COMMON FIXED POINT THEOREMS ON (φ, ψ)-TYPE MULTI VALUED MAPPINGS IN b-METRIC SPACES

R. JAHIR HUSSAIN, K. MAHESHWARAN and D. DHAMODHARAN

1,2,3Jamal Mohamed College (Autonomous)
(Affiliated to Bharathidasan University)
Tiruchirapplli-620020, Tamilnadu India
E-mail: hssn_jhr@yahoo.com
mahesksamy@gmail.com
dharan_raj28@yahoo.co.in

Abstract

In this paper, we prove a fixed point theorem and a common fixed point theorem for new type of generalized multi-valued contractive mappings, via the class functions Φ and Ψ. The main theorem is an extension of the common fixed point theorem for (φ, ψ) -type multi-valued mappings on complete b-metric spaces. The conditions for existence and uniqueness of the common fixed point are investigated.

Introduction

In 1922, Stefan Banach [3] proved a fixed point theorem for contractive mappings in complete metric spaces. In 1969, Nadler [13] Introduce the concept of Multivalve function. Later, Czerwik [5, 6] initiate the concept of b metrics which generalized usual metric spaces. After his contribution, many results were presented in β-generalized weak contractive multifunction's and b-metric spaces. In 2012, Aydi et al. [2]. Reformulate the b-metric space. Many researcher work in this area of research of multivalued function and b metric spaces $[1,4,7,8,9-12,14]$. The following definitions will be needed in the sequel:

Definition 1 [13]. Let X and Y be nonempty sets. T is said to be multivalued mapping from X to Y if T is a function for X to the power set of Y. We

2020 Mathematics Subject Classification: Primary 54H25; Secondary 54H20.
Keywords: b-Metric space, multi-valued mappings, fixed point, common fixed point. Received September 13, 2021; Accepted November 2021
denote a multi-valued map by $T: X \rightarrow 2^{Y}$.
Definition 2 [13]. A point of $x_{0} \in X$ is said to be a fixed point of the multi-valued mapping T if $x_{0} \in T x_{0}$.

Definition 3 [13]. Let $\left(X, D_{b}\right)$ be a metric space. A map $T: X \rightarrow X$ is called contraction if there exists $0 \leq s<1$ such that $d(T x, T y) \leq s d(x, y)$, for all $x, y \in X$.

Definition 4 [13]. Let $\left(X, D_{b}\right)$ be a metric space. We define the Hausdorff metric on $C B(X)$ induced by D_{b}. That is $H(A, B)=$ $\max \left\{\sup x \in A D_{b}(x, B)\right.$, sup $\left.y \in B D_{b}(y, A)\right\}$ for all $A, B \in C B(X)$, where $C B(X)$ denotes the family of all non-empty closed and bounded subsets of X and $D_{b}(x, B)=\inf \left\{D_{b}(x, b): b \in B\right\}$, for all $x \in X$.

Definition 5 [13]. Let $\left(X, D_{b}\right)$ be a metric space. A map $T: X \rightarrow C B(X)$ is a_{i} to be multi-valued contraction if there exists $0 \leq s<1$ such that $H(T x, T y) \leq s D_{b}(x, y)$, for all $x, y \in X$.

Lemma 6 [13]. If $A, B \in C B(X)$ and $a \in A$, then for each $\epsilon>0$, there exists $b \in B$ such that $D_{b}(a, b) \leq H(A, B)+\epsilon$.

Definition 7 [2]. Let X be a non-empty set and let $s \geq 1$ be a given real number. A function $D_{b}: X \times X \rightarrow R^{+}$is called a b-metric provide that, for all $x, y, z \in X$,
(d1) $D_{b}(x, y)=0$ if and only if $x=y$,
(d2) $D_{b}(x, y)=D_{b}(y, x)$;
(d3) $D_{b}(x, z) \leq s\left[D_{b}(x, y)+D_{b}(y, z)\right]$.
A pair $\left(X, D_{b}\right)$ is called a b-metric space.
Example 8 [9]. The space $l^{p}=\left\{\left(x_{n}: \sum_{n=1}^{\infty}\left|x_{n}\right|^{p}<\infty, 0<p<1\right)\right\}$, together with the function $D_{b}: l^{p} \times l^{p} \rightarrow R^{+}$.

Definition 9 [2]. Let $\left(X, D_{b}\right)$ be a b-metric space. Then a sequence $\left(x_{n}\right)$ in X is called Cauchy sequence if and only if for all $\epsilon>0$ there exists $n(\epsilon) \in R$ such that for each $m, n \geq n(\epsilon)$ we have $D_{b}\left(x_{n}, x_{m}\right)<\epsilon$.

Definition 10 [2]. Let $\left(X, D_{b}\right)$ be a b-metric space. Then a sequence $\left(x_{n}\right)$ in X is called convergent sequence if and only if there exists $x \in X$ such that for all $\epsilon>0$ there exists $n(\epsilon) \in R$ such that for all $n \geq n(\epsilon)$ we have $D_{b}\left(x_{n}, x\right)<\epsilon$. In this case we write $\lim _{n \rightarrow \infty} x_{n}=x$.

Definition 11 [7]. Let ψ be the family of all functions $\psi: R_{0}^{+} \rightarrow R_{0}^{+}$such that
(1) ψ is non-decreasing
(2) $\lim _{n \rightarrow \infty} \psi_{n}(t)=0$ for all $t \geq 0$, where ψ^{n} stands for the $n^{\text {th }}$ iterate of ψ.

Example 12 [7]. Let

1. $\psi_{1}(t)=\alpha t, 0<\alpha<1$, for all $t \geq 0$,
2. $\psi_{2}(t)=\frac{t}{1+t}$, for all $t \geq 0$,

Definition 13 [7]. Let Φ be the family of all functions $\varphi: R_{0}^{+} \rightarrow R_{0}^{+}$such that:
(1) φ is non-decreasing and continuous;
(2) For each sequence $\left\{t_{n}\right\} \subset(0, \infty), \lim _{n \rightarrow \infty} \varphi\left(t_{n}\right)$ if and only if $\lim _{n \rightarrow \infty} t_{n}=0$.
(3) $\varphi(k t)=k \varphi(t)$, for some $k>0$.

Example 14 [7]. Let

1. $\varphi_{1}(t)=t$
2. $\varphi_{2}(t)=e f(t), f \in F, \forall t>0$.

Main Results

We prove a unique fixed point for generalised multi-valued (φ, ψ)contraction mapping via the class functions Φ and Ψ.

