GENERALIZED HYERS-ULAM STABILITY OF A QUADRATIC FUNCTIONAL EQUATION IN GENERALIZED 2-NORMED SPACES

G. YAGACHITRADEVI ${ }^{1}$, S. LAKSHMINARAYANAN ${ }^{2}$ and P. RAVINDIRAN ${ }^{3}$

${ }^{1}$ Department of Mathematics
Siga College of Management and Computer Science
Villupuram-605 601, Tamil Nadu, India
E-mail: yagachitradevi@gmail.com
2,3Department of Mathematics
Arignar Anna Government Arts College
Villupuram-605 602, Tamil Nadu, India
E-mail: slnvpm29@gmail.com
p.ravindiran@gmail.com

Abstract

In this paper, we investigate the generalized Hyers-Ulam stability of the quadratic functional equation $$
\begin{gathered} f(3 x+2 y+z)+f(3 x+2 y+z)+f(3 x+2 y+z)+f(3 x-2 y-z) \\ \quad=8[f(x+y)+f(x-y)]+2[f(x+z)+f(x-z)]+16 f(x) \end{gathered}
$$ in generalized 2 -normed spaces.

\section*{1. Introduction}

In 1940, S. M. Ulam [15] had raised the following question: Under what condition does there exist a group homomorphism near an approximate group homomorphism. In next year, D. H. Hyers [9] gave a first affirmative partial answer to the question of Ulam for Banach spaces. In 1950, T. Aoki [3]

Keywords: quadratic functional equations, generalized Hyers-Ulam stability, generalized 2-normed spaces. Received December 2, 2022; Accepted March 14, 2023

generalized Hyers' theorem for additive mappings. In 1978, Th. M. Rassias [14] succeeded in extending Hyers' theorem by weakening the condition for the Cauchy difference controlled by $\|x\|^{p}+\|y\|^{p}, 0 \leq p<1$, to be unbounded.

The result of Rassias' theorem had been generalized by P. Gavruta [8] who permitted the Cauchy difference to be bounded by a general control function. The stability problems of several functional equations have been extensively investigated by a number of authors and there are many interesting results concerning this problem (see [2], [7], [11], [12]) and reference cited there in.
K. Balamurugan et al., [6] introduced the following cubic functional equation

$$
\begin{align*}
& g(3 x+2 y+z)+g(3 x+2 y-z)+g(3 x-2 y+z)+g(3 x-2 y-z) \\
& \quad=24[g(x+y)+g(x-y)]+6[g(x+z)+g(x-z)]+48 g(x) \tag{1.1}
\end{align*}
$$

and they investigated the generalized Hyers-Ulam stability for Equation (1.1).

In this paper, we investigated the generalized Hyers-Ulam stability of the quadratic functional equation

$$
\begin{align*}
& f(3 x+2 y+z)+f(3 x+2 y-z)+f(3 x-2 y+z)+f(3 x-2 y-z) \\
& \quad=8[f(x+y)+f(x-y)]+2[f(x+z)+f(x-z)]+16 f(x) \tag{1.2}
\end{align*}
$$

in generalized 2-normed spaces. The function $f(x)=a x^{2}$ is a solution for the functional equation (1.2)

2. Basic Definitions on Generalized 2-Normed Space

In this section, we demonstrated the generalized Ulam-Hyers stability of the functional equation (1.2) in generalized 2 -normed space.

Now, we present some basic definitions related to generalized 2-normed spaces.

Definition 2.1. Let X be a linear space. A function $N(.,):. X \times X \rightarrow[0, \infty)$ is called a generalized 2 -norm on X if it satisfies the following
(G1) $N(x, y)=0$ if and only if x and y are linearly dependent.
(G2) $N(x, y)=N(y, x)$ for all $x, y \in X$,
(G3) $N(\lambda x, y)=|\lambda| N(y, x)$ for all $x, y \in X$ and $\lambda \in \varphi, \varphi$ is a real or complex field,
(G4) $N(x+y, z) \leq N(x, z)+N(y, z)$ for all $x, y, z \in X$.
Then $(X, N(.,)$.$) is called generalized 2$-normed space.
Definition 2.2. A sequence $\left\{x_{n}\right\}$ in a generalized 2-normed space $(X, N(.,)$.$) is called convergent if there exists x \in X$ such that $\lim _{n \rightarrow \infty} N\left(x_{n}-x, y\right)=0$, that is, $\lim _{n \rightarrow \infty} N\left(x_{n}, y\right)=N(x, y)$ for all $y \in X$.

