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Abstract 

The  , -metric is a Finsler metric made up of a Riemannian metric  and a differential 

l-form , that has been studied in theoretical physics. In this paper a special  ,  metric is 

considered known as generalised Z. Shen’s metric. Here, the hypersurface of generalised Z. 

Shen’s  ,  metric on hyperplane of 1st, 2nd and 3rd kind is discussed. The results indicated 

that the hypersurfaces obtained are hyperplanes 1st and 2nd kind, but not of the 3rd kind for Z. 

Shen’s  ,  metric. 

1. Introduction 

Definition 1.1[5]. Let nM  be an n-dimensional smooth manifold and 

 yxL ,  is a fundamental function, which satisfies the following conditions. 

(1)   0, yxL  for   Dyx ,  

(2)    yxLyxL ,,   for any   Dyx ,  and   DyxR  ,  
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(3) The D tensor field    yxLyxg ji
ij ,

2

1
, 2   

Then  LMF n,  is called Finsler space furnished with fundamental 

function  yxL ,  on ,nM  where 
j

j

y


  is non degenerated on D. 

Definition 1.2 (Finsler Space with the  , -metric) [15, 22]. The 

fundamental function L of a Finsler space  LMF nn ,  is called a              

n-dimensional Finsler space with an  ,  metric, here L is a positive 

homogeneous function of two arguments        yxyyxayx ji
ij ,,, 2

1

  

  ,i
i yxb  where  is a Rimaninian fundamental function and  is a 

differential 1-form. 

Let  
 






2

,L  is called Z. Shen’s square metric. In this paper, we 

have considered a generalized Z. Shen’s  ,  metric,  ,L  

 
 .0

1









n
n

n

 

Definition 1.3 (Hypersurface of Finsler Space) [6]. Finsler hypersurface 

  vuLMF nn ,,11    of a Finsler space   vuLMF nn ,,  can be 

parameterized as an equation,  , uxx ii  here u  are Gaussian 

coordinates of 1nF  and Greek indices take values from 1 to .1n  

Hyperplanes of the 1st, 2nd and 3rd kind [7]. 

Definition 1.4. If each path of a 1nF  with respect to the induced 

connection is besides a path of the enclosing space nF  then Finsler 

hypersurface 1nF  is a hyperplane of 1st kind. 

Definition 1.5. If each path of a 1nF  with respect to the induced 

connection is also a h-path of the enclosing space nF  then Finsler 

hypersurface 1nF  is a hyperplane of 2nd kind. 
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Definition 1.6. The unit normal vector of 1nF  is parallel along each 

curve of 1nF  then it is a hyperplane of the 3rd kind. 

Table 1. Summary of various types of  ,  metrics and their results in 

hyperplanes. 

Sl 

No 

Types of Metrics  Hyperplane 

of 1st kind  

Hyperplane 

of 2nd kind  

Hyper 

plane of 

3rd kind  

Reference  

1.  

 
 

 
 









22

,L  

(Deformed Berwald-Infinite 

Series Metric)  

yes  yes  no  [1]  

2. 

 
 






2

321,L  

(Generalized  , -Metric)  

yes  yes  no  [2]  

3.  

 
  






2
, L   

(Randers Change of 

Generalized  ,  Metric)  

yes  yes  no  [3]  

4. 

 
 

 







2
,L   

(Matsumoto Metric)  

yes  yes  no  [4]  

5.  

 
 

N

N
L






1
,   

(Special  , -Metric)  

yes  yes  no  [5]  

6.  

 LLeL



   

(exponential metric)  

yes  yes  yes  [6]  

7.  

 
 







2

F   

(Finsler Square Metric)  

yes  yes  no  [7]  

8.  

  




v
L

2
 

(Matsumoto Metric)  

yes  yes  no  [8]  

9.  

   







 eeL ,   

(exponential form of  ,   

yes  yes  yes  [9]  

10.  

 
 

 




2
,L   

yes  yes  no  [10]  
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(Special  , -metric)  

11.  

 




33
L  

(Special  , -metric)  

yes  yes  no  [11]  

12.  







4

5
L  

(Special  , -metric)  

yes  yes  yes  [12]  

13.  
  




 cosh, yxL  

(Special  , -metric)  

yes  yes  no  [13]  

14.  
 

 





2

,L  

(Square Metric)  

yes  yes  no  [14]  

15.  
 

 
 









2

,L   
yes  yes  no  [15]  

16.  