Theorem 15. Let $\left(X, D_{b}\right)$ be a complete b-metric space with constant $s \geq 1$. Let $f: X \rightarrow C B(X)$ be define a generalised multi-valued (ψ, φ) contraction mapping if there exist $\psi \in \Psi$ and $\varphi \in \Phi$ such that for all $x, y \in X$,

$$
\begin{equation*}
\varphi(H(f x, f y)) \leq \psi(\varphi(M(x, y))) \tag{1.1}
\end{equation*}
$$

where,

$$
\begin{aligned}
M(x, y)= & \alpha_{1} D_{b}(x, f x)+\alpha_{2} D_{b}(y, f y)+\alpha_{3} D_{b}(x, f y)+\alpha_{4} D_{b}(y, f x) \\
& +\alpha_{5} D_{b}(x, y)+\alpha_{6} \frac{D_{b}(x, f x)\left(1+D_{b}(x, f x)\right)}{1+D_{b}(x, y)}
\end{aligned}
$$

for all $x, y \in X$ and $\alpha_{i} \geq 0, i=1,2,3, \ldots, 6$ with $\alpha_{1}+\alpha_{2}+2 s \alpha_{3}+\alpha_{4}+$ $\alpha_{5}+\alpha_{6}<1$. Then f has a unique fixed point.

Proof. Fix any $x \in X$. Define $x_{0}=x$ and let $x_{1} \in f x_{0}$. By Lemma 6, we may choose $x_{2} \in f x_{1}$ such that

$$
\varphi\left(D_{b}\left(x_{1}, x_{2}\right)\right) \leq \varphi\left(H\left(f x_{0}, f x_{1}\right)+\left(\alpha_{1}+s \alpha_{3}+\alpha_{5}+\alpha_{6}\right)\right)
$$

Now,

$$
\begin{aligned}
& \varphi\left(D_{b}\left(x_{1}, x_{2}\right)\right) \leq \varphi\left(H\left(f x_{0}, f x_{1}\right)\right) \\
& \leq \psi\left(\varphi\binom{\alpha_{1} D_{b}\left(x_{0}, f x_{0}\right)+\alpha_{2} D_{b}\left(x_{1}, f x_{1}\right)+\alpha_{3} D_{b}\left(x_{0}, f x_{1}\right)+\alpha_{4} D_{b}\left(x_{1}, f x_{0}\right)}{+\alpha_{5} D_{b}\left(x_{0}, x_{1}\right)+\alpha_{6}\left(\frac{D_{b}\left(x_{0}, f x_{0}\right)\left(1+D_{b}\left(x_{0}, f x_{0}\right)\right)}{1+D_{b}\left(x_{0}, x_{1}\right)}\right)}\right) \\
& =\psi\left(\varphi\binom{\alpha_{1} D_{b}\left(x_{0}, x_{1}\right)+\alpha_{2} D_{b}\left(x_{1}, x_{2}\right)+\alpha_{3} D_{b}\left(x_{0}, x_{2}\right)+\alpha_{4} D_{b}\left(x_{1}, x_{1}\right)}{+\alpha_{5} D_{b}\left(x_{0}, x_{1}\right)+\alpha_{6}\left(\frac{D_{b}\left(x_{0}, x_{1}\right)\left(1+D_{b}\left(x_{0}, x_{1}\right)\right)}{1+D_{b}\left(x_{0}, x_{1}\right)}\right)}\right) \\
& \leq \psi\left(\varphi\binom{\alpha_{1} D_{b}\left(x_{0}, x_{1}\right)+\alpha_{2} D_{b}\left(x_{1}, x_{2}\right)+\alpha_{3} D_{b}\left(x_{0}, x_{2}\right)+\alpha_{4} D_{b}\left(x_{1}, x_{1}\right)}{+\alpha_{5} D_{b}\left(x_{0}, x_{1}\right)+\alpha_{6}\left(D_{b}\left(x_{0}, x_{1}\right)\right)}\right)
\end{aligned}
$$

Advances and Applications in Mathematical Sciences, Volume 21, Issue 10, August 2022

$$
\begin{gathered}
\leq \psi\left(\varphi\binom{\left(\alpha_{1}+\alpha_{5}+\alpha_{6}\right) D_{b}\left(x_{0}, x_{1}\right)+\alpha_{2} D_{b}\left(x_{1}, x_{2}\right)}{+\alpha_{3} s\left[D_{b}\left(x_{0}, x_{1}\right)+D_{b}\left(x_{1}, x_{2}\right)\right]}\right) \\
\leq \psi\left(\varphi\binom{\left(\alpha_{1}+s \alpha_{3}+\alpha_{5}+\alpha_{6}\right) D_{b}\left(x_{0}, x_{1}\right)}{+\alpha_{2} D_{b}\left(x_{1}, x_{2}\right)+s \alpha_{3} D_{b}\left(x_{1}, x_{2}\right)}\right) \\
\leq \psi\left(\varphi\binom{\left(\alpha_{1}+s \alpha_{3}+\alpha_{5}+\alpha_{6}\right) D_{b}\left(x_{0}, x_{1}\right)}{+\left(\alpha_{2}, s \alpha_{3}\right)+D_{b}\left(x_{1}, x_{2}\right)}\right) \\
\leq \psi\binom{\left(\alpha_{1}+s \alpha_{3}+\alpha_{5}+\alpha_{6}\right) D_{b}\left(x_{0}, x_{1}\right)}{+\left(\alpha_{2}, s \alpha_{3}\right) \varphi D_{b}\left(x_{1}, x_{2}\right)} \\
\leq \psi\left(\frac{\alpha_{1}+s \alpha_{3}+\alpha_{5}+\alpha_{6}}{1+\left(\alpha_{2}, s \alpha_{3}\right)} \varphi\left(D_{b}\left(x_{0}, x_{1}\right)\right)\right)
\end{gathered}
$$

There exist $x_{3} \in f x_{2}$ such that

$$
\varphi\left(D_{b}\left(x_{2}, x_{3}\right)\right) \leq \varphi\left(H\left(f x_{1}, f x_{2}\right)+\frac{\alpha_{1}+s \alpha_{3}+\alpha_{5}+\alpha_{6}}{1+\left(\alpha_{2}, s \alpha_{3}\right)}\right)
$$

