Fn_l(c) of Finsler space with generalised Z. Shen’s

metric is not a hyperplane of 34 kind.
Conclusion

In this paper, we explore the diverse kinds of hypersurfaces of Finsler

_ (o p)yt!

space using generalized Z. Shen’s metric (a, B) = ~——~—. Additionally,
a

the hypersurfaces we obtained are hyperplanes of the 1st and 224 kind, but not
of the 3 kind.
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