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Abstract 

Using the notion of G-metric space and property of new binary operator we prove some 

fixed point theorem which unifies and improve some fixed point results. 

1. Introduction 

The concept of standard metric spaces is a fundamental tool in topology, 

functional analysis, and nonlinear analysis. This structure has attracted a 

considerable attention from mathematicians because of the development of 

the fixed point theory in standard metric spaces. In recent years, several 

generalizations of standard metric spaces have appeared. 

The notion of 2-metric space introduced by Gahler [5, 6] as a 

generalization of usual notion of metric space  ., dX  In 1992, Dhage in his 

Ph.D. thesis introduce a new class of generalized metric space called D-metric 

spaces ([1, 2]). In a subsequent series of papers, Dhage attempted to develop 

topological structures in such spaces [2-4]. He claimed that D-metrics provide 

a generalization of ordinary metric functions. In 2003 Brailey Sims et al. 

demonstrated in [8] that most of the claims concerning the fundamental 

topological structure of D-metric space are incorrect, so they introduced 

notion of generalized metric space [10]. 
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Definition 1.1[9]. Let X be a nonempty set, and let  RXXXG :  

be a function satisfying the following properties: 

(G1)   0,, zyxG  if ;zyx   

(G2)  ,,,0 yxxG  for all ,, Xyx   with ;yx   

(G3)    ,,,,, zyxGyxxG   for all ,,, Xzyx   with ;yz   

(G4)       ,,,,,,,  xzyGyzxGzyxG  (symmetry in all three 

variables); 

(G5)      ,,,,,,, zyaGaaxGzyxG   for all ,,,, Xazyx   (rectangle 

inequality). 

Then the function G is called a generalized metric, or, more specifically, a 

G-metric on X, and the pair  GX,  is called a G-metric space. 

Definition 1.2[9]. Let  GX,  be a G-metric space, and let  nx  be 

sequence of points of X, a point Xx   is said to be the limit of the sequence 

 ,nx  if   ,0,,lim ,  mnmn xxxG  and one says that the sequence  nx  is 

G-convergent to x. 

Thus, that if xxn   in a G-metric space  ,, GX  then for any ,0c  

there exists NN  such that   ,,, cxxxG mn   for all ., Nmn   

Proposition 1.1 [9]. Let  GX,  be a G-metric space, then the following 

are equivalent. 

(1)  nx  is G-convergent to x. 

(2)   ,0,, xxxG nn  as .n  

(3)   ,0,, xxxG n  as .n  

(4)   ,0,, xxxG nm  as ., nm  

Definition 1.3[9]. Let  GX,  be a G-metric space, a sequence  nx  is 

called G-Cauchy if for every ,0c  there is NN  such that 

  ,,, cxxxG lmn   for all ,,, Nlmn   that is, if   0,, lmn xxxG  as 

.,, lmn  
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Proposition 1.2[8]. If  GX,  is a G-metric space, then the following are 

equivalent. 

(1) The sequence  nx  is G-Cauchy. 

(2) For every ,0c  there exists NN  such that   ,,, cxxxG mmn   for 

all ., Nmn   

Definition 1.4[9]. Let  GX,  and  rr GX ,  be two G-metric spaces, and 

let    rr GXGXf ,,:   be a function, then f is said to be G-continuous at a 

point Xa   if and only if, given ,0c  there exists 0  such that 

,, Xyx   and   yxaG ,,  implies        .,, cyfxfafGr   A function f is 

G-continuous at X if and only if it is G-continuous at all .Xa   

Proposition 1.3 [9]. Let    rr GXGX ,,,  be two G-metric spaces. Then a 

function 
rXXf :  is G-continuous at a point Xx   if and only if it is G 

sequentially continuous at x, that is, whenever  nx  is G-convergent to 

  nxfx,  is G-convergent to  .xf  

Definition 1.5[9]. A G-metric space  GX,  is called symmetric G-metric 

space if    xxyGyyxG ,,,,   for all ., Xyx   

Proposition 1.4[9]. Let  GX,  be a G-metric space, then the function 

 zyxG ,,  is jointly continuous in all three of its variables. 