Now,

$$
\begin{aligned}
& \varphi\left(D_{b}\left(x_{2}, x_{3}\right)\right) \leq \varphi\left(H\left(f x_{1}, f x_{2}\right)+\frac{\alpha_{1}+s \alpha_{3}+\alpha_{5}+\alpha_{6}}{1+\left(\alpha_{2}, s \alpha_{3}\right)}\right) \\
& \leq \varphi\left(H\left(f x_{1}, f x_{2}\right)\right) \\
& \leq \psi\left(\varphi\binom{\alpha_{1} D_{b}\left(x_{1}, f x_{1}\right)+\alpha_{2} D_{b}\left(x_{2}, f x_{2}\right)+\alpha_{3} D_{b}\left(x_{1}, f x_{2}\right)+\alpha_{4} D_{b}\left(x_{2}, f x_{1}\right)}{+\alpha_{5} D_{b}\left(x_{1}, x_{2}\right)+\alpha_{6}\left(\frac{D_{b}\left(x_{1}, f x_{1}\right)\left(1+D_{b}\left(x_{1}, f x_{1}\right)\right)}{1+D_{b}\left(x_{1}, x_{2}\right)}\right)}\right) \\
& =\psi\left(\varphi\binom{\alpha_{1} D_{b}\left(x_{1}, x_{2}\right)+\alpha_{2} D_{b}\left(x_{2}, x_{3}\right)+\alpha_{3} D_{b}\left(x_{1}, x_{3}\right)+\alpha_{4} D_{b}\left(x_{2}, x_{2}\right)}{+\alpha_{5} D_{b}\left(x_{1}, x_{2}\right)+\alpha_{6}\left(\frac{D_{b}\left(x_{1}, x_{2}\right)\left(1+D_{b}\left(x_{1}, x_{2}\right)\right)}{1+D_{b}\left(x_{1}, x_{2}\right)}\right)}\right) \\
& \leq \psi\left(\varphi\binom{\alpha_{1} D_{b}\left(x_{1}, x_{2}\right)+\alpha_{2} D_{b}\left(x_{2}, x_{3}\right)+\alpha_{3} D_{b}\left(x_{1}, x_{3}\right)+\alpha_{4} D_{b}\left(x_{2}, x_{2}\right)}{+\alpha_{5} D_{b}\left(x_{1}, x_{2}\right)+\alpha_{6}\left(D_{b}\left(x_{1}, x_{2}\right)\right)}\right) \\
& \leq \psi\left(\varphi\binom{\left(\alpha_{1}+\alpha_{5}+\alpha_{6}\right) D_{b}\left(x_{1}, x_{2}\right)+\alpha_{2} D_{b}\left(x_{2}, x_{3}\right)}{+\alpha_{3} s\left[D_{b}\left(x_{1}, x_{2}\right)+D_{b}\left(x_{2}, x_{3}\right)\right]}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \leq \psi\left(\varphi\binom{\left(\alpha_{1}+s \alpha_{3}+\alpha_{5}+\alpha_{6}\right) D_{b}\left(x_{1}, x_{2}\right)}{+\alpha_{2} D_{b}\left(x_{2}, x_{3}\right)+s \alpha_{3} D_{b}\left(x_{2}, x_{3}\right)}\right) \\
& \leq \psi\left(\varphi\left(\begin{array}{c}
\binom{\left.\alpha_{1}+s \alpha_{3}+\alpha_{5}+\alpha_{6}\right) D_{b}\left(x_{1}, x_{2}\right)}{+\left(\alpha_{2}, s \alpha_{3}\right)+D_{b}\left(x_{2}, x_{3}\right)}
\end{array}\right)\right. \\
& \leq \psi\binom{\left(\alpha_{1}+s \alpha_{3}+\alpha_{5}+\alpha_{6}\right) D_{b}\left(x_{1}, x_{2}\right)}{+\left(\alpha_{2}, s \alpha_{3}\right) \varphi D_{b}\left(x_{2}, x_{3}\right)} \\
& \leq \psi\left(\frac{\alpha_{1}+s \alpha_{3}+\alpha_{5}+\alpha_{6}}{1+\left(\alpha_{2}, s \alpha_{3}\right)} \varphi\left(D_{b}\left(x_{1}, x_{2}\right)\right)\right) .
\end{aligned}
$$

Continuing this process, we obtain by induction a sequence $\left\{x_{n}\right\}$ such that $x_{n} \in f x_{n-1}, x_{n-1} \in f x_{n}$ such that

$$
\begin{gathered}
\varphi\left(D_{b}\left(x_{n}, x_{n-1}\right)\right) \leq \varphi\left(H\left(f x_{n-1}, f x_{n}\right)+\frac{\alpha_{1}+s \alpha_{3}+\alpha_{5}+\alpha_{6}}{1+\left(\alpha_{2}, s \alpha_{3}\right)}\right) \\
\leq \varphi\left(H\left(f x_{n-1}, f x_{n}\right)\right) \\
\leq \psi\left(\varphi\binom{\alpha_{1} D_{b}\left(x_{n-1}, f x_{n-1}\right)+\alpha_{2} D_{b}\left(x_{n}, f x_{n}\right)+\alpha_{3} D_{b}\left(x_{n-1}, f x_{n}\right)+\alpha_{4} D_{b}\left(x_{n}, f x_{n-1}\right)}{+\alpha_{5} D_{b}\left(x_{n-1}, x_{n}\right)+\alpha_{6}\left(\frac{D_{b}\left(x_{n-1}, f x_{n-1}\right)\left(1+D_{b}\left(x_{n-1}, f x_{n-1}\right)\right)}{1+D_{b}\left(x_{n-1}, x_{n}\right)}\right)}\right) \\
=\psi\left(\varphi\binom{\alpha_{1} D_{b}\left(x_{n-1}, x_{n}\right)+\alpha_{2} D_{b}\left(x_{n}, x_{n+1}\right)+\alpha_{3} D_{b}\left(x_{n-1}, x_{n+1}\right)+\alpha_{4} D_{b}\left(x_{n}, x_{n}\right)}{+\alpha_{5} D_{b}\left(x_{n-1}, x_{n}\right)+\alpha_{6}\left(\frac{D_{b}\left(x_{n-1}, x_{n}\right)\left(1+D_{b}\left(x_{n-1}, x_{n}\right)\right)}{1+D_{b}\left(x_{n-1}, x_{n}\right)}\right)}\right) \\
\leq \psi\left(\varphi\binom{\alpha_{1} D_{b}\left(x_{n-1}, x_{n}\right)+\alpha_{2} D_{b}\left(x_{n}, x_{n+1}\right)+\alpha_{3} D_{b}\left(x_{n-1}, x_{n+1}\right)+\alpha_{4} D_{b}\left(x_{n}, x_{n}\right)}{+\alpha_{5} D_{b}\left(x_{n-1}, x_{n}\right)+\alpha_{6}\left(D_{b}\left(x_{n-1}, x_{n}\right)\right)}\right) \\
\leq \psi\left(\varphi\binom{\left(\alpha_{1}+\alpha_{5}+\alpha_{6}\right) D_{b}\left(x_{n-1}, x_{n}\right)+\alpha_{2} D_{b}\left(x_{n}, x_{n+1}\right)}{+\alpha_{3} s\left[D_{b}\left(x_{n-1}, x_{n}\right)+D_{b}\left(x_{n}, x_{n+1}\right)\right]}\right) \\
\leq \psi\left(\varphi\binom{\left(\alpha_{1}+s \alpha_{3}+\alpha_{5}+\alpha_{6}\right) D_{b}\left(x_{n-1}, x_{n}\right)}{+\alpha_{2} D_{b}\left(x_{n}, x_{n+1}\right)+s \alpha_{3} D_{b}\left(x_{n}, x_{n+1}\right)}\right) \\
\leq \psi\left(\varphi\binom{\left(\alpha_{1}+s \alpha_{3}+\alpha_{5}+\alpha_{6}\right) D_{b}\left(x_{n-1}, x_{n}\right)}{+\left(\alpha_{2}, s \alpha_{3}\right)+D_{b}\left(x_{n}, x_{n+1}\right)}\right)
\end{gathered}
$$