      



eAL 1,   

(special  , -metric)  

yes  yes  no  [16]  

17.  

 n

n
L






1
 

(special  , -metric)  

yes  yes  yes  [17]  

18.  

 



eL   

(Exponential  , -Metric)  

yes  yes  no  [18]  

19.  
  22, L   

(special  , -metric)  

yes  yes  yes  [19]  

In this paper we intend to consider the generalised Z. Shen’s  ,  

metric [14] and verify the results in the hyperplane. 

2. Preliminaries 

We take into account the Finsler space  ,, LMn  where L is the 

generalised Z. Shen’s metric that is given by 

 
 

n
L




,  (2.1) 
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Differentiating equation (2.1) partially with respect to  and  up to 

second order, we get 

     

 
,

1
2

11

n

nnnn
nn

L







  

    ,1
1 n

n
nL 


  

            

           
n

nnnnnnn
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nnnnn

nnnnn

L
4

12121

111

211

111












  

    ,1
1 1

 



n

n
nnL  

         11

2
11

1 
 


 nnnn

n
nnnnL  (2.2) 

In Finsler space  ,, LMn  the 
i

i y

L
l




  and ijh  [21] are given as, 

i
i

i bL
yL

l 
 


  (2.3) 

  ,210 jiijjijiijij yyqybybqbbqpah   (2.4) 

where the coefficients are defined and calculated as follows 

,jiji yay   

     
,

1
13

1212














n

nnnn
nnLL

p  

    ,1
1 2

20
n

n
nnLLq 


   (2.5) 

       
,

11
13

1122

1 












n

nnnn
nnnnLL

q  
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 (2.6) 

The fundamental metric tensor 
jiij

yy

L
g






2

2

1
 of Finsler space  ,, LMn  

is defined by [21] 

  jiijjijiijij yypybybpbbppag 210    (2.7) 

Where the coefficients 10,, ppp  and 2p  are defined and calculated as 

follows: 

     
,

1
13

1212














n

nnnn
nnLL

p  (2.8) 

     
 

,11
1

2

2
22

2

2
00 n

n
n

n
nnnLqp







   (2.9) 

L

pL
qp


 11  

           

         
,

2121

111

25

232221312222

11211212














n
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nnnnn

 

(2.10) 

2

2

22
L

p
qp   
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    22
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2212
1















n

n

n

nnnn
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 (2.11) 

In addition, the reciprocal tensor 
ijg  of fundamental metric tensor ijg  is 

given by the relation [21] 

  ,210
jiijjiji

ij
ij yySybybSbbS

p

a
g    (2.12) 

where the coefficients 10,, SSbi  and 2S  are defined as follows: 

,j
iji bab   

 
,

22
1200

0 




p

ppppp
S  (2.13) 

 
,

2
1201

1 


 p

ppppp
S  (2.14) 

 
,

22
1202

2 


 p

bppppp
S  (2.15) 

     ,2222
1201

2
0  bppppbppp  (2.16) 

where .2 jiij bbab   

Now, the h-torsion tensor 
k

ij
ijk

gy

g
C




2

1
 is defined by [21] 

 
,

2
11

p

mmmmhmhmhp
C

kjijkiijkkij
ijk


  (2.17) 

where the coefficients 1  and im  are defined as 
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201
0

1 ,3








 i

ii
y

bmqp
p

p   (2.18) 

where im  is non-zero covariant vector orthogonal to .iy  

Now consider, 

jiijij bbE 2  (2.19) 

,2 jiijij bbF   where .ijij bb   (2.20) 

Let  i
jk

i
k

i
jk CC ,, 0

   be the Cartan connection of .nF  

The difference tensor i
jk

i
jk

i
jkD    of the Finsler space nF  is given by 

[21] 

m
k

i
jmjk

im
mj

i
kk

i
jk

i
jj

i
kjk

ii
jk ACBgbbBbBBFBFEBD  000  

 i
ms

m
jk

m
sj

i
km

mi
jm

sism
sjkm

m
j

i
km CCCCCskCgACAC    (2.21) 

where 
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Here 0 will be denoted the tensorial contraction with 
iy  except the 

quantities 00, pq  and .0S  
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3. Induced Cartan Connection of  cFn 1  

