

FINSLER HYPERSURFACE WITH GENERALISED Z. SHEN'S (α, β) METRIC

DEEPAK K S and AVEESH S T*

Department of Mathematics Alva's College, Moodbidire 574227 Mangalore University, India E-mail: deepakpatel2124@gmail.com

Department of Mathematics PES Institute of Technology and Management Shivamogga 577204, Visvesvaraya Technological University, Belagavi, India

Abstract

The (α, β) -metric is a Finsler metric made up of a Riemannian metric α and a differential *l*-form β , that has been studied in theoretical physics. In this paper a special (α, β) metric is considered known as generalised Z. Shen's metric. Here, the hypersurface of generalised Z. Shen's (α, β) metric on hyperplane of 1st, 2nd and 3rd kind is discussed. The results indicated that the hypersurfaces obtained are hyperplanes 1st and 2nd kind, but not of the 3rd kind for Z. Shen's (α, β) metric.

1. Introduction

Definition 1.1[5]. Let M^n be an *n*-dimensional smooth manifold and L(x, y) is a fundamental function, which satisfies the following conditions.

- (1) L(x, y) > 0 for $(x, y) \in D$
- (2) $L(x, \lambda y) = |\lambda| L(x, y)$ for any $(x, y) \in D$ and $\lambda \in R(x, \lambda y) \in D$

²⁰²⁰ Mathematics Subject Classification: 53B40, 53C60.

Keywords: Finsler space, Finsler hypersurface (FH), angular metric tensor, hyperplane. *Correspondence author; E-mail: aveeshst@gmail.com Received January 1, 2023; Accepted February 23, 2023

(3) The *D* tensor field $g_{ij}(x, y) = \frac{1}{2} \partial^i \partial^j L^2(x, y)$

Then $F = (M^n, L)$ is called Finsler space furnished with fundamental function L(x, y) on M^n , where $\partial^j = \frac{\partial}{\partial y^j}$ is non degenerated on D.

Definition 1.2 (Finsler Space with the (α, β) -metric) [15, 22]. The fundamental function L of a Finsler space $F^n = (M^n, L)$ is called a n-dimensional Finsler space with an (α, β) metric, here L is a positive homogeneous function of two arguments $\alpha(x, y) = (\alpha_{ij}(x)y^iy^j)^{\frac{1}{2}}, \beta(x, y) = b_i(x)y^i$, where α is a Rimaninian fundamental function and β is a differential 1-form.

Let $L(\alpha, \beta) = \frac{(\alpha + \beta)^2}{\alpha}$ is called Z. Shen's square metric. In this paper, we have considered a generalized Z. Shen's (α, β) metric, $L(\alpha, \beta) = \frac{(\alpha + \beta)^{n+1}}{\alpha^n} (n > 0).$

Definition 1.3 (Hypersurface of Finsler Space) [6]. Finsler hypersurface $F^{n-1} = (M^{n-1}, L(u, v))$ of a Finsler space $F^n = (M^n, L(u, v))$ can be parameterized as an equation, $x^i = x^i(u^{\alpha})$, here u^{α} are Gaussian coordinates of F^{n-1} and Greek indices take values from 1 to n-1.

Hyperplanes of the 1st, 2nd and 3rd kind [7].

Definition 1.4. If each path of a F^{n-1} with respect to the induced connection is besides a path of the enclosing space F^n then Finsler hypersurface F^{n-1} is a hyperplane of 1st kind.

Definition 1.5. If each path of a F^{n-1} with respect to the induced connection is also a *h*-path of the enclosing space F^n then Finsler hypersurface F^{n-1} is a hyperplane of 2^{nd} kind.

Definition 1.6. The unit normal vector of F^{n-1} is parallel along each curve of F^{n-1} then it is a hyperplane of the 3^{rd} kind.

Table 1. Summary of various types of (α, β) metrics and their results in hyperplanes.

Sl	Types of Metrics	Hyperplane	Hyperplane	Hyper	Reference
No	01	of 1 st kind	of 2 nd kind	plane of	
				3 rd kind	
1.	$L(\alpha, \beta) = \frac{(\alpha + \beta)^2}{\alpha} + \frac{\beta^2}{(\beta - \alpha)}$	yes	yes	no	[1]
	$L(\alpha, \beta) = \frac{1}{\alpha} + \frac{1}{(\beta - \alpha)}$				
	(Deformed Berwald-Infinite				
	Series Metric)				
2.	$L(\alpha, \beta) = \mu_1 \alpha + \mu_2 \beta + \mu_3 \frac{\beta^2}{\alpha}$	yes	yes	no	[2]
	(Generalized (α, β) -Metric)				
3.	$L(\alpha, \beta) = \alpha + \epsilon \beta + \kappa \frac{\beta^2}{\alpha} + \beta$	yes	yes	no	[3]
	(Randers Change of Generalized (α, β) Metric)				
4.					[4]
4.	$L(\alpha, \beta) = \frac{\alpha^2}{(\alpha - \beta)} + \beta$	yes	yes	no	[4]
	(Matsumoto Metric)				
5.	$L(\alpha, \beta) = \alpha + \beta + \frac{\beta^{N+1}}{\alpha^N}$	yes	yes	no	[5]
	(Special (α, β) -Metric)				
6.	$\overline{L} = Le^{\frac{\beta}{L}}$	yes	yes	yes	[6]
7	(exponential metric)				[7]
7.	$F = \frac{(\alpha + \beta)^2}{\alpha} + \beta$	yes	yes	no	[7]
	(Finsler Square Metric)				
8.	$L = \frac{\alpha^2}{(v\alpha - \omega\beta)}$	yes	yes	no	[8]
	(Matsumoto Metric)				
9.	$L(\alpha, \beta) = \alpha e^{\frac{\beta}{\alpha}} + \beta e^{\frac{-\beta}{\alpha}}$	yes	yes	yes	[9]
	(exponential form of (α, β))				
10.	$L(\alpha, \beta) = \alpha + \beta + \frac{\alpha^2}{(\alpha - \beta)}$	yes	yes	no	[10]