$$
\begin{aligned}
& \leq \psi\binom{\left(\alpha_{1}+s \alpha_{3}+\alpha_{5}+\alpha_{6}\right) D_{b}\left(x_{n-1}, x_{n}\right)}{+\left(\alpha_{2}, s \alpha_{3}\right) \varphi D_{b}\left(x_{n}, x_{n+1}\right)} \\
& \leq \psi\left(\frac{\left(\alpha_{1}+s \alpha_{3}+\alpha_{5}+\alpha_{6}\right)}{1+\left(\alpha_{2}, s \alpha_{3}\right)} \varphi\left(D_{b}\left(x_{n-1}, x_{n}\right)\right)\right)
\end{aligned}
$$

for all $n \in N$ and let

$$
\begin{gathered}
\delta=\left[\frac{\alpha_{1}+s \alpha_{3}+\alpha_{5}+\alpha_{6}}{1+\left(\alpha_{2}, s \alpha_{3}\right)}\right] \\
\varphi\left(D_{b}\left(x_{n}, x_{n+1}\right)\right) \leq \delta\left(\psi\left(\varphi\left(D_{b}\left(x_{n-1}, x_{n}\right)\right)\right)\right) \\
\leq \delta\left[\delta\left(\psi\left(\varphi\left(D_{b}\left(x_{n-2}, x_{n-1}\right)\right)\right)\right)\right] \\
=\delta^{2}\left(\psi\left(\varphi\left(D_{b}\left(x_{n-2}, x_{n-1}\right)\right)\right)\right) \\
\vdots \\
\leq \delta^{n}\left(\psi\left(\varphi\left(D_{b}\left(x_{0}, x_{1}\right)\right)\right)\right)
\end{gathered}
$$

Since $\delta<1, \Sigma \delta^{n}$ have a radius of convergence. Then, $\left\{x_{n}\right\}$ is a Cauchy sequence. But $\left(X, D_{b}\right)$ is a complete b-metric space, it follows that $\left\{x_{n}\right\}_{n=1}^{\infty}$ is convergent $u=\lim _{n \rightarrow \infty} x_{n}$.

Now,

$$
\begin{aligned}
\varphi\left(D_{b}(q, f q)\right) & \leq \psi\left(\varphi\left(s\left[D_{b}\left(q, x_{n+1}\right)+D_{b}\left(x_{n+1}, f q\right)\right]\right)\right) \\
& \leq \varphi\left(s\left[D_{b}\left(q, x_{n+1}\right)+D_{b}\left(f x_{n}, f q\right)\right]\right)
\end{aligned}
$$

Using (1.1), we obtain,

$$
\varphi\left(D_{b}(q, f q)\right) \leq \psi\left(\varphi\left(+\left(\left[\begin{array}{c}
s\left[D_{b}\left(q, x_{n+1}\right)\right] \\
\alpha_{1} D_{b}\left(x_{n}, f x_{n}\right)+\alpha_{2} D_{b}(q, f q)+\alpha_{3} D_{b}\left(x_{n}, f q\right) \\
+\alpha_{4} D_{b}\left(q, f x_{n}\right)+\alpha_{5} D_{b}\left(x_{n}, q\right)+\alpha_{6} D_{b}\left(x_{n}, q\right)
\end{array}\right]\right)\right)\right.
$$

As $n \rightarrow \infty, \varphi\left(D_{b}(q, f q)\right) \leq \psi\left(\varphi\left(s\left[\alpha_{2} D_{b}(q, f q)+\alpha_{3} D_{b}(q, f q)\right]\right)\right)$

$$
\left(1-\left(\alpha_{2} s+\alpha_{3} s\right)\right) D_{b}(q, f q) \leq 0
$$

Which is not true, $\varphi\left(D_{b}(q, f q)\right)=0$. Thus, $f q=q$.

Now, show that q is the unique fixed point of f. Assume that r is another fixed point of f. Then we have $f r=r$ and

$$
\begin{aligned}
& \varphi\left(D_{b}(q, r)\right)=\varphi\left(D_{b}(f q, f r)\right) \\
& \leq \varphi\left(s\left[D_{b}(q, f r)+D_{b}(r, f q)\right]\right)
\end{aligned}
$$

Which is implies that, $\varphi\left(D_{b}(q, r)\right) \leq 2 s D_{b}(q, r)$. This implies $q=r$.
Corollary 16. Let $\left(X, D_{b}\right)$ be a complete b-metric space with constant $s \geq 1$. Let $f: X \rightarrow C B(X)$ be define a generalised multi-valued (ψ, φ) contraction mapping if there exist $\psi \in \Psi$ and $\varphi \in \Phi$ such that for all $x, y \in X$,

$$
\varphi(H(f x, f y)) \leq \psi\left(\varphi\left(\alpha D_{b}(x, f x)+\beta \frac{D_{b}(x, f y)\left(1+D_{b}(x, f x)\right)}{1+D_{b}(x, y)}\right)\right)
$$

for all $x, y \in X$ and $\alpha, \beta \geq 0$, with $\alpha+s \beta<1$. Then f has a unique fixed point.

Next, we need to prove a unique common fixed point for generalised multi-valued (ψ, φ)-contraction mappings via the class functions Φ and Ψ.

