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Abstract 

Let  EVG ,  be a graph with vertex set V and edge set E. Let vu,  be any two distinct 

vertices of graph G. A radio labeling of a graph G is a function   NGVf :  (set of natural 

numbers) such that,         ,1,  Gdiamvfufvud  where  vud ,  represents the 

shortest distance between the vertices u and v and  Gdiam  represents the diameter of the 

graph G. The span of a radio labeling f is       .,:max GVvuvfuf   The radio number of 

G is the minimum span of all radio labeling of G and is denoted by  .Grn  In this paper, the 

bounds of radio number of certain types of graphs have been determined. 

1. Introduction 

In telecommunication network, an important challenging problem in 

designing of radio networks is to assign channels (frequencies) to all the 

transmitters in such a way that there is no interference between any two 

transmitters [16]. This problem is studied as a graph theory problem. The 

given network is modeled as a graph where the vertices represents 

transmitters and the adjacent transmitters are connected by an edge. Now 

the vertices are assigned different colours or non-negative integers 

(frequencies) in such a way that the adjacent vertices are assigned different 

frequencies to avoid interference [6]. 
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This assignment of channels to the transmitters is popularly known as 

channel assignment problem which was introduced by Hale [8] in 1980. The 

channel assignment problem motivated Gary Chartrand et al. [7] to introduce 

a new type of labeling known as radio labeling (or multilevel distance 

labeling). 

The radio labeling of a graph G is an injection from the set of vertices of G 

to the set of natural numbers such that,         ,1,  Gdiamvfufvud  

where  vud ,  represents the shortest distance between every distinct pair of 

vertices u and v of G. The span of a radio labeling f is 

      .,:max GVvuvfuf   The radio number of G is the minimum 

span of all radio labeling of G and it is denoted by  .Grn  A graph G with n 

vertices is called radio graceful if   nGrn   [1]. 

A radio labeling is also known as radio k-labeling or multi-level distance 

labeling for some integer k with dk 1  such that,  vud ,  

    kvfuf  1  where d represents the diameter of the graph G. Based 

on the value of k, this labeling is classified as follows. When ,2k  the 

labeling is said to be distance two labeling or  -1,2L labeling. When 

,1 dk  the labeling is called radio antipodal labeling. When ,dk   the 

labeling is called radio labeling. 

The problem of finding the radio number is NP complete for general 

graphs [11]. However the lower bound of radio number of general graphs can 

be obtained by using the following result. 

Result 1.1. Ahmad Ali et al. [1] obtained a formula for finding the lower 

bound of radio number of graphs with small diameter. Suppose in a graph G 

there are at most x pairs  vu,  such that     ,1 vfuf  then 

   xkxGrn  121  (1) 

where k is the number of vertices in G. 

The radio number of certain graphs like paths and cycles [5], hypercubes 

[15], square paths [4], circulant graphs  2,1:24 kG  [12], generalized 

prism graphs [13], toroidal grids [17], extended mesh [22], uniform theta 
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graphs [14], some thorn graphs [9], some cycle related graphs [19], Cartesian 

product of graphs [10], gear graphs [3], complete m-ary trees [21], some 

ladder related graphs [1], total graph of path [18] were already investigated. 

In this paper, the bounds of radio number of certain types of graphs like 

triangular grid graphs, triangular ladder graphs and pagoda graphs were 

determined. 

2. Radio number of Triangular grid graphs 

In this section, the radio number of triangular grid graphs have been 

studied. Triangular grid graph is a graph obtained from an infinite graph 

which is formed by the arrangement of transmitters in a network. These 

transmitters are assumed to be located like the vertices of a triangular lattice 

in a plane so that it gives a good coverage [6]. The triangular grid graph is 

defined based on this pattern of arrangements of transmitters. 

Definition 2.1 [20]. The infinite graph T  associated with the two 

dimensional triangular grid graph or triangular tiling graph is a graph drawn 

in the plane with straight line edges and vertices defined as follows. 