DEEPAK K S and AVEESH S T

	(Special (α, β) -metric)				
11.	$L = \beta + \frac{\alpha^3 + \beta^3}{\alpha(\alpha - \beta)}$	yes	yes	no	[11]
	(Special (α, β) -metric)				
12.	$L^* = \alpha + \mu\beta + \nu \frac{\beta^5}{\alpha^4} + \beta$	yes	yes	yes	[12]
	(Special (α, β) -metric)				
13.	$L(x, y) = \alpha \cosh \frac{\beta}{\alpha} + \beta$	yes	yes	no	[13]
	(Special (α, β) -metric)				
14.	$L(\alpha, \beta) = \frac{(\alpha + \beta)^2}{\alpha}$	yes	yes	no	[14]
	(Square Metric)				
15.	$L(\alpha, \beta) = \frac{(\alpha + \beta)^2}{\alpha} + \frac{\alpha}{(\beta - \alpha)}$	yes	yes	no	[15]
16.	$L(\alpha, \beta) = A_1(\alpha e^{\frac{\beta}{\alpha}}) + (\alpha + \beta)$	yes	yes	no	[16]
	(special (α, β) -metric)				
17.	$L + \alpha + rac{eta^{n+1}}{(lpha - eta)^n}$	yes	yes	yes	[17]
	(special (α, β) -metric)				
18.	$L = \alpha e^{\frac{\beta}{\alpha}} + \beta$	yes	yes	no	[18]
	(Exponential (α, β) -Metric)				
19.	$L(\alpha, \beta) = \alpha + \sqrt{\alpha^2 + \beta^2}$	yes	yes	yes	[19]
	(special (α, β) -metric)				

In this paper we intend to consider the generalised Z. Shen's (α, β) metric [14] and verify the results in the hyperplane.

2. Preliminaries

We take into account the Finsler space (M^n, L) , where L is the generalised Z. Shen's metric that is given by

$$L(\alpha, \beta) = \frac{(\alpha + \beta)}{\alpha^n}$$
(2.1)

Advances and Applications in Mathematical Sciences, Volume 22, Issue 6, April 2023

1062

Differentiating equation (2.1) partially with respect to α and β up to second order, we get

$$L_{\alpha} = \frac{(n+1)(\alpha+\beta)^{n}\alpha^{n} - n(\alpha+\beta)^{n+1}\alpha^{n+1}}{(\alpha^{n})^{2}},$$
$$L_{\beta} = \frac{1}{\alpha^{n}}(n+1)(\alpha+\beta)^{n},$$

$$L_{\alpha\alpha} = \frac{[n(n+1)(\alpha+\beta)^{n-1}\alpha^n + (n+1)(\alpha+\beta)^n\alpha^{n-1} - n(n+1)(\alpha+\beta)^n\alpha^{n-1}}{\alpha^{4n}}$$

$$L_{\beta\beta} = \frac{1}{\alpha^{n}} n(n+1)(\alpha+\beta)^{n-1},$$

$$L_{\alpha\beta} = \frac{1}{\alpha^{2n}} [n(n+1)(\alpha+\beta)^{n-1}\alpha^{n} - n(n+1)(\alpha+\beta)^{n}\alpha^{n-1}]$$
(2.2)

In Finsler space (M^n, L) , the $l_i = \frac{\partial L}{\partial y_i}$ and h_{ij} [21] are given as,

$$l_i = \frac{L_\alpha y_i}{\alpha} + L_\beta b_i \tag{2.3}$$

$$h_{ij} = pa_{ij} + q_0 b_i b_j + q_1 (b_i y_j + b_j y_i) + q_2 y_i y_j,$$
(2.4)

where the coefficients are defined and calculated as follows

$$y_{i} = a_{ij}y^{J},$$

$$p = \frac{LL_{\alpha}}{\alpha} = \frac{(n+1)(\alpha+\beta)^{2n+1}\alpha^{n} - n(\alpha+\beta)^{n+2}\alpha^{n-1}}{\alpha^{3n+1}},$$

$$q_{0} = LL_{\beta\beta} = \frac{1}{\alpha^{2n}}n(n+1)(\alpha+\beta)^{2n},$$

$$q_{1} = \frac{LL_{\alpha\beta}}{\alpha} = \frac{n(n+1)(\alpha+\beta)^{2n}\alpha^{n} - n(n+1)(\alpha+\beta)^{2n+1}\alpha^{n-1}}{\alpha^{3n+1}},$$
(2.5)

$$q_{2} = \frac{L\left(L_{\alpha\alpha} - \frac{L_{\alpha}}{\alpha}\right)}{\alpha^{2}}$$

$$\left(\frac{(\alpha + \beta)^{n+1}}{\alpha^{n}}\right) \begin{bmatrix} n(n+1)(\alpha + \beta)^{n}\alpha^{n} \\ + (n+1)(\alpha + \beta)^{n}\alpha^{n-1} \\ - n(n+1)(\alpha + \beta)^{n}\alpha^{n-1} \\ - (n-1)n(\alpha + \beta)^{n+1}\alpha^{n-2} \end{bmatrix}$$

$$= \frac{1}{\alpha^{2}} \frac{-\left[(n+1)(\alpha + \beta)^{n}\alpha^{n} - n(\alpha + \beta)^{n+1}\alpha^{n-1}\right]2n\alpha^{nn-1}}{\alpha^{4n}}$$
(2.6)