Theorem 17. Let $\left(X, D_{b}\right)$ be a complete b-metric space with constant $s \geq 1$. Let $f, g: X \rightarrow C B(X)$ be generalized multi-valued (ψ, φ)-contraction mapping, satisfies the condition:

$$
\begin{aligned}
\varphi(H(f x, g y)) & \leq \psi\left(\varphi \left(\alpha_{1} D_{b}(x, f x)+\alpha_{2} D_{b}(y, g y)\right.\right. \\
& \left.+\alpha_{3} D_{b}(x, g y)+\alpha_{4} D_{b}(y, f x)+\alpha_{5} D_{b}(x, y)\right)
\end{aligned}
$$

Where, there exists $\psi \in \Psi, \varphi \in \Phi$ such that for all $x, y \in X$ and $\alpha_{i} \geq 0, i=1,2, \ldots, 5, \quad$ with $\quad\left(\alpha_{1}+\alpha_{2}\right)(s+1)+\left(\alpha_{3}+\alpha_{4}\right)\left(s_{2}+s\right)+2 s \alpha_{5}<2$, $\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}+\alpha_{5}<1$. Then f and g have a unique common fixed point.

Proof. Fix any $x \in X$. Define $x_{0}=x$ and let $x_{1} \in f x_{0}, x_{2} \in g x_{1}$ such that $x_{2 n+1}=f x_{2 n}, x_{2 n+2}=g x_{2 n+1}$, choose $x_{2} \in g x_{1}$ such that

$$
\varphi\left(D_{b}\left(x_{1}, x_{2}\right)\right) \leq \varphi\left(H\left(f x_{0}, g x_{1}\right)+\left(\alpha_{1}+\alpha_{5}+s \alpha_{3}\right)\right)
$$

$$
\begin{align*}
& \leq \varphi\left(H\left(f x_{0}, g x_{1}\right)\right) \\
\varphi\left(D_{b}\left(x_{1}, x_{2}\right)\right) & \leq \psi\left(\varphi\binom{\alpha_{1} D_{b}\left(x_{0}, f x_{0}\right)+\alpha_{2} D_{b}\left(x_{1}, g x_{1}\right)+\alpha_{3} D_{b}\left(x_{0}, g x_{1}\right)}{+\alpha_{4} D_{b}\left(x_{1}, f x_{0}\right)+\alpha_{5} D_{b}\left(x_{0}, x_{1}\right)}\right) \\
& =\psi\left(\varphi\binom{\alpha_{1} D_{b}\left(x_{0}, x_{1}\right)+\alpha_{2} D_{b}\left(x_{1}, x_{2}\right)+\alpha_{3} D_{b}\left(x_{0}, x_{2}\right)}{+\alpha_{4} D_{b}\left(x_{2}, x_{2}\right)+\alpha_{5} D_{b}\left(x_{0}, x_{1}\right)}\right) \\
& \leq \psi\left(\varphi\binom{\alpha_{1} D_{b}\left(x_{0}, x_{1}\right)+\alpha_{2} D_{b}\left(x_{1}, x_{2}\right)}{+\alpha_{3} s\left[D_{b}\left(x_{0}, x_{1}\right)+D_{b}\left(x_{1}, x_{2}\right)\right]+\alpha_{5} D_{b}\left(x_{0}, x_{1}\right)}\right) \\
& \leq \psi\left(\varphi\left(\left(\alpha_{1}+s \alpha_{3}+\alpha_{5}\right) D_{b}\left(x_{0}, x_{1}\right)+\left(\alpha_{2}+s \alpha_{3}\right) D_{b}\left(x_{1}, x_{2}\right)\right)\right) \\
& \leq \psi\left(\frac{\alpha_{1}+\alpha_{5}+s \alpha_{3}}{1-\left(\alpha_{2}+s \alpha_{3}\right)} \varphi\left(D_{b}\left(x_{0}, x_{1}\right)\right)\right) \tag{1.2}
\end{align*}
$$

Then,

$$
\left.\left.\left.\left.\left.\left.\begin{array}{rl}
\varphi\left(D_{b}\left(x_{2}, x_{1}\right)\right) & =\varphi\left(D_{b}\left(g x_{1}, f x_{0}\right)\right) \\
& \leq \varphi\left(H\left(g x_{1}, f x_{0}\right)+\left(\alpha_{2}+\alpha_{5}+s \alpha_{4}\right)\right) \\
& \leq \varphi\left(H\left(g x_{1}, f x_{0}\right)\right) \\
& \leq \psi\left(\varphi\binom{\alpha_{1} D_{b}\left(x_{1}, g x_{1}\right)+\alpha_{2} D_{b}\left(x_{0}, f x_{0}\right)+\alpha_{3} D_{b}\left(x_{1}, f x_{0}\right)}{+\alpha_{4} D_{b}\left(x_{0}, g x_{1}\right)+\alpha_{5} D_{b}\left(x_{1}, x_{0}\right)}\right) \\
& =\psi\left(\varphi\binom{\alpha_{1} D_{b}\left(x_{1}, x_{2}\right)+\alpha_{2} D_{b}\left(x_{0}, x_{1}\right)+\alpha_{3} D_{b}\left(x_{1}, x_{1}\right)}{+\alpha_{4} D_{b}\left(x_{0}, x_{2}\right)+\alpha_{5} D_{b}\left(x_{0}, x_{1}\right)}\right) \\
& \leq \psi\left(\varphi\left(\begin{array}{c}
\alpha_{1} D_{b}\left(x_{1}, x_{2}\right)+\alpha_{2} D_{b}\left(x_{0}, x_{1}\right) \\
\\
\end{array}\right)\right. \\
& \leq \psi\left(\alpha_{4} s\left[D_{b}\left(x_{0}, x_{1}\right)+D_{b}\left(x_{1}, x_{2}\right)\right]+\alpha_{5} D_{b}\left(x_{0}, x_{1}\right)\right.
\end{array}\right)\right), \alpha_{5}+s \alpha_{4}\right) D_{b}\left(x_{0}, x_{1}\right)+\left(\alpha_{1}+s \alpha_{4}\right) D_{b}\left(x_{2}, x_{1}\right)\right)\right)\right)
$$

Adding inequalities (1.2) and (1.3), we obtain $D_{b}\left(x_{1}, x_{2}\right)$ where,

$$
\varphi\left(D_{b}\left(x_{1}, x_{2}\right)\right) \leq\left(\frac{\left(\alpha_{1}+\alpha_{2}+s \alpha_{3}+s \alpha_{4}+2 \alpha_{5}\right)}{2-\left(\alpha_{1}+\alpha_{2}+s \alpha_{3}+s \alpha_{4}\right)} \varphi\left(D_{b}\left(x_{0}, x_{1}\right)\right)\right)
$$

where,

$$
\delta=\frac{\left(\alpha_{1}+\alpha_{2}+s \alpha_{3}+s \alpha_{4}+2 \alpha_{5}\right)}{2-\left(\alpha_{1}+\alpha_{2}+s \alpha_{3}+s \alpha_{4}\right)}<\frac{1}{s}
$$