Definition 2.3. A sequence $\left\{x_{n}\right\}$ in a generalized 2-normed space $(X, N(.,)$.$) is said to be a Cauchy sequence if there exist two linearly$ independent elements y and z in X such that $\left\{N\left(x_{n}, y\right)\right\}$ and $\left\{N\left(x_{n}, y\right)\right\}$ are real Cauchy sequences.

Definition 2.4. A generalized 2 -normed space $(X, N(.,)$.$) is said to be$ generalized 2-Banach space if every Cauchy sequence in X is convergent in X.

3. Generalized Hyers-Ulam Stability of (1.2)

In this section, we investigate the generalized Hyers-Ulam stability of the functional equation (1.2) in generalized 2 -normed spaces. Let X be a generalized 2 -normed space and Y be generalized 2 -Banach space. Define a mapping $f: X^{3} \rightarrow Y$ by

$$
\begin{gathered}
D f(x, y, z)=f(3 x+2 y+z)+f(3 x+2 y-z)+f(3 x-2 y+z) \\
+f(3 x-2 y-z)-8[f(x+y)+f(x-y)]-2[f(x+z)+f(x-z)]-16 f(x)
\end{gathered}
$$

for all $x, y, z \in X$. Also, throughout this paper, we adopt the following convention $\quad \psi(x, y, z)=\psi((x, s),(y, s),(z, s)) \quad$ and $\quad\|x\|=\|x, s\| \quad$ for all $x, y, z, s \in X$.

1640 YAGACHITRADEVI, LAKSHMINARAYANAN and RAVINDIRAN

Theorem 3.1. Let $j= \pm 1$ and $\psi: X^{3} \rightarrow[0, \infty)$ be a function such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\psi\left(3^{n j} x, 3^{n j} y, 3^{n j} z\right)}{9^{n j}}=0 \tag{3.1}
\end{equation*}
$$

for all $\xi, \psi, z \in X$. Let $g: X \rightarrow Y$ be a mapping satisfying the inequality

$$
\begin{equation*}
N(D g(x, y, z), s) \leq \psi(x, y, z) \forall x, y, z, s \in X \tag{3.2}
\end{equation*}
$$

Then there exists a unique quadratic mapping $Q: X \rightarrow Y$ which satisfies (1.2) and

$$
\begin{equation*}
N(g(x)-Q(x), s) \leq \frac{1}{36} \sum_{k=\frac{1-j}{2}}^{\infty} \frac{\psi\left(3^{k j} x, 0,0\right)}{\vartheta^{k j}} \tag{3.3}
\end{equation*}
$$

where $N(Q(x), s)$ is defined by

$$
\begin{equation*}
N(Q(x), s)=\lim _{n \rightarrow \infty} N\left(\frac{g\left(3^{n j} x\right)}{9^{n j}}, s\right) \forall x, s \in X \tag{3.4}
\end{equation*}
$$

Proof. Replacing (x, y, z) by $(x, 0,0)$ in (3.2), we get

$$
\begin{equation*}
N(g(3 x)-9 g(x), s) \leq \frac{\psi(x, 0,0)}{4} \tag{3.5}
\end{equation*}
$$

for all $x \in X$. Dividing the above inequality by 9 , we obtain

$$
\begin{equation*}
N\left(\frac{g(3 x)}{9}-g(x), s\right) \leq \frac{\psi(x, 0,0)}{36} \tag{3.6}
\end{equation*}
$$

for all $x \in X$. Now replacing x by $3 x$ and dividing by 9 in (3.6), we get

$$
\begin{equation*}
N\left(\frac{g\left(3^{2} x\right)}{9^{2}}-\frac{g(3 x)}{9}, s\right) \leq \frac{\psi(x, 0,0)}{36 \cdot 9} \tag{3.7}
\end{equation*}
$$

for all $x \in X$. From (3.6) and (3.7), we obtain

$$
N\left(\frac{g\left(3^{2} x\right)}{9^{2}}-g(x), s\right) \leq N\left(\frac{g(3 x)}{9}-g(x), s\right)+N\left(\frac{g\left(3^{2} x\right)}{9^{2}}-\frac{g(3 x)}{9}, s\right)
$$

$$
\begin{equation*}
\leq \frac{1}{36}\left[\psi(x, 0,0)+\frac{\psi(3 x, 0,0)}{9}\right] \tag{3.8}
\end{equation*}
$$

for all $x \in X$. Proceeding further and using induction on a positive integer n, we get