The fundamental metric tensor $g_{ij} = \frac{1}{2} \frac{\delta^2 L}{\delta y^i \delta y^j}$ of Finsler space (M^n, L) ,

is defined by [21]

$$g_{ij} = pa_{ij} + p_0 b_i b_j + p_1 (b_i y_j + b_j y_i) + p_2 y_i y_j$$
(2.7)

Where the coefficients p, p_0, p_1 and p_2 are defined and calculated as follows:

$$p = \frac{LL_{\alpha}}{\alpha} = \frac{(n+1)(\alpha+\beta)^{2n+1}\alpha^n - n(\alpha+\beta)^{n+2}\alpha^{n-1}}{\alpha^{3n+1}},$$
 (2.8)

$$p_0 = q_0 + L_{\beta}^2 = \frac{1}{\alpha^{2n}} n(n+1)(\alpha+\beta)^{2n} + (n+1)^2 \frac{(\alpha+\beta)^{2n}}{\alpha^{2n}}, \qquad (2.9)$$

$$p_1 = q_1 + \frac{pL_\beta}{L}$$

$$= \frac{n(n+1)(\alpha+\beta)^{2n+1}\alpha^n + (n+1)(\alpha+\beta)^{2n+1}\alpha^{n-1} - n(n+1)(\alpha+\beta)^{2n+1}\alpha^{n-1}}{\alpha^{5n+2}},$$

(2.10)

$$p_2 = q_2 + \frac{p^2}{L^2}$$

$$= \left[\frac{n(n+1)(\alpha+\beta)^{2n+1}\alpha^{n} + (n+1)(\alpha+\beta)^{2n+1}\alpha^{n-1} - n(n+1)(\alpha+\beta)^{2n+1}\alpha^{n-1}}{-(n-1)(\alpha+\beta)^{2n+2}\alpha^{n-2} + 2n(n+1)(\alpha+\beta)^{2n+1}\alpha^{3n-1} + 2n^{2}(\alpha+\beta)^{2n+2}\alpha^{3n-2}}{\alpha^{5n+2}}\right]$$

$$+\frac{\left[(n+1)(\alpha+\beta)^{2n+1}\alpha^{n}-n(\alpha+\beta)^{2n+2}\alpha^{n}\right]}{(\alpha^{3n+1})^{2}}\times\frac{\alpha^{2n}}{(\alpha+\beta)^{2n+2}}$$
(2.11)

In addition, the reciprocal tensor g^{ij} of fundamental metric tensor g_{ij} is given by the relation [21]

$$g^{ij} = \frac{a^{ij}}{p} - S_0 b^i b^j - S_{-1} (b^i y^j + b^j y^i) - S_{-2} y^i y^j, \qquad (2.12)$$

where the coefficients $b^i,\,S_0,\,S_{-1}$ and S_{-2} are defined as follows:

$$b^{i} = a^{ij}b_{j},$$

$$S_{0} = \frac{pp_{0} + (p_{0}p_{2} - p_{1}^{2})\alpha^{2}}{p\zeta},$$
(2.13)

$$S_{-1} = \frac{pp_1 + (p_0 p_2 - p_1^2)\beta}{p\zeta}, \qquad (2.14)$$

$$S_{-2} = \frac{pp_2 + (p_0p_2 - p_1^2)b^2}{p\zeta}, \qquad (2.15)$$

$$\zeta = p(p + p_0 b^2 + p_1 \beta) + (p_0 p_2 - p_1^2)(\alpha^2 b^2 - \beta^2), \qquad (2.16)$$

where $b^2 = a^{ij}b^ib^j$.

Now, the *hv*-torsion tensor $C_{ijk} = \frac{1}{2} \frac{\delta g_{ij}}{gy^k}$ is defined by [21]

$$C_{ijk} = \frac{p_1(h_{ij}m_k + h_{jk}m_i + h_{ki}m_j) + \gamma_1 m_i m_j m_k}{2p}, \qquad (2.17)$$

where the coefficients γ_1 and m_i are defined as

$$\gamma_1 = p \frac{\delta p_0}{\delta \beta} - 3p_1 q_0, \ m_i = b_i - \frac{y_i \beta}{\alpha^2}$$
(2.18)

where m_i is non-zero covariant vector orthogonal to y^i .

Now consider,

$$2E_{ij} = b_{ij} + b_{ji} (2.19)$$

$$2F_{ij} = b_{ij} - b_{ji}, \text{ where } b_{ij} = \nabla_j b_i.$$
(2.20)

Let $C\Gamma = (\Gamma_{jk}^{*i}, \Gamma_{0k}^{*i}, C_{jk}^{i})$ be the Cartan connection of F^{n} .

The difference tensor $D_{jk}^i = \Gamma_{jk}^{*i} - \Gamma_{jk}^i$ of the Finsler space F^n is given by [21]

$$D^{i}_{jk} = B^{i}E_{jk} + F^{i}_{k}B_{j} + F^{i}_{j}B_{k} + B^{i}_{j}b_{0k} + B^{i}_{k}b_{0j} - b_{0m}g^{im}B_{jk} - C^{i}_{jm}A^{m}_{k}$$
$$- C^{i}_{km}A^{m}_{j} - C_{jkm}A^{m}_{s}g^{is} + \lambda^{s}(C^{i}_{jm}Csk^{m} + C^{i}_{km}C^{m}_{sj} - C^{m}_{jk}C^{i}_{ms})$$
(2.21)

where

$$\begin{split} B_{k} &= p_{0}b_{k} + p_{1}y_{k}, \\ B_{ij} &= \frac{p_{1}\left(a_{ij} - \frac{y_{i}y_{j}}{\alpha^{2}}\right) + \frac{\delta p_{0}}{\delta\beta}m_{i}m_{j}}{2}, \\ B^{i} &= g^{ij}B_{j}, \\ B^{k}_{i} &= g^{kj}B_{ji}, \\ A^{m}_{k} &= B^{m}_{k}E_{00} + B^{m}E_{k0} + B_{k}F^{m}_{0} + B_{0}F^{m}_{k}, \\ \lambda^{m} &= B^{m} + E_{00} + 2B_{0}F^{m}_{0}, \\ F^{k}_{i} &= g^{kj}F_{ji}, \\ B_{0} &= B_{i}b^{i}. \end{split}$$

Here 0 will be denoted the tensorial contraction with y^i except the quantities q_0 , p_0 and S_0 .