Similarly, it can be shown that, there exists $x_{3} \in f x_{2}$ such that

$$
\varphi\left(D_{b}\left(x_{3}, x_{2}\right)\right) \leq \varphi\left(H\left(f x_{2}, g x_{1}\right)\right) \leq \psi\left(\delta \varphi\left(D_{b}\left(x_{1}, x_{0}\right)\right)\right)
$$

Continuing this process, we obtain by induction a sequence $\left\{x_{n}\right\}$ such that $x_{2 n+1} \in f x_{2 n}, x_{2 n+2} \in g x_{2 n+1}$ such that

$$
\begin{align*}
& \varphi\left(D_{b}\left(x_{2 n+1}, x_{2 n+2}\right)\right) \leq \varphi\left(H\left(f x_{2 n}, g x_{2 n+1}\right)\right) \\
& \leq \psi\left(\varphi\binom{\alpha_{1} D_{b}\left(x_{2 n}, f x_{2 n}\right)+\alpha_{2} D_{b}\left(x_{2 n+1}, g x_{2 n+1}\right)+\alpha_{3} D_{b}\left(x_{2 n}, g x_{2 n+1}\right)}{+\alpha_{4} D_{b}\left(x_{2 n+1}, f x_{2 n}\right)+\alpha_{5} D_{b}\left(x_{2 n}, x_{2 n+1}\right)}\right) \\
& =\psi\left(\varphi\binom{\alpha_{1} D_{b}\left(x_{2 n}, x_{2 n+1}\right)+\alpha_{2} D_{b}\left(x_{2 n+1}, x_{2 n+2}\right)+\alpha_{3} D_{b}\left(x_{2 n}, x_{2 n+2}\right)}{+\alpha_{4} D_{b}\left(x_{2 n+1}, x_{2 n+1}\right)+\alpha_{5} D_{b}\left(x_{2 n}, x_{2 n+1}\right)}\right) \\
& \leq \psi\left(\varphi\binom{\alpha_{1} D_{b}\left(x_{2 n}, x_{2 n+1}\right)+\alpha_{2} D_{b}\left(x_{2 n+1}, x_{2 n+2}\right)}{+\alpha_{3} s\left[D_{b}\left(x_{2 n}, x_{2 n+1}\right)+D_{b}\left(x_{2 n+1}, x_{2 n+2}\right)\right]+\alpha_{5} D_{b}\left(x_{2 n}, x_{2 n+1}\right)}\right) \\
& =\psi\left(\varphi\binom{\left(\alpha_{1}+\alpha_{5}+s \alpha_{3}\right) D_{b}\left(x_{2 n}, x_{2 n+1}\right)}{+\left(\alpha_{2}+s \alpha_{3}\right) D_{b}\left(x_{2 n+1}, x_{2 n+2}\right)}\right) \\
& \leq \psi\left(\frac{\alpha_{1}+\alpha_{5}+s \alpha_{3}}{1-\left(\alpha_{2}+s \alpha_{3}\right)} \varphi\left(D_{b}\left(x_{2 n}, x_{2 n+1}\right)\right)\right) \tag{1.4}
\end{align*}
$$

also,

$$
\begin{aligned}
& \varphi\left(D_{b}\left(x_{2 n+2}, x_{2 n+1}\right)\right) \leq \varphi\left(H\left(g x_{2 n+1}, f x_{2 n}\right)\right) \\
& \leq \psi\left(\varphi\binom{\alpha_{1} D_{b}\left(x_{2 n+1}, g x_{2 n+1}\right)+\alpha_{2} D_{b}\left(x_{2 n}, f x_{2 n}\right)+\alpha_{3} D_{b}\left(x_{2 n+1}, f x_{2 n}\right)}{+\alpha_{4} D_{b}\left(x_{2 n}, g x_{2 n+1}\right)+\alpha_{5} D_{b}\left(x_{2 n+1}, x_{2 n}\right)}\right) \\
& =\psi\left(\varphi\binom{\alpha_{1} D_{b}\left(x_{2 n+1}, x_{2 n+2}\right)+\alpha_{2} D_{b}\left(x_{2 n}, x_{2 n+1}\right)+\alpha_{3} D_{b}\left(x_{2 n+1}, x_{2 n+1}\right)}{+\alpha_{4} D_{b}\left(x_{2 n}, x_{2 n+2}\right)+\alpha_{5} D_{b}\left(x_{2 n+1}, x_{2 n}\right)}\right) \\
& \leq \psi\left(\varphi\binom{\alpha_{1} D_{b}\left(x_{2 n+1}, x_{2 n+2}\right)+\alpha_{2} D_{b}\left(x_{2 n}, x_{2 n+1}\right)}{+\alpha_{3} s\left[D_{b}\left(x_{2 n}, x_{2 n+1}\right)+D_{b}\left(x_{2 n+1}, x_{2 n+2}\right)\right]+\alpha_{5} D_{b}\left(x_{2 n+1}, x_{2 n}\right)}\right)
\end{aligned}
$$

$$
\begin{align*}
& =\psi\left(\varphi\binom{\left(\alpha_{2}+\alpha_{5}+s \alpha_{4}\right) D_{b}\left(x_{2 n}, x_{2 n+1}\right)}{+\left(\alpha_{1}+s \alpha_{4}\right) D_{b}\left(x_{2 n+1}, x_{2 n+2}\right)}\right) \\
& \leq \psi\left(\frac{\alpha_{2}+\alpha_{5}+s \alpha_{4}}{1-\left(\alpha_{1}+s \alpha_{4}\right)} \varphi\left(D_{b}\left(x_{2 n}, x_{2 n+1}\right)\right)\right) \tag{1.5}
\end{align*}
$$

From (1.4) and (1.5)

$$
\varphi\left(D_{b}\left(x_{2 n+1}, x_{2 n+2}\right)\right) \leq \psi\left(\delta \varphi\left(D_{b}\left(x_{2 n}, x_{2 n+1}\right)\right)\right)
$$