Let  LMF nn ,  be a Finsler space, and  cFn 1  be its hypersurface 

having equation    .1,,3,2,1,   niuxx ii   Let the matrix of 

projection factor be 







u

x
B

i
i  and its rank is  .1n  The tangential 

component of element of support 
iy  of Finsler space nF  along its 

hypersurface  cFn 1  is given by  

  . vuBy ii  (3.1) 

Here v  is the component of support of  cFn 1  at .u  The tensor g  

and hv -torsion tensor C  of  cFn 1  are given by ,ji
ij BBgg    

.kj
ijk BBCC    

Now, the unit normal vector  vuNi ,  at an arbitrary point u  of  cFn 1  

is defined by the following property 

          1,,,,0,,, 
ji

ij
ji

ij NNvuyvuxgNBvuyvuxg  (3.2) 

the angular metric tensor ijh  is defined as 

1,0,  
ji

ij
ji

ij
ji

ij NNhNBhBBhh  (3.3) 

Let  ii NB ,  be the inverse of  ,, ii NB  then we have 

,0,,  





 i
ii

ij
iji NBBBBggB  

i
jj

i
j

i
ji

kjk
i

i
ijiii NNBBBgBNgNNB  


 ,,,0  

The induced Cartan connection  






 CGIC ,,  on  cFn 1  induced 

from the Cartan’s connection  i
jk

i
k

i
jk CGC ,, 0
  is given by [3]  (3.4) 
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  ,







  HMBBBB kji

jk
i

i  

 ,00
ji

j
i

i BBBG 





   

,kji
jki BBCBC 


   

where 

,kji
jki BCNM    

,


  MgM  

 ,00
ji

j
i

i BBNH 


   

,










U

B
B

i
i  (3.5) 


  vBB ii

0  (3.6) 

The quantities M  and H  appeared in above equations are called the 

second fundamental v-tensor and normal curvature [20]. 

The second fundamental h-tensor H  is defined as [20] 

  ,


  HMBBBNH kji
jk

i
i  (3.7) 

Where .kji
jki NBCNM    (3.8) 

The relative h-covariant derivative and -covariant derivative of 

projection factor iB  with respect to induced Cartan connection IC  are 

respectively given by 

,|
ii NHB    (3.9) 

ii NMB  |  

It is obvious that H  is not always symmetric and  
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,  HMHMHH  (3.10) 

Implying that 

., 000 HMHHHH     (3.11) 

We utilize the following lemma to prove our hypothesis. The following 

lemma has already been derived by M. Matsumoto [20]: 

Lemma 3.1. The normal curvature 


 vHH0  vanishes iff normal 

curvature vector H  vanishes. 

Lemma 3.2.  cFn 1  is a hyperplane of 1st kind iff .0H  

Lemma 3.3.  cFn 1  is a hyperplane of 2nd kind with respect to C  iff 

0H  and .0H  

Lemma 3.4.  cFn 1  is a hyperplane of 3rd kind with respect to C  iff 

0,0   HH  and .0M  

4. Hypersurface  cFn 1  of the Generalised Z. Shen’s Finsler Metric 

Let  cFn 1  whose equation is given by   ,cxb   where c is a fixed 

constant. Thus the gradient of the function representing  cFn 1  is given by 

in tensor notation   bxb ii   and parametric equation   uxx ii  of 

 .1 cFn  Differentiating the equation of hypersurface    cuxb   with 

respect to parameter ,u  we get    .0 i
iBbuxb    It is clear that  xbi  

are the covariant component of normal vector field of  .1 cFn  

Furthermore, we have  

0
i

iBb  (4.1) 

0iiyb  (4.2) 
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The induced metrics  vuL ,  from the special Finsler space  LMn,  on 

the  cFn 1  is given by 

  ,, 
 vvavuL  where .ji

ij BBaa    (4.3) 

The induced metric in equation (4.3) do not have  component, (i.e. 

0 i
iyb ), of the Finsler metric of the original space  ,, LMn  therefore 

induced metric in equation (4.3) is a Riemannian metric. Therefore at any 

point on  cFn 1  equations (2.5), (2.6), (2.8), (2.9), (2.10), (2.11), (2.13), (2.14), 

(2.15) and (2.16) reduce to 

      ,11,
1

,0,1,1
2

02210 


 nnnpqqnnqp  

 
0,

1
21 




 p

nn
p  (4.4) 

 

 

 

   
22120 ,

11

1
,

11

1










 S

bnn

nn
S

bnn

nn
S  

 

  
  2

2

2

11,
11

1
bnn

nn

n





  (4.5) 

Using the values of 210 ,,,  SSSp  substitute in equation (2.12), we have 

 

     
 jijijiij

iij ybyb
bnn

bb
bnn

nn
ag 









22 11

2

11

1
 

 

   

jiyy
bnn

n
2

2

1112

1




  (4.6) 

Multiplying equation (4.6) by jibb  and using the fact that ,0 i
iyb  it 

becomes 

 
.