Advances and Applications in Mathematical Sciences, Volume 22, Issue 6, April 2023

1066

3. Induced Cartan Connection of $F^{n-1}(c)$

Let $F^n = (M^n, L)$ be a Finsler space, and $F^{n-1}(c)$ be its hypersurface having equation $x^i = x^i(u^{\alpha}), i = 1, 2, 3, ..., (n-1)$. Let the matrix of projection factor be $B^i_{\alpha} = \frac{\delta x^i}{\delta u^{\alpha}}$ and its rank is (n-1). The tangential component of element of support y^i of Finsler space F^n along its hypersurface $F^{n-1}(c)$ is given by

$$y^i = B^i_\alpha(u)v^\alpha. \tag{3.1}$$

Here v^{α} is the component of support of $F^{n-1}(c)$ at u^{α} . The tensor $g_{\alpha\beta}$ and hv-torsion tensor $C_{\alpha\beta\gamma}$ of $F^{n-1}(c)$ are given by $g_{\alpha\beta} = g_{ij}B^i_{\alpha}B^j_{\beta}$, $C_{\alpha\beta\gamma} = C_{ijk}B^j_{\alpha}B^k_{\gamma}$.

Now, the unit normal vector $N^i(u, v)$ at an arbitrary point u^{α} of $F^{n-1}(c)$ is defined by the following property

$$g_{ij}(x(u, v), y(u, v))B^i_{\alpha}N^j = 0, \ g_{ij}(x(u, v), y(u, v))N^iN^j = 1$$
(3.2)

the angular metric tensor h_{ij} is defined as

$$h_{\alpha\beta} = h_{ij} B^{i}_{\alpha} B^{j}_{\beta}, \ h_{ij} B^{i}_{\alpha} N^{j} = 0, \ h_{ij} N^{i} N^{j} = 1$$
(3.3)

Let $(B^{lpha}_i,\,N_i)$ be the inverse of $(B^i_{lpha},\,N^i)$, then we have

$$\begin{split} B_i^{\alpha} &= g^{\alpha\beta}g_{ij}B_{\beta}^j, B_{\alpha}^i B_i^{\beta} = \delta_{\alpha}^{\beta}, B_i^{\alpha} N^i = 0, \\ B_i^{\alpha}N_i &= 0, N_i = g_{ij}N^i, B_i^k = g^{kj}B_{ji}, B_{\alpha}^i B_j^{\alpha} + N^i N_j = \delta_j^i \end{split}$$

The induced Cartan connection $IC\Gamma = (\Gamma_{\beta\gamma}^{*\alpha}, G_{\beta\gamma}^{\alpha}, C_{\beta\gamma}^{\alpha})$ on $F^{n-1}(c)$ induced from the Cartan's connection $C\Gamma = (\Gamma_{jk}^{*i}, G_{0k}^{i}, C_{jk}^{i})$ is given by [3] (3.4)

$$\begin{split} \Gamma^{*\alpha}_{\beta\gamma} &= B^{\alpha}_{i} (B^{i}_{\beta\gamma} + \Gamma^{*i}_{jk} B^{j}_{\beta} B^{k}_{\gamma}) + M^{\alpha}_{\beta} H_{\gamma}, \\ G^{\alpha}_{\beta} &= B^{\alpha}_{i} (B^{i}_{0\beta} + \Gamma^{*i}_{0j} B^{j}_{\beta}), \\ C^{\alpha}_{\beta\gamma} &= B^{\alpha}_{i} C^{i}_{jk} B^{j}_{\beta} B^{k}_{\gamma}, \end{split}$$

where

$$M_{\beta\gamma} = N_i C^i_{jk} B^j_{\beta\gamma} \gamma^k,$$

$$M^{\alpha}_{\beta} = g^{\alpha\beta} M_{\beta\gamma},$$

$$H_{\beta} = N_i (B^i_{0\beta} + \Gamma^{*i}_{0j} B^j_{\beta}),$$

$$B^i_{\beta\gamma} = \frac{\delta B^i_{\beta}}{\delta U^{\gamma}},$$

(3.5)

$$B_{0\beta}^{i} = B_{\alpha\beta}^{i} v^{\alpha} \tag{3.6}$$

The quantities $M_{\beta\gamma}$ and H_{β} appeared in above equations are called the second fundamental *v*-tensor and normal curvature [20].

The second fundamental *h*-tensor $H_{\beta\gamma}$ is defined as [20]

$$H_{\beta\gamma} = N_i (B^i_{\beta\gamma} + \Gamma^{*i}_{jk} B^j_{\beta} B^k_{\gamma}) + M_{\beta} H_{\gamma}, \qquad (3.7)$$

Where
$$M_{\beta} = N_i C^i_{jk} B^j_{\beta} N^k$$
. (3.8)

The relative *h*-covariant derivative and v-covariant derivative of projection factor B^i_{α} with respect to induced Cartan connection $IC\Gamma$ are respectively given by

$$B^{i}_{\alpha|\beta} = H_{\alpha\beta}N^{i}, \qquad (3.9)$$
$$B^{i}_{\alpha|\beta} = M_{\alpha\beta}N^{i}$$

It is obvious that $H_{\beta\gamma}$ is not always symmetric and

$$H_{\beta\gamma} - H_{\gamma\beta} = M_{\beta}H_{\gamma} - M_{\gamma}H_{\beta}, \qquad (3.10)$$

Implying that

$$H_{0\gamma} = H_{\gamma}, \ H_{\gamma 0} = H_{\gamma} + M_{\gamma} H_0. \tag{3.11}$$

We utilize the following lemma to prove our hypothesis. The following lemma has already been derived by M. Matsumoto [20]:

Lemma 3.1. The normal curvature $H_0 = H_\beta v^\beta$ vanishes iff normal curvature vector H_β vanishes.