Therefore,

$$
\begin{align*}
& \varphi\left(D_{b}\left(x_{n}, x_{n+1}\right)\right) \leq \varphi\left(H\left(f x_{n-1}, g x_{n}\right)\right) \\
& \quad \leq \psi\left(\varphi\binom{\alpha_{1} D_{b}\left(x_{n-1}, f x_{n-1}\right)+\alpha_{2} D_{b}\left(x_{n}, g x_{n}\right)+\alpha_{3} D_{b}\left(x_{n-1}, g x_{n}\right)}{+\alpha_{4} D_{b}\left(x_{n}, f x_{n-1}\right)+\alpha_{5} D_{b}\left(x_{n-1}, x_{n}\right)}\right) \\
& \quad=\psi\left(\varphi\binom{\alpha_{1} D_{b}\left(x_{n-1}, x_{n}\right)+\alpha_{2} D_{b}\left(x_{n}, x_{n+1}\right)+\alpha_{3} D_{b}\left(x_{n-1}, x_{n+1}\right)}{+\alpha_{4} D_{b}\left(x_{n}, x_{n}\right)+\alpha_{5} D_{b}\left(x_{n-1}, x_{n}\right)}\right) \\
& \quad \leq \psi\left(\varphi\binom{\alpha_{1} D_{b}\left(x_{n-1}, x_{n}\right)+\alpha_{2} D_{b}\left(x_{n}, x_{n+1}\right)}{+\alpha_{3} s\left[D_{b}\left(x_{n-1}, x_{n}\right)+D_{b}\left(x_{n}, x_{n+1}\right)\right]+\alpha_{5} D_{b}\left(x_{n-1}, x_{n}\right)}\right) \\
& \quad=\psi\left(\varphi\binom{\left(\alpha_{1}+\alpha_{5}+s \alpha_{3}\right) D_{b}\left(x_{n-1}, x_{n}\right)}{+\left(\alpha_{2}+s \alpha_{3}\right) D_{b}\left(x_{n}, x_{n+1}\right)}\right) \\
& \quad \leq \psi\left(\frac{\alpha_{1}+\alpha_{5}+s \alpha_{3}}{1-\left(\alpha_{2}+s \alpha_{3}\right)} \varphi\left(D_{b}\left(x_{n-1}, x_{n}\right)\right)\right) \tag{1.6}
\end{align*}
$$

Therefore,

$$
\varphi\left(D_{b}\left(x_{n-1}, x_{n}\right)\right) \leq\left(\frac{\left(\alpha_{1}+\alpha_{2}+s \alpha_{3}+s \alpha_{4}+2 \alpha_{5}\right)}{2-\left(\alpha_{1}+\alpha_{2}+s \alpha_{3}+s \alpha_{4}\right.} \varphi\left(D_{b}\left(x_{n-1}, x_{n}\right)\right)\right)
$$

$n \in N$ and let

$$
\begin{gathered}
\delta=\frac{\left(\alpha_{1}+\alpha_{2}+s \alpha_{3}+s \alpha_{4}+2 \alpha_{5}\right)}{2-\left(\alpha_{1}+\alpha_{2}+s \alpha_{3}+s \alpha_{4}\right.} \\
\varphi\left(D_{b}\left(x_{n}, x_{n+1}\right)\right) \leq \delta\left(\psi\left(\varphi\left(D_{b}\left(x_{n-1}, x_{n}\right)\right)\right)\right) \\
\leq \delta\left[\delta\left(\psi\left(\varphi\left(D_{b}\left(x_{n-2}, x_{n-1}\right)\right)\right)\right)\right]
\end{gathered}
$$

$$
\begin{gathered}
=\delta^{2}\left(\psi\left(\varphi\left(D_{b}\left(x_{n-2}, x_{n-1}\right)\right)\right)\right) \\
\vdots \\
\leq \delta^{n}\left(\psi\left(\varphi\left(D_{b}\left(x_{0}, x_{1}\right)\right)\right)\right)
\end{gathered}
$$

Since $0<\delta<1, \Sigma \delta^{n}$ have a radius of convergence. Then, $\left\{x_{n}\right\}$ is a Cauchy sequence. Since $\left(x, D_{b}\right)$ is complete, there exists $u \in X$ such that $x_{n} \rightarrow u$. We shall prove that u is a common fixed point of f and g.

$$
\begin{align*}
\varphi\left(D_{b}(u, f u)\right) & \leq \psi\left(\varphi\left(s\left[D_{b}\left(u, x_{2 n+1}\right)+D_{b}\left(x_{2 n+1}, f u\right)\right]\right)\right) \\
& \leq \psi\left(\varphi\left(s\left[D_{b}\left(u, x_{2 n+1}\right)+H\left(x_{2 n+1}, f u\right)\right]\right)\right) \\
\varphi\left(D_{b}(u, g u)\right) & \leq \psi\left(\varphi\left(s\left[D_{b}\left(u, x_{2 n+1}\right)+D_{b}\left(x_{2 n+1}, g u\right)\right]\right)\right) \\
& \leq \psi\left(\varphi\left(s\left[D_{b}\left(u, x_{2 n+1}\right)+H\left(x_{2 n}, g u\right)\right]\right)\right) \tag{1.7}
\end{align*}
$$

Where,

$$
\begin{equation*}
\varphi\left(H\left(x_{2 n}, g u\right)\right) \leq \psi\left(\varphi\binom{\alpha_{1} D_{b}\left(x_{2 n}, f x_{2 n}\right)+\alpha_{2} D_{b}(u, g u)+\alpha_{3} D_{b}\left(x_{2 n}, g u\right)}{+\alpha_{4} D_{b}\left(u, f x_{2 n}\right)+\alpha_{5} D_{b}\left(x_{2 n}, u\right)}\right) \tag{1.8}
\end{equation*}
$$

Using (1.8) in (1.7) and letting as $n \rightarrow \infty$, we obtain,

$$
\begin{aligned}
\varphi\left(D_{b}(u, g u)\right) & \leq\left(\varphi\left(s D_{b}(u, u)\right)\right. \\
& \leq \psi\left(\varphi\left(\left[\begin{array}{l}
\alpha_{1} D_{b}(u, u)+\alpha_{2} D_{b}(u, g u)+\alpha_{3} D_{b}(u, g u) \\
+\alpha_{4} D_{b}(u, u)+\alpha_{5} D_{b}(u, u)
\end{array}\right]\right)\right) \\
& =\psi\left(\varphi\left(s\left[\alpha_{2} D_{b}(u, g u)+\alpha_{3} D_{b}(u, g u)\right]\right)\right) \\
& \leq \psi\left(\varphi\left(s\left(\alpha_{2}+\alpha_{3}\right) D_{b}(u, g u)\right)\right) \\
& {\left[1-s\left(\alpha_{2}+\alpha_{3}\right)\right] D_{b}(u, g u) \leq 0 }
\end{aligned}
$$

Implies that, $1-s\left(\alpha_{2}+\alpha_{3}\right) \leq 0$ and $g(u)$ is closed. Thus, $g(u)=u$.
Similarly, $f(u)=u$. Now, show that u is the unique fixed point of g and f.
Now,

$$
\varphi\left(D_{b}(u, v)\right) \leq \varphi(H(f u, g v))
$$

$$
\begin{aligned}
& \leq \psi\left(\binom{\alpha_{1} D_{b}(u, f u)+\alpha_{2} D_{b}(v, g v)+\alpha_{3} D_{b}(u, g v)}{+\alpha_{4} D_{b}(v, f u)+\alpha_{5} D_{b}(u, v)}\right) \\
& \leq \psi\left(\varphi\left(\alpha_{3} D_{b}(u, v)+\alpha_{4} D_{b}(u, v)+\alpha_{5}(u, v)\right)\right)
\end{aligned}
$$

This is not true for $\left[1-\left(\alpha_{3}+\alpha_{4}+\alpha_{5}\right)\right] \geq 0, D_{b}(u, v)=0$. Hence, g and f have a unique common fixed point.