11 2

2

bnn

b
bbg ji

ij


  

Thus we get 
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ii N
bnn

b
uxb

2

2

11 
  (4.7) 

Where b is the length of the vector .ib  Now from (4.6) and (4.7) we get 

    .11
2

22 ii
j

ij
i y

b
Nbnnbbab


   (4.8) 

Theorem 4.1. In  cFn 1  the induced metric is a Riemannian metric 

given by (4.3) and the scalar function  xb  is given by (4.7) and (4.8) for the 

generalised Z. Shen’s  ,  metric. 

Using the values of 10,, ppp  and 2p  from equation (4.4) into equation 

(2.7), Finsler metric tensor of nF  reduces to 

   
 

 jjiijiijij ybyb
nn

bbnnnag 





1
11

2
 (4.9) 

and using the value of 10,, qqp  and 2q  in equation (2.4), angular metric 

tensor of nF  reduces to 

  jijiijij yybbnnah
2

1
1


  (4.10) 

From equations (4.10), (4.2) and (3.3) it follows that if  ah  denotes the 

angular metric tensor of Riemannian  ,xaij  then along hypersurface 

   .,1 an hhcF 
   Thus along the hypersurface  ,1 cFn  above equation 

reduces to 
       

n

n
nnnnp

2

122
0 211








 

 and (2.18) also reduces to 

.,01 ii bm   Using the values of 11,, pp  and im  in equation (2.17),     

h-torsion tensor in hypersurface  ,1 cFn  becomes 






jkiijkkij
ijk

bhbhbh
C  (4.11) 

Using equations (4.1) and (4.11) in equation (3.4), we get 
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 h

bnn

b
M

2

2

11

1
 (4.12) 

Again, using equations (4.1) and (4.11) in (3.5), we get 

0M   (4.13) 

Using equation (4.13) in equation (3.10), it shows that   HH  i.e., 

H  is symmetric. As a result, we can derive the following theorem. 

Theorem 4.2. The second fundamental v-tensor of  cFn 1  is considered 

in the equation (4.12) and (4.13) and the second fundamental h-tensor H  is 

symmetric for the generalised Z. Shen’s  ,  metric. Now differentiating 

equation (4.1) with respect to , we get 

0||  
i

i
i

ji BbBb  (4.14) 

Using equation (3.6) and ,||   HNbBb j
ji

j
ji  equation (4.14) reduces to 

.0||  
i

i
ij

ji
ij

ji NHbBHNbBBb  (4.15) 

Since ,|
h
ijhji Cbb   from (3.5), (4.7) and (4.13) we get 

 
.0

11 2

2

| 


  M
bnn

b
NBb ji

ji  

Using the above expression in equation (4.15), we get 

 
.0

11 2

2

| 


  H
bnn

b
BBb ij

ji  (4.16) 

It is obvious that jib|  is symmetric. Contracting now (4.16) with v  first 

and then with v  respectively and using the equations (3.1), (3.9), and (4.13) 

we get 

 
0

11 2

2

| 


  H
bnn

b
yBb ij

ji  (4.17) 
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.0

11 2

2

| 


 H
bnn

b
yyb ii

ji  (4.18) 

According to Lemma (3.1), and Lemma (3.2), a hypersurface  cFn 1  is a 

hyperplane of 1st kind if and only if the normal curvature vanishes i.e., 

.00 H  Using the value 00 H  in equation (4.18) we find that 

hypersurface  cFn 1  is again a hyperplane of 1st kind if and only if 

.0| ji
ji yyb  This jib|  is the covariant derivative with respect to Cartan 

connection C  of Finsler space .nF  Since ib  is a gradient vector, from 

equations (2.19) and (2.20), we have 

0,0,  i
jijijij FFbE   (4.19) 

Using equation (4.19) into equation (2.21), we get 

is
jkm

m
s

i
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m
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i
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m
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j
kj

i
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i
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j
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gCACACABgbBbBbBbD  000  

 m
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i
ms

i
km

m
sj

i
jm

m
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s CCCCCC   (4.20) 