$$
\begin{align*}
N\left(\frac{g\left(3^{n} x\right)}{9^{n}}-g(x), s\right) & \leq \frac{1}{36} \sum_{k=0}^{n-1} \frac{\psi\left(3^{k} x\right)}{9^{k}} \\
& \leq \frac{1}{36} \sum_{k=0}^{\infty} \frac{\psi\left(3^{k} x\right)}{9^{k}} \tag{3.9}
\end{align*}
$$

for all $x \in X$. In order to prove the convergence of the sequence $\left\{\frac{g\left(3^{n} x\right)}{9^{n}}\right\}$, replace x by $3^{m} x$ and dividing by 9^{m} in (3.9), for any $m, n>0$, we deduce

$$
\begin{aligned}
N\left(\frac{g\left(3^{n+m} x\right)}{9^{(n+m)}}-\frac{9\left(3^{m} x\right)}{9^{m}}, s\right) & =\frac{1}{9^{m}} N\left(\frac{9\left(3^{n} \cdot 3^{m} x\right)}{9^{n}}-g\left(3^{m} x\right), s\right) \\
& \leq \frac{1}{36} \sum_{k=0}^{n-1} \frac{\psi\left(3^{k+m} x, 0,0\right)}{9^{(k+m)}} \\
& \leq \frac{1}{36} \sum_{k=0}^{\infty} \frac{\psi\left(3^{k+m} x, 0,0\right)}{9^{(k+m)}}
\end{aligned}
$$

for all $x \in X$ and all $s \in X$. Also

$$
\begin{aligned}
N\left(\frac{g\left(3^{n+m} x\right)}{9^{(n+m)}}-\frac{9\left(3^{m} x\right)}{9^{m}}, t\right) & =\frac{1}{9^{m}} N\left(\frac{9\left(3^{n} \cdot 3^{m} x\right)}{9^{n}}-g\left(3^{m} x\right), t\right) \\
& \leq \frac{1}{36} \sum_{k=0}^{n-1} \frac{\psi\left(3^{k+m} x, 0,0\right)}{9^{(k+m)}} \\
& \leq \frac{1}{36} \sum_{k=0}^{\infty} \frac{\psi\left(3^{k+m} x, 0,0\right)}{9^{(k+m)}} \\
& \rightarrow 0 \text { as } m \rightarrow \infty
\end{aligned}
$$

for all $x \in X$ and all $t \in X$. Hence there exist two linearly independent elements s and t in X such that $\left\{N\left(\frac{g\left(3^{n} x\right)}{9^{n}}, s\right)\right\}$ and $\left\{N\left(\frac{g\left(3^{n} x\right)}{9^{n}}, t\right)\right\}$ are real Cauchy sequences. Thus the sequence $\left\{\frac{g\left(3^{n} x\right)}{9^{n}}\right\}$ is a Cauchy sequence. Since Y is complete, there exists a mapping $Q: X \rightarrow Y$ such that

$$
N(C(x), s)=\lim _{n \rightarrow \infty} N\left(\frac{g\left(3^{n} x\right)}{9^{n}}, s\right), \forall x, s \in X
$$

Letting $n \rightarrow \infty$ in (3.9), we see that (3.3) holds for all $x \in X$. To prove that Q satisfies (1.2), replacing (x, y, z) by $\left(3^{n} x, 3^{n} y, 3^{n} z\right)$ and dividing by 9^{n} in (3.2)), we obtain

$$
\begin{aligned}
& \frac{1}{9^{n}} N\left(g\left(3^{n}(3 x+2 y+z)\right)\right)+g\left(3^{n}(3 x+2 y-z)\right)+g\left(3^{n}(3 x-2 y+z)\right) \\
& +g\left(3^{n}(3 x-2 y-z)\right)-8\left[g\left(3^{n}(x+y)\right)+g\left(3^{n}(x-y)\right)\right] \\
& \left.-2\left[g\left(3^{n}(x+z)\right)+g\left(3^{n}(x-z)\right)\right]-16 g\left(3^{n} x\right), s\right) \leq \frac{1}{9^{n}} \psi\left(3^{n} x, 3^{n} y, 3^{n} z\right)
\end{aligned}
$$

for all $x, y, z \in X$. Letting $n \rightarrow \infty$ in the above inequality and using the definition of $Q(x)$, we see that Q satisfies (1.2) for all $x, y, z \in X$. To prove that Q is unique, let $R(x)$ be another quadratic mapping satisfying (1.2) and (3.3), then

$$
\begin{aligned}
N(Q(x)-R(x), s) & =\frac{1}{9^{n}} N\left(Q\left(3^{n} x\right), s\right) \\
& \leq \frac{1}{9^{n}}\left\{N\left(Q\left(3^{n} x\right)-g\left(3^{n} x\right), s\right)+N\left(g\left(3^{n} x\right)-R\left(3^{n} x\right), s\right\}\right. \\
& \leq \frac{2}{36} \sum_{k=0}^{\infty} \frac{\psi\left(3^{k+n} x, 0,0\right)}{9^{(k+n)}} \\
& \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

for all $x \in X$. Thus Q is unique. Hence for $j=1$ the theorem holds.