Corollary 18. Let $\left(x, D_{b}\right)$ be a complete b-metric space with constant $s \geq 1$. Let $f, g: X \rightarrow C B(X)$ be generalized multi-valued (ψ, φ)-contraction mapping, satisfies the condition:

$$
\varphi(H(f x, g y)) \leq\left(\varphi\left(\alpha D_{b}(x, g y)+\beta D_{b}(y, f x)+\gamma D_{b}(x, y)\right)\right)
$$

Where, there exists $\psi \in \Psi, \varphi \in \Phi$ such that for all $x, y \in X$ and $\alpha, \beta, \gamma \geq 0$, with $(\alpha+\beta)\left(s^{2}+s\right)+2 s \gamma<2, \alpha+\beta+\gamma<1$. Then f and g have a unique common fixed point.

Example 19. Let $X=[0,1]$. Define a function $D_{b}: X \times X \rightarrow R^{+}$by $D_{b}(x, y)=|x-y|$. Clearly, $\left(x, D_{b}\right)$ is a complete b-metric space. Define $\phi: R_{0}^{+} \rightarrow R_{0}^{+} \quad$ by $\quad \phi(t)=t \quad$ for all $t>0$. Then $\phi \in \Phi$. Also define $\psi: R_{0}^{+} \rightarrow R_{0}^{+}$by $\psi(t)=u t$ for all $t>0$. Then ψ is a continuous comparison function.

Define the mapping $f: X \rightarrow C B(X)$ by $f x=\left[0, \frac{x}{6}\right]$, for all $x, y \in X$. Then,

$$
\varphi(H(f x, f y)) \leq \psi(\varphi(M(x, y)))
$$

where,

$$
\begin{aligned}
M(x, y) & =\alpha_{1} D_{b}(x, f x)+\alpha_{2} D_{b}(y, f y)+\alpha_{3} D_{b}+\alpha_{3} D_{b}(x, f y)+\alpha_{4} D_{b}(y, f x) \\
& +\alpha_{5} D_{b}(x, y)+\alpha_{6} \frac{D_{b}(x, f x)\left(1+D_{b}(x, f x)\right)}{1+D_{b}(x, y)}
\end{aligned}
$$

$$
\begin{aligned}
& \varphi(H(f x, f y)) \leq \psi\left(\varphi \left(\begin{array}{l}
\alpha_{1}\left|x-\frac{x}{6}\right|+\alpha_{2}\left|y-\frac{y}{6}\right|+\alpha_{3}\left|x-\frac{y}{6}\right|+\alpha_{4}\left|y-\frac{x}{6}\right| \\
+\alpha_{5}|x-y|+\alpha_{6}\left(\left.\frac{\left|x-\frac{x}{6}\right|\left(1+\left|x-\frac{x}{6}\right|\right)}{1+|x-y|} \right\rvert\,\right) \\
\leq \psi\left(\phi\left(\frac{1}{6}|x-y|\right)\right), \text { where }\left[\alpha_{1}=\alpha_{2}=\alpha_{3}=\alpha_{4}=\alpha_{6}=0, \alpha_{5}=\frac{1}{6}\right] \\
\leq \psi\left(\frac{1}{6}|x-y|\right) \\
\leq \frac{\mu}{6}|x-y|, \text { for } 0<\mu<1 \\
\leq \frac{\mu}{6} M(x, y)=\frac{\mu}{6} \phi(M(x, y)) \\
\leq \psi(\varphi(M(x, y)))
\end{array}\right.\right. \\
& \leq
\end{aligned}
$$

Therefore, $0 \in X$ is a unique fixed point of f.

References

[1] H. Alikhani, D. Gopal, M. A. Miandaragh, Sh. Rezapour and N. Shahzad, Some endpoint results for generalized weak contractive multifunction, Sci. World J. Article ID 948472, 7 (2013).
[2] H. Aydi, Monica Felicia Bota, Erdal Karuinar and M. Slobodanka, A fixed point theorem for set-valued quasi-contractions in b-metric spaces, Fixed Point Theory Appl. 88 (2012), doi:10.1186/1687-1812-2012-88
[3] S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations integrals, Fundam Math 3 (1922), 133-181.
[4] M. Boriceanu, Fixed point theory for multivalued generalized contraction on a set with two b-metrics, Stud Univ. Babes-Bolyai. Math LIV (3) (2009), 1-14.
[5] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math Inform Univ. Ostraviensis 1 (1993), 5-11.
[6] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti. Semin. Math. Fis. Univ. Modena 46(2) (1998), 263-276.
[7] D. Dhamodharan and R. Krishnakumar, Common fixed points of (ψ, φ)-weak contractions in regular cone metric spaces, International Journal of Mathematical Archive 8(8) (2017), 1-8.
[8] R. Krishnakumar and D. Dhamodharan, Common fixed point of four mapping with contractive modulus on cone banach space, Malaya J. Mat. 5(2) (2017), 310-320.
[9] D. Dhamodharan and R. Krishnakumar, Cone C-class function with common fixed point theorems for cone b-metric space, Journal of Mathematics and Informatics 8 (2017), 8394.
[10] H. Huang and S. Xu, Fixed point theorems of contractive mappings in cone b-metric spaces and applications, Fixed point Theory Appl. 112 (2013).
[11] N. Hussain, M. H. Shah, KKM mapping in cone b-metric spaces, Comput. Math. Appl. 62(4) (2011), 1677-1684.
[12] K. Mehemet and H. Kiziltunc, On some well-known fixed point theorems in b-metrics spaces, Turk J. Anal Appl. 1(1) (2013), 13-16.
[13] B. SAM and JR. Nadler, Multi-valued contraction mappings, Pac. J. Math. 30 (1969), 475-488.
[14] Z. Wang and H. Li, Fixed point theorems and endpoint theorems for (α, Ψ)-Meir-Keeler-Khan Multivalued mapping, Fixed Point Theory Appl. 12 (2016).