Using the equations (4.2), (4.4), (4.5), and (4.6) into equation (2.22), we 

get 
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., 00000 bBbBbBA mm
k

mm
k

m
k   (4.24) 

Using the tensor contraction operation on equations (4.24) and (4.25) by 

,jy  we get .0,0 00  i
i BB  Further contracting equation (4.26) by 

ky  and 

using the fact that ,00 iB  we get .000 bBA mm   Contracting equation (4.20) 

by 
ky  and using the facts 00000 ,0,0 bBABB mmi

i   and ,00 m
sC  

0,0
00  m

j
i
m CC  obtained by contracting (3.2) and (3.7), we get  

i
jmi

mi
jj

ii
j CBbbBbBD 000000   (4.25) 
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1
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D iii









  (4.26) 

Multiplying equation (4.25) by ib  and then using equations (4.2), (4.21), 

(4.22), and (4.23), we get 
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(4.27) 

Now multiplying (4.26) by ib  and then using equation (4.2) we get 

 

 
002

2
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1
b
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bnn
Db i

i



  (4.28) 

From equation (4.11), it is clear that 

02   MbBCbb ji
jmi

m  (4.29) 

Contracting the expression r
ijrijji Dbbb |  by 

iy  and 
jy  respectively 

and then using equation (4.28) we get 

 
00200|

11

1
b

bnn
Dbyyb r

r
ji

ji


  

Using equations (4.27) and (4.29), equations (4.17) and (4.18) can be 

expressed as 
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0

11

1 2
0

2



 HbBb

bnn

i
i  (4.30) 

 
0
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1 2
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2



Hbb

bnn
 (4.31) 

From the equation (4.31), it is clear that the condition 00 H  is 

equivalent to ,000 b  where ijb  is independent of .iy  Since 
iy  satisfy 

equation (4.2), the condition can be expressed as    jj
i

i
ii

ij ycybyyb   for 

some  ,xcj  so that we have 

.2 ijjiij cbcbb    (4.32) 

Contracting (4.32) and using the fact that ,0j
iyb  we get .000 b  

Multiplying equation (4.3) by iB  and then jB  and using equation (4.1) gives 

.0
ji

ij BBb  Similarly we get .0
ii

ij yBb  This further gives .00 
ji

i yBb  

Using this in equation (4.30) gives .0H  Again contracting (4.32) and then 

using equation (4.2) gives .
2

0
2

0
cb

bi   Now using (4.23) and (4.24) and using 

000 b  and 0
ji

ij BBb  we get 0,0  
ji

j
m BA  and 

   
 h

nn
BBB ji

ij 1

1
 thus using equations (4.6), (4.7), (4.8), (4.12) and 

(4.20) we get 

     



 h

bnnn

bc
BBDb jir

ijr 222

2
0

111
 (4.33) 

Thus using the relation r
ijrijji Dbbb |  and equations (4.33) and (4.16) 

reduces to 

       
.0

11111
2

2

22

2
0 





 H

bnn

b
h

bnnnn

bc
 (4.34) 

Hence  cFn 1  is umbilic. Thus, we have the following result. 
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Theorem 4.3. Equation (4.32) fulfils both the essential and satisfactory 

condition for  cFn 1  to be a 1st kind of hyperplane and its second 

fundamental tensor is proportional to its angular metric tensor. 

From the Lemma 3.3,  cFn 1  is a hyperplane of 2nd kind, iff 0H  and 

.0H  Therefore from equation (4.32), we get   .00  i
i yxcc  Thus there 

exists a function  xe  such that      .xbxexc ii   Therefore, from equation 

(4.32) we have 

.jiij bebb    (4.35) 

Theorem 4.4. Equation (4.35) satisfies both the necessary and sufficient 

condition for  cFn 1  to be a 2nd kind of hyperplane. 

Finally, from equation (4.12) and Lemma 3.4, we deduce that  cFn 1  is 

not a hyperplane of 3rd kind. 

Theorem 4.5. The  cFn 1  of Finsler space with generalised Z. Shen’s 

metric is not a hyperplane of 3rd kind. 

Conclusion 

In this paper, we explore the diverse kinds of hypersurfaces of Finsler 

space using generalized Z. Shen’s metric  
 

.,
1

n

n








 Additionally, 

the hypersurfaces we obtained are hyperplanes of the 1st and 2nd kind, but not 

of the 3rd kind. 
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