The vertices of T  are represented by the linear combination uqxp   of 

two vectors  0,1p  and 









2

3
,

2

1
q  with integers x and y. Thus the 

vertices of T  are points with Cartesian coordinates .
2

3
,

2 







 y

y
x  Two 

vertices of T  are adjacent if and only if the Euclidean distance between 

them is equal to 1. 

A triangular grid graph is a finite induced sub-graph of .T  The nth 

dimension of triangular grid graph is denoted by  .nTG  See Figure 1. 

Remark 2.1.  nTG  has  23
2

1 2  nn  vertices and  1
2

3
nn  edges. 

Its diameter is n. Assuming that the top single vertex of  nTG  is at level 1, it 

has 1n  levels. See Figure 2. 
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Figure 1. Construction of  nTG  from .T  

 

Figure 2. Different levels of  .3TG  

Theorem 2.1. Radio number of      .31,1 TGrnTG  

Proof.  1TG  has 3 vertices and 3 edges. 

 

Figure 3.  .1TG  



CHANNEL ASSIGNMENT OF TRIANGULAR GRID AND  

Advances and Applications in Mathematical Sciences, Volume 21, Issue 1, November 2021 

83 

By Result 1.1,    .31 TGrn  

It can be seen from Figure 3 that, 

   .31 TGrn  

Hence,    .31 TGrn   

Note 2.1.  1TG  has 3 vertices and    .31 TGrn  Hence,  1TG  is a  

radio graceful labeling. 

Theorem 2.2. Radio number of      .82,2 TGrnTG  

Proof.  2TG  has 6 vertices and 9 edges. The diameter of  2TG  is 2. 

 

Figure 4.  .2TG  

By Result 1.1,    .82 TGrn  

Also it is observed that from Figure 4, 

   .82 TGrn  

Hence,    .82 TGrn  

Theorem 2.3. For    .23,3 2  nnnTGrnn  

Proof. We can prove this theorem by using Result 1.1. 

Case (i). When .3n  For  3TG  there are five pair of vertices at 

diametric distance. In these pairs three pairs  vu,  are in such a way that, 

    .1 vfuf  Therefore by Result 1.1,    .232  nnnTGrn  

Case (ii). When  nTGn ,3  has five pair of vertices at diametric 

distance but only two pairs  vu,  are in such a way that,     .1 vfuf  
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Therefore by Result 1.1,    .132  nnnTGrn  Hence, from Case (i) and 

Case (ii),    .3,232  nnnnTGrn   

Theorem 2.4. For     .443
2

1
,3 23  nnnnTGrnn  

Proof. Let 
 23

2

121 2
,,,

 nn
vvv   be the vertices of  .nTG  These vertices 

are labeled as follows. Let   .11 vf  As the vertices 1v  and 
 23

2

1 2  nn
v  are 

at diametric distance, take 
 

 .2
23

2

1 2


 nn
vf  The remaining vertices of 

 nTG  are labeled by the mapping, 

 
   

     













 






 



nninnin

nniiin

vf i

3
2

1
1

2

1
,22

1
2

1
1,11

22

2

 (2) 

Claim. The mapping (2) is a valid radio labeling. 

Let vu,  be any two vertices of  .nTG  We must show that the radio 

labeling condition is satisfied for all pairs of vertices  vu,  in  .nTG  

Case (i). Suppose the vertices vu,  are in the same level 

Subcase(i):   1, vud  

By mapping (2),     .nvfuf   

Subcase(ii):   .1, vud  

By (2),     .nvfuf   

Case (ii). Suppose the vertices vu,  are at different levels 

Subcase(i).   1, vud  

By (2),     .nvfuf   

Subcase (ii). Suppose   .1, vud  
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By (2),     .nvfuf   

Case (iii). Suppose 
 










1

2

1 2 nn
vu  and 

 