Now, replacing x by $\frac{x}{3}$ in (3.5), we reach

$$
\begin{equation*}
N\left(g(x)-9 g\left(\frac{x}{3}\right), s\right) \leq \frac{1}{4} \psi\left(\frac{x}{3}, 0,0\right) \tag{3.10}
\end{equation*}
$$

for all $x \in X$. The rest of the proof is similar to that of $j=1$. Hence for $j=-1$ also the theorem holds. This completes the proof of the theorem.

Corollary 3.2. Let ρ and s be nonnegative real numbers. Let $g: X \rightarrow Y$ be a mapping satisfying the inequality

$$
N(D g(x, y, z), s) \leq \begin{cases}\rho, & \mu \neq 2 \tag{3.11}\\ \rho\left\{\|x\|^{\mu}+\|y\|^{\mu}+\|z\|^{\mu}\right\}, \\ \rho\left\{\|x\|^{\mu}\|y\|^{\mu}\|z\|^{\mu}\right. \\ \left.+\left\{\|x\|^{3 \mu}+\|y\|^{3 \mu}+\|z\|^{3 \mu}\right\}\right\}, & 3 \mu \neq 2\end{cases}
$$

for all $x, y, z \in X$. Then there exists a unique quadratic mapping $Q: X \rightarrow Y$ such that

$$
N(g(x)-C(x), s) \leq\left\{\begin{array}{l}
\frac{\rho}{4\left|3^{2}-1\right|} \tag{3.12}\\
\frac{\rho\|x\|^{\mu}}{4\left|3^{2}-3^{\mu}\right|} \\
\frac{\rho\|x\|^{3 \mu}}{4\left|3^{2}-3^{3 \mu}\right|}
\end{array}\right.
$$

for all $x \in X$.

References

[1] M. Acikgoz, A review on 2-normed structures, Int. J. Math. Ana. 1(4) (2007), 187-191.
[2] J. Aczel and J. Dhombres, Functional Equations in Several Variables, Cambridge Univ. Press, Publication, 1989.
[3] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64-66.
[4] M. Arunkumar, Solution and stability of modified additive and quadratic functional equation in generalized 2-normed spaces, Int. J. Math. Sci. Eng. Appl. 7(I) (2013), 383391.

1644 YAGACHITRADEVI, LAKSHMINARAYANAN and RAVINDIRAN

[5] M. Arunkumar, G. Ganapathy and S. Murthy, Stability of a functional equation having nth order solution in generalized 2-normed spaces, Int. J. Math. Sci. Eng. Appl. 5(4) (2011), 361-369.
[6] K. Balamurugan, M. Arunkumar and P. Ravindiran, Stability of a cubic and orthogonally cubic functional equations, International Journal of Applied Engineering Research 10(72) (2015).
[7] K. Balamurugan, M. Arunkumar and P. Ravindiran, Generalized Hyers-Ulam stability for a mixed quadratic-quartic $(Q Q)$ functional equation in Quasi-Banach spaces, British Journal of Mathematics and Computer Science 9(2) (2015), 122-140 Article no. BJMCS.2015.192. DOI:10.9734/BJMCS/2015/17551
[8] P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436.
[9] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. USA 27 (1941), 222-224.
[10] S. M. Jung, On the Hyers-Ulam stability of the functional equations that have the quadratic property, J. Math. Anal. Appl. 222 (1998), 126-137.
[11] J. M. Rassias, On approximation of approximately linear mappings by linear mappings, J. Funct. Anal. USA 46(1) (1982), 126-130.
[12] J. M. Rassias, On approximation of approximately linear mappings by linear mappings, Bull. Sci. Math. 108 (1984), 445-446.
[13] J. M. Rassias, M. Arunkumar, E. Sathya and N. Mahesh Kumar, Solution and stability of an ACQ functional equation in generalized 2 -normed spaces, Intern. J. Fuzzy Mathematical Archive 7(2) (2015), 213-224.
[14] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
[15] S. M. Ulam, Problems in Modern Mathematics, Science Editions, Wiley, New York, 1964.