Lemma 3.2. $F^{n-1}(c)$ is a hyperplane of 1^{st} kind iff $H_{\alpha} = 0$.

Lemma 3.3. $F^{n-1}(c)$ is a hyperplane of 2^{nd} kind with respect to $C\Gamma$ iff $H_{\alpha} = 0$ and $H_{\alpha\beta} = 0$.

Lemma 3.4. $F^{n-1}(c)$ is a hyperplane of 3^{rd} kind with respect to $C\Gamma$ iff $H_{\alpha} = 0, H_{\alpha\beta} = 0$ and $M_{\alpha\beta} = 0$.

4. Hypersurface $F^{n-1}(c)$ of the Generalised Z. Shen's Finsler Metric

Let $F^{n-1}(c)$ whose equation is given by b(x) = c, where c is a fixed constant. Thus the gradient of the function representing $F^{n-1}(c)$ is given by in tensor notation $b_i(x) = \delta_i b$ and parametric equation $x^i = x^i(u^{\alpha})$ of $F^{n-1}(c)$. Differentiating the equation of hypersurface b(x(u)) = c with respect to parameter u^{α} , we get $\delta_{\alpha}b(x(u)) = 0 = b_iB^i_{\alpha}$. It is clear that $b_i(x)$ are the covariant component of normal vector field of $F^{n-1}(c)$.

Furthermore, we have

$$b_i B^i_\alpha = 0 \tag{4.1}$$

$$b_i y_i = 0 \tag{4.2}$$

The induced metrics L(u, v) from the special Finsler space (M^n, L) on the $F^{n-1}(c)$ is given by

$$L(u, v) = a_{\alpha\beta}v^{\alpha}v^{\beta}, \text{ where } a_{\alpha\beta} = a_{ij}B^{i}_{\alpha}B^{j}_{\beta}.$$
(4.3)

The induced metric in equation (4.3) do not have β component, (i.e. $\beta = b_i y^i = 0$), of the Finsler metric of the original space (M^n, L) , therefore induced metric in equation (4.3) is a Riemannian metric. Therefore at any point on $F^{n-1}(c)$ equations (2.5), (2.6), (2.8), (2.9), (2.10), (2.11), (2.13), (2.14), (2.15) and (2.16) reduce to

$$p = 1, q_0 = n(n+1), q_1 = 0, q_2 = \frac{1}{\alpha^2}, p_0 = n(n+1)(n+1)^2,$$

$$p_1 = \frac{n(n+1)}{\alpha}, p_2 = 0$$

$$S_0 = \frac{n(n+1)}{1+n(n+1)b^2}, S_{-1} = \frac{n(n+1)}{\alpha(1+n(n+1)b^2)}, S_{-2}$$

$$= \frac{(n+1)^2}{\alpha^2(1+n(n+1))}, \Gamma = 1 + n(n+1)b^2$$
(4.5)

Using the values of p, S_0, S_{-1}, S_{-2} substitute in equation (2.12), we have

$$g_{ij} = a_i^{ij} - \frac{n(n+1)}{1+n(n+1)b^2} b^i b^j - \frac{2}{\alpha(1+n(n+1)b^2)} (b^i y^j + b^i y^j) + \frac{(n+1)^2}{12(1+n(n+1)b^2)} y^i y^j$$
(4.6)

Multiplying equation (4.6) by $b_i b_j$ and using the fact that $\beta = b_i y^i = 0$, it becomes

$$g^{ij}b_ib_j = \frac{b^2}{1+n(n+1)b^2}.$$

Thus we get

$$b_i x(u) = \sqrt{\frac{b^2}{1 + n(n+1)b^2}} N_i \tag{4.7}$$

Where b is the length of the vector b^{i} . Now from (4.6) and (4.7) we get

$$b_i = a^{ij}b_j = \sqrt{b^2(1 + n(n+1)b^2)}N^i + \frac{b^2}{\alpha}y^i.$$
(4.8)

Theorem 4.1. In $F^{n-1}(c)$ the induced metric is a Riemannian metric given by (4.3) and the scalar function b(x) is given by (4.7) and (4.8) for the generalised Z. Shen's (α, β) metric.

Using the values of p, p_0 , p_1 and p_2 from equation (4.4) into equation (2.7), Finsler metric tensor of F^n reduces to

$$g_{ij} = a_{ij} + n(n+1)(n+1)^2 b_i b_j + \frac{n(n+1)}{\alpha} (b_i y_i + b_j y_j)$$
(4.9)

and using the value of p, q_0 , q_1 and q_2 in equation (2.4), angular metric tensor of F^n reduces to

$$h_{ij} = a_{ij} + n(n+1)b_ib_j - \frac{1}{\alpha^2} y_i y_j$$
(4.10)