1

2

1 2 nn
vv  

By (2),     1 vfuf  and   ., nvud   

Case (iv). Suppose 1vu   and 
 

.
23

2

1 2 


nn
vv  Then,   nvud ,  and 

by our assumption     .1 vfuf  Hence,       .1,  nvfufvud  

Therefore these four cases establish the claim that the mapping (2) is a 

valid radio labeling of  .nTG  

Here the vertex 
 

2

32 nn
v


 receives the maximum label and its label is 

 .443
2

1 23  nnn  Hence,      .3,443
2

1 23  nnnnnTGrn   

Theorem 2.5. The radio number of  nTG  lies between 232  nn  and 

  .3443
2

1 23  nnnn  

Proof. From Theorem 2.3    232  nnnTGrn  and From Theorem 

2.4     .443
2

1 23  nnnnTGrn  Therefore,   nTGrnnn  232  

  .3,443
2

1 23  nnnn   

3. Radio number of Triangular Ladder Graph 

In this section, the radio number of Triangular ladder graphs have been 

investigated. 

Definition 3.1 [1]. The ladder graph nL  is a graph obtained by the 

Cartesian product of two path graphs 2P  and .2, nPn  

Remark 3.1. The nth dimension of nL  has n2  vertices, in which 

nvvv ,,, 21   forms the top row (say) 1R  and nnn vvv 221 ,,,   forms the 

bottom row (say) .2R  It has 23 n  edges and its diameter is n. 
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Definition 3.2 [2]. A Triangular ladder graph denoted by  ,nTLG  is a 

ladder graph obtained by adding the edges   .,,2,, 1 nivv ini   See 

Figure 5. 

 

Figure 5.  .nTLG  

Remark 3.2.  nTLG  has n2  vertices and 34 n  edges. Its diameter is 

n. 

Theorem 3.1. The radio number of      .62,2 TLGrnTLG  

Proof.  2TLG  has 4 vertices and 5 edges. The diameter of  2TLG  is 2. 

 

Figure 6.  .2TLG  

There is only one pair of vertices at diametric distance. Here 

  .2, 41 vvd  Hence these vertices 1v  and 4v  are labeled in such a way that 

    .141  vfvf  Then by Result 1.1,    .62 TLGrn  From Figure 6, it is 

observed that,    .62 TLGrn  Hence,    .62 TLGrn   

Theorem 3.2. For    .24,3  nnTLGrnn  

Proof. In order to prove this theorem, we make use of the Result 1.1. For 

 ,nTLG  there is only one pair  nvv 21,  at diametric distance and 

    .121  nvfvf  Therefore, by Result 1.1 we have,    11 nTLGrn  

 .1122  n  Hence,    .2,24  nnnTLGrn   
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Theorem 3.3. For    .332,3 2  nnnTLGrnn  

Proof. Consider the vertices nvvv 221 ,,,   of  .nTLG  These vertices are 

labeled as follows. The vertices 1v  and nv2  are at diametric distances. Take 

  11 vf  and   .22 nvf  

The remaining vertices of  nTLG  are labeled by the following mapping 

 
 

   








.3,121,31

3,1,11

nninnin

nniin
vf i  (3) 

Claim. The mapping (3) is a valid radio labeling. 

Let vu,  be any two vertices of  .nTLG  We must show that the radio 

labeling condition is satisfied for all the pairs of vertices    ., nTLGvu   

Consider the following cases. 

Case (i). Suppose .2,1,,  iRvu i  

Subcase(i).   .1, vud  

By mapping (3),     .nvfuf   

Subcase (ii).   .1, vud  

By (3),     .nvfuf   

Case (ii). Suppose iRu   and ., jiRv j   

Subcase(i).   .1, vud  

By (3),     .nvfuf   

Subcase(ii):   1, vud  

By (3),     .nvfuf   

Case (iii). Suppose the vertices u and v are extreme vertices 

Subcase (i). Suppose 1vu   and .2nvv   

Then by our assumption,     1 vfuf  and   ., nvud   
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Subcase (ii). Suppose nvu   and .1 nvv  

Then by (3),     2 vfuf  and   .1,  nvud  

Hence in all the cases,       .1,  nvfufvud  

Therefore, the mapping (3) is a valid radio labeling. 