From equations (4.10), (4.2) and (3.3) it follows that if $h_{\alpha\beta}^{(a)}$ denotes the angular metric tensor of Riemannian $a_{ij}(x)$, then along hypersurface $F^{n-1}(c)$, $h_{\alpha\beta} = h_{\alpha\beta}^{(a)}$. Thus along the hypersurface $F^{n-1}(c)$, above equation reduces to $\frac{\delta p_0}{\delta \beta} = \frac{(n(n+1) + (n+1)^2)2n(\alpha + \beta)^{2n-1}}{\alpha^{2n}}$ and (2.18) also reduces to $\gamma_1 = 0, m_i = b_i$. Using the values of p, p_1, γ_1 and m_i in equation (2.17), hv-torsion tensor in hypersurface $F^{n-1}(c)$, becomes

$$C_{ijk} = \frac{h_{ij}b_k + h_{jk}b_i + h_{ki}b_j}{\alpha}$$
(4.11)

Using equations (4.1) and (4.11) in equation (3.4), we get

$$M_{\alpha\beta} = \frac{1}{\alpha} \sqrt{\frac{b^2}{1 + n(n+1)b^2}} h_{\alpha\beta}$$
(4.12)

Again, using equations (4.1) and (4.11) in (3.5), we get

$$M_{\alpha} = 0 \tag{4.13}$$

Using equation (4.13) in equation (3.10), it shows that $H_{\alpha\beta} = H_{\beta\alpha}$ i.e., $H_{\alpha\beta}$ is symmetric. As a result, we can derive the following theorem.

Theorem 4.2. The second fundamental v-tensor of $F^{n-1}(c)$ is considered in the equation (4.12) and (4.13) and the second fundamental h-tensor $H_{\alpha\beta}$ is symmetric for the generalised Z. Shen's (α , β) metric. Now differentiating equation (4.1) with respect to β , we get

$$b_{i|j}B^i_{\alpha} + b_i B^i_{\alpha|\beta} = 0 \tag{4.14}$$

Using equation (3.6) and $b_{i|j} = B_{\beta}^{j} + b_{i|j}N^{j}H_{\beta}$, equation (4.14) reduces to

$$b_{i|j}B^j_{\beta}B^i_{\alpha} + b_{i|j}N^jH_{\beta}B^i_{\alpha} + b_iH_{\alpha\beta}N^i = 0.$$

$$(4.15)$$

Since $b_{i|j} = -b_h C_{ij}^h$, from (3.5), (4.7) and (4.13) we get

$$b_{i|j}B^{i}_{\alpha}N^{j} = \sqrt{\frac{b^{2}}{1 + n(n+1)b^{2}}}M_{\alpha} = 0.$$

Using the above expression in equation (4.15), we get

$$b_{i|j}B^{j}_{\alpha}B^{i}_{\alpha} + \sqrt{\frac{b^{2}}{1 + n(n+1)b^{2}}}H_{\alpha\beta} = 0.$$
(4.16)

It is obvious that $b_{i|j}$ is symmetric. Contracting now (4.16) with v^{β} first and then with v^{α} respectively and using the equations (3.1), (3.9), and (4.13) we get

$$b_{i|j}B_{\alpha}^{j}y^{i} + \sqrt{\frac{b^{2}}{1 + n(n+1)b^{2}}}H_{\alpha} = 0$$
(4.17)

$$b_{i|j}y^{i}y^{i} + \sqrt{\frac{b^{2}}{1+n(n+1)b^{2}}}H_{\alpha} = 0.$$
(4.18)

According to Lemma (3.1), and Lemma (3.2), a hypersurface $F^{n-1}(c)$ is a hyperplane of 1st kind if and only if the normal curvature vanishes i.e., $H_0 = 0$. Using the value $H_0 = 0$ in equation (4.18) we find that hypersurface $F^{n-1}(c)$ is again a hyperplane of 1st kind if and only if $b_{i|j}y^iy^j = 0$. This $b_{i|j}$ is the covariant derivative with respect to Cartan connection $C\Gamma$ of Finsler space F^n . Since b_i is a gradient vector, from equations (2.19) and (2.20), we have

$$E_{ij} = b_{ij}, \ F_{ij} = 0, \ F_j^l = 0 \tag{4.19}$$

Using equation (4.19) into equation (2.21), we get

$$D_{jk}^{j} = b_{jk}B^{i} + b_{0k}B_{j}^{i} + b_{0j}B_{k}^{j} - b_{0m}g^{im}B_{jk} - A_{k}^{m}C_{jm}^{i} - A_{j}^{m}C_{km}^{i} - A_{s}^{m}C_{jkm}g^{is} + \lambda^{s}(C_{sk}^{m}C_{jm}^{i} + C_{sj}^{m}C_{km}^{i} - C_{ms}^{i}C_{jk}^{m})$$

$$(4.20)$$

Using the equations (4.2), (4.4), (4.5), and (4.6) into equation (2.22), we get

$$B_{k} = n(n+1)(n+2)b_{k} + \frac{n(n+1)}{\alpha}y_{k}, B^{i} = \frac{n(n+1)}{1+n(n+1)b^{2}}b^{i} + \frac{n(n+1)}{\alpha(1+n(n+1)b^{2})}y^{i}$$
(4.21)

$$B_{ij} = \frac{1}{\alpha} a_{ij} - \frac{1}{\alpha^3} y_i y_j + \frac{n(n+1)}{\alpha} b_i b_j$$
(4.22)

$$B_{ij} = \frac{1}{\alpha} \left(\delta^{i}_{j} - \frac{1}{\alpha^{2}} y^{i} y_{j} \right) + \frac{(n+1)^{2}}{\alpha (1 + n(n+1)b^{2})} b^{i} b_{j}$$
$$- \frac{(n(n+1) + (n+2)(n+3)b^{2})}{\alpha^{2} (1 + n(n+1)b^{2})} b_{j} y^{i}$$
(4.23)

$$A_k^m = B_k^m b_{00} + B^m b_{k0}, \, \lambda^m = B^m b_{00}.$$
(4.24)

Using the tensor contraction operation on equations (4.24) and (4.25) by y_j , we get $B_{i0} = 0$, $B_0^i = 0$. Further contracting equation (4.26) by y^k and using the fact that $B_0^i = 0$, we get $A_0^m = B^m b_{00}$. Contracting equation (4.20) by y^k and using the facts $B_{i0} = 0$, $B_0^i = 0$, $A_0^m = B^m b_{00}$ and $C_{s0}^m = 0$, $C_{0m}^i = 0$, $C_{j0}^m = 0$ obtained by contracting (3.2) and (3.7), we get

$$D_{j0}^{i} = B^{i} b_{j0} B_{j}^{i} b_{00} - b_{00} B^{m} C_{jmi}^{i}$$

$$\tag{4.25}$$

$$D_{00}^{i} = \frac{n(n+1)}{1+n(n+1)b^{2}}b^{i}b_{00} + \frac{n(n+1)}{\alpha(1+n(n+1)b^{2})}y^{i}b_{00}$$
(4.26)

Multiplying equation (4.25) by b_i and then using equations (4.2), (4.21), (4.22), and (4.23), we get

$$b_i D_{j0}^i = \frac{n(n+1)b^2}{1+n(n+1)b^2} b_{j0} + \frac{1+(n+2)(n+3)b^2}{\alpha(1+n(n+1)b^2)} b_i b_{00} - \frac{n(n+1)}{1+b^2} + b_i b^m C_{jm}^i b_{00}$$

$$(4.27)$$

Now multiplying (4.26) by b_i and then using equation (4.2) we get

$$b_i D_{00}^i = \frac{n(n+1)b^2}{1+(n+1)b^2} b_{00}$$
(4.28)

From equation (4.11), it is clear that

$$b^{m}b_{i}C_{jm}^{i}B_{\alpha}^{j} = b^{2}M_{\alpha} = 0$$
(4.29)

Contracting the expression $b_{i|j} = b_{ij} - b_r D_{ij}^r$ by y^i and y^j respectively and then using equation (4.28) we get

$$b_{i|j} y^i y^j = b_r D_{00}^r = \frac{1}{1 + n(n+1)b^2} b_{00}$$

Using equations (4.27) and (4.29), equations (4.17) and (4.18) can be expressed as

$$\frac{1}{\sqrt{1+n(n+1)b^2}}b_{i0}B^i_{\alpha} + \sqrt{b^2}H_{\alpha} = 0$$
(4.30)

$$\frac{1}{\sqrt{1+n(n+1)b^2}}b_{00} + \sqrt{b^2}H_{\alpha} = 0 \tag{4.31}$$

From the equation (4.31), it is clear that the condition $H_0 = 0$ is equivalent to $b_{00} = 0$, where b_{ij} is independent of y^i . Since y^i satisfy equation (4.2), the condition can be expressed as $b_{ij}y^iy^i = (b_iy^i)(c_jy^j)$ for some $c_j(x)$, so that we have

$$2b_{ij} = b_i c_j + b_j c_i. (4.32)$$

Contracting (4.32) and using the fact that $b_i y^j = 0$, we get $b_{00} = 0$. Multiplying equation (4.3) by B^i_{α} and then B^j_{β} and using equation (4.1) gives $b_{ij}B^i_{\alpha}B^j_{\beta} = 0$. Similarly we get $b_{ij}B^i_{\alpha}y^i = 0$. This further gives $b_{i0}B^i_{\alpha}y^j = 0$. Using this in equation (4.30) gives $H_{\alpha} = 0$. Again contracting (4.32) and then using equation (4.2) gives $b_{i0} = \frac{b^2c_0}{2}$. Now using (4.23) and (4.24) and using $b_{00} = 0$ and $b_{ij}B^i_{\alpha}B\beta^j = 0$ we get $\lambda^m = 0$, $A^i_jB^j_{\beta} = 0$ and $B_{ij}B^i_{\alpha}B^j_{\beta} = \frac{1}{n(n+1)\alpha}h_{\alpha\beta}$ thus using equations (4.6), (4.7), (4.8), (4.12) and (4.20) we get

$$b_r D_{ij}^r B_{\alpha}^i B_{\beta}^j = \frac{c_0 b^2}{\left(n+1\right)^2 \alpha \left(1+n(n+1)b^2\right)^2} h_{\alpha\beta}$$
(4.33)

Thus using the relation $b_{i|j} = b_{ij} - b_r D_{ij}^r$ and equations (4.33) and (4.16) reduces to

$$\frac{c_0 b^2}{n(n+1)\alpha(1+n(n+1)b^2)^2} h_{\alpha\beta} + \sqrt{\frac{b^2}{1+n(n+1)b^2}} H_{\alpha\beta} = 0.$$
(4.34)

Hence $F^{n-1}(c)$ is umbilic. Thus, we have the following result.

Theorem 4.3. Equation (4.32) fulfils both the essential and satisfactory condition for $F^{n-1}(c)$ to be a 1st kind of hyperplane and its second fundamental tensor is proportional to its angular metric tensor.

From the Lemma 3.3, $F^{n-1}(c)$ is a hyperplane of 2^{nd} kind, iff $H_{\alpha} = 0$ and $H_{\alpha\beta} = 0$. Therefore from equation (4.32), we get $c_0 = c_i(x)y^i = 0$. Thus there exists a function e(x) such that $c_i(x) = e(x) = b_i(x)$. Therefore, from equation (4.32) we have

$$b_{ij} = eb_i b_j. ag{4.35}$$

Theorem 4.4. Equation (4.35) satisfies both the necessary and sufficient condition for $F^{n-1}(c)$ to be a 2nd kind of hyperplane.