The vertex 12 nv  receives the maximum labeling and its label is 

.332 2  nn  

Hence,   .3,332 2  nnnnTLG   

Theorem 3.4. The radio number of  nTLG  lies between 24 n  and 

.3,332 2  nnn  

Proof. From Theorem 3.2,    24  nnTLGrn  and 

From Theorem 3.3,    .3,332 2  nnnnTLGrn  

Hence,    .3,33224 2  nnnnTLGrnn   

4. Radio number of Pagoda graphs 

In this section, the radio number of pagoda graphs have been determined. 

Definition 4.1. A Pagoda graph is a graph obtained from ladder graph 

nL  in which a vertex av  is added in such a way that it is adjacent to the 

vertices 1v  and .2v  See Figure 7. 
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Figure 7.  .nPG  

As this graph resembles the structure of Pagoda, Buddhists temples in 

South-East Asia, this graph is named as pagoda graphs. 

Remark 4.1. The nth dimension of the pagoda graph is denoted by  .nPG  

It has 12 n  vertices and n3  edges. The diameter of  nPG  is n. 

Theorem 4.1. For   .14,2  nnrnPGn  

Proof. In order to prove this theorem we will use Result 1.1. 

In  ,nPG  there are four pairs of vertices for which    ., Gdiamvud   

Among these pairs only two vertex pairs are such that,     .1 vfuf  

Therefore, by Result 1.1, we have 

    212221  nnPGrn  

Hence,    2,14  nnnPGrn   

Theorem 4.2. For    .12,2 2  nnnPGrnn  

Proof. Let na vvvv 221 ,,,,   be the vertices of  .nPG  

These vertices are labeled as follows. 

Take   1avf  and   .22 nvf  
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The remaining 12 n  vertices of  nPG  are labeled by the mapping, 

  .21,1 ninivf i   (4) 

Claim. The mapping (4) is a valid radio labeling. 

In order to prove this claim, consider the following cases. 

Let vu,  be any two vertices of  .nPG  

Case (i). Suppose avu   and .121,  nivv i  

Then by mapping (4),     nvfuf   and   .1, vud  

Case (ii). Suppose avu   and .1,2 nivv i   

The proof is similar to Case (i). 

Case (iii). Suppose 12  ivu  and .11,2  nivv i  

Then by mapping (4),     nvfuf   and   .1, vud  

Case (iv). Suppose ivu 2  and .11,12   nivv i  

Then by (4)     1 nvfuf  and   .1, vud  

Case (v). Suppose ivu 2  and .,1,,2 njijivv j   

Then by (4)     nvfuf   and   .1, vud  

Case (vi). Suppose 12  ivu  and .,1,,12 njijivv j    

The proof is similar to Case (iv). 

Case (vii). Suppose avu   and .2nvv   

Then by our assumption,     1 vfuf  and   ., nvud   

Hence, in all the cases,       .1,  nvfufvud  Therefore, the 

mapping (4) is a valid radio labeling. 

By mapping (4), the vertex 12 nv  receives the maximum labeling and is 

given by   .12 2
12  nnvf n  



CHANNEL ASSIGNMENT OF TRIANGULAR GRID AND  

Advances and Applications in Mathematical Sciences, Volume 21, Issue 1, November 2021 

91 

Hence,    .12 2  nnnPGrn   

Theorem 4.3. The bounds of  nPG  lies between 14 n  and 

.2,12 2  nnn  

Proof. From Theorem 4.1,    14  nnPGrn  and 

By Theorem 4.2, 

   .12 2  nnnPGrn  

Hence,    .2,1214 2  nnnnPGrnn   

Conclusion 

The radio labeling is used in communication engineering to assign 

frequencies (channels) to different transmitters such that there is no 

interference between the transmitters with minimum bandwidth. In this 

paper, the bounds of radio number of certain graphs like Triangular grid 

graph, Triangular ladder graph and Pagoda graphs have been determined. 

This study can be extended further to other networks also. 
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