Finally, from equation (4.12) and Lemma 3.4, we deduce that $F^{n-1}(c)$ is not a hyperplane of 3^{rd} kind.

Theorem 4.5. The $F^{n-1}(c)$ of Finsler space with generalised Z. Shen's metric is not a hyperplane of 3^{rd} kind.

Conclusion

In this paper, we explore the diverse kinds of hypersurfaces of Finsler space using generalized Z. Shen's metric $(\alpha, \beta) = \frac{(\alpha + \beta)^{n+1}}{\alpha^n}$. Additionally, the hypersurfaces we obtained are hyperplanes of the 1st and 2nd kind, but not of the 3rd kind.

Data Availability. No data were used to support this paper.

Conflicts of Interest. The authors declare that there are no conflicts of interest.

References

- [1] Brijesh Kumar Tripathi, Hypersurfaces of a Finsler space with deformed Berwaldinfinite series metric, J. App. Eng. Math. 10(2) (2020), 296-304.
- [2] Pradeep Kumar and T. S. Madhu, On Finslerian hypersurface with generalized (α, β)metric, Waffen-Und Kostumkunde Journal, ISSN NO:0042-9945 XI(V) (2020), 55-68.

- Gauree Shanker and Vijeta Singh, On the hypersurface of a Finsler space with Randers [3] change of generalized (α, β) metric, International Journal of Pure and Applied Mathematics 105(2) (2015), 223-234.
- [4] M. K. Gupta, Abhay Singh and P. N. Pandey, On a hypersurface of a Finsler space with Randers change of Matsumoto metric, Hindawi Publishing Corporation Geometry vol. 2013 pp. 6.

Gauree Shanker and Ravindra Yadav, On the hypersurface of a Finsler space with the [5] special (α, β) -metric $\alpha + \beta + \frac{\beta^{N+1}}{\alpha^N}$, Journal of the Indian Math. Soc. 80(3-4) (2013), 329-339.

- M. K. Gupta and Anil K. Gupta, Hypersurface of a Finsler space subjected to an [6] h-exponential change of metric, International Journal of Geometric Methods in Modern Physics 13(10) (2016), 1650129.
- N. Natesh, S. K. Narasimhamurthy and M. K. Roopa, On the hypersurface of randers [7]change of Finsler square metric, Asian Journal of Science and Technology 10(08) (2019), 9929-9940.
- [8] U. P. Singh and Bindu Kuari, On a hypersurface of matsumuto surafce, Indian J. Pure Appl. Math 32(4) (2001), 521-531.
- [9] Brijshe Kumar Tripathi, Hypersurfaces of a Finsler space with exponential form of (α, β) -metric, Annals of the University of Craiova, Mathematics and Computer Science Series 47(1) (2020), 1223-6934.
- [10]V. K. Chaubey and A. Mishra, Hypersurfaces of a Finsler space with a special (α, β) metric, Journal of Contemporary Mathematical Analysis 52(1) (2017), 1-7.
- Kumar Vineet and Rajesh Kumar Gupta, Hypersurface of a special Finsler space with [11] metric $L = \beta + \frac{\alpha^3 + \beta^3}{\alpha(\alpha - \beta)}$, Journal of Computer and Mathematical Sciences 9(6) (2018),

579-587.

- [12]Ganga Prasad Yadav and P. N. Pandey, Hypersurface of a Finsler space with randers change of (α, β) -metric, Journal Academy of International Physical Sciences 22(3) (2018), 179-193.
- [13] Suraj Kumar Shukla and T. N. Pandey, Hypersurface of special finsler space, International Journal of Mathematics Trends and Technology (IJMTT) 66(6) (2020).
- [14] Mohammad Rafee, Avdhesh Kumar and G. C. Chaubey, On the hypersurface of a Finsler space with the square metric, International Journal of Pure and Applied Mathematics 118(3) (2018), 723-735.
- [15]V. K. Chaubey and Brijesh Kumar Tripathi, Hypersurface of a Finsler space with deformed Berwald-Matsumoto metric, Bullen of the Transilvania University of Brasov Series III: Mathemacs, Informacs, Physics 11(60) No. 1 (2018), 37-48.
- H. S. Shukla, O. P. Pandey and A. K. Mishra, Hypersurface of a Finsler space with a [16]special (α, β) -metric, South Asian Journal of Mathematics 6(2) (2016), 82-91.

DEEPAK K S and AVEESH S T

- [17] H. Wosoughi, On a hypersurface of a special Finsler space with an exponential (α, β)metric, Int. J. Contemp. Math. Sciences 6 (2011), 1969-1980.
- [18] Pradeep Kumar, S. K. Narasimhamurthy, H. G. Nagaraja and S. T. Aveesh, On a special hypersurface of a Finsler space with (α, β) -metric, Tbilisi Mathematical Journal, Tbilisi Centre for Mathematical Sciences and College Publications 2 (2009), 51-60.
- [19] M. Kitayama, On Finslerian hypersurfaces given by β-Change, Balkan J. of Geometry and It's Applications 7(2) (2002), 49-55.
- [20] M. Matsumoto, Foundation of finsler geometry and special Finsler spaces, Kaiseisha Press, Saikawa, Otsu, Japan (1986), 520.
- [21] G. Shanker and Ravindra, On the hypersurface of a second approximate Matsumoto metric $\alpha + \beta + \frac{\beta^2}{\alpha} + \frac{\beta^3}{\alpha_2}$ International J. of Contemp. Math. Sciences 7(3) (2012), 115-124.
- [22] G. Shanker and Vijeta Singh, On the hypersurface of a Finsler space with Randers change of generalized (α, β) -metric, International Journal of Pure and Applied Mathematics 105(2) (2015), 223-234.

Advances and Applications in Mathematical Sciences, Volume 22, Issue 6, April 2023

1078