Proposition 1.5[8]. Every G-metric space  GX,  will define a metric 

space  GdX ,  by  

       .,,,,,,, XyxxxyGyyXGyxdG    (1.1) 

Note that if  GX,  is a symmetric G-metric space, then 

    .,,,,2, XyxyyxGyxdG    (1.2) 

However, if  GX,  is not symmetric, then it holds by the G-metric 

properties that 
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      ,,,,,3,,,
2

3
XyxyyxGyxdyyxG G    (1.3) 

and that in general these inequalities cannot be improved. 

Definition 1.6[9]. A G-metric space  GX,  is said to be G-complete (or 

complete G-metric) if every G-Cauchy sequence in  GX,  is G-convergent in 

 ., GX  

Proposition 1.6[9]. A G-metric space  GX,  is G-complete if and only if 

 GdX ,  is a complete metric space. 

Definition 1.7[7]. In what follows, N is the set of all natural numbers 

and R  is the set of all positive real numbers. 

Let   RRR:  be a binary operator satisfying the following 

conditions: 

(1)  is associative and commutative; 

(2) ◊ is continuous. 

Example 1.1. 

   ;0;;;,max  bbababaabbababababa  

and 
 1,,max ba

ab
ba   for each ., Rba  

Definition 1.8[7]. The binary operation is said to satisfy -property if 

there exists a positive real number  such that 

 .,max baba   

2. Main Results 

Theorem 2.1. Let  GX,  be a complete G-metric space, and let 

XXT :  be a mapping satisfying one of the following conditions: 

                      zTzTzGyTyTyGxTxTxGkzTyTxTG ,,,,,,,, 1   

(2.1) 
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or 

                zTzzGyTyyGxTxxGkzTyTxTG ,,,,,,,, 1    (2.2) 

for all ,,, Xzyx   where 10 1  k  and a is a small positive real number 

such that 1akk   where .10  k  Then T has a unique fixed point (say u), 

and T is G-continuous at u. 

Proof. Suppose that T satisfies condition (2.1), then for all ,, Xyx    

      ,,,,,,, 1 TyTyyGTxTxxGkTyTyTxG   

      ,,,,,,max,, TyTyyGTxTxxGkTyTyTxG   

      .,,,,,, 1 TxTxxGTyTyyGkTxTxTyG   

      .,,,,max,, TxTxxGTyTyyGkTxTxTyG   (2.3) 

Suppose that  GX,  is symmetric, then by definition of the metric 

 GdX ,  and definition (1.2) we get 

       .,,,,, 1 XyxTyydTxxdkTyTxd GGG   

       .,,,,max, XyxTyydTxxdkTyTxd GGG    (2.4) 

Since ,1k  then the existence and uniqueness of the fixed point follows 

from a theorem in metric space  ., GdX  

However, if  GX,  is not symmetric, then by definition of the metric 

 GdX ,  and Proposition 1.1, we get 

       .,,,,,max
3

4
, XyxTyydTxxd

k
TyTxd GGG    (2.5) 

The metric condition gives no information about this map since 34k  

need not be less than 1, but we will proof it by G-metric. 

Let Xx 0  be an arbitrary point, and define the sequence  nx  by 

 .0xTx n
n   By (2.1), we can verify that 

      111111 ,,,,,,   nnnnnnnnn xxxGxxxGkxxxG  
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    111 ,,,,,max  nnnnnn xxxGxxxGk  (2.6) 

 nnn xxxGk ,,1  (since .10  k  

Continuing in the same argument, we will find 

   .,,,, 11011 xxxGkxxxG n
nnn   (2.7) 

For all ,;, mnmn N  we have by rectangle inequality that 

     22111 ,,,,,,   nnnnnnmmn xxxGxxxGxxxG  

   mmmnnn xxxGxxxG ,,,, 1332    

   110
11 ,, xxxGkkk mnn     

 .,,
1 110 xxxG

k

kn


  

Then,   ,0,,lim mmn xxxG  as ,, mn  and thus  nx  is G-Cauchy 

sequence. Due to the completeness of  ,, GX  there exists Xu   such that 

  .uxn   

Suppose that   ,uuT   then     uTuTxG n ,,1   

       uTuTuGxxxGk nnn ,,,,,max 221   and by taking the limit as 

,n  and using the fact that the function G is continuous, we get that 

         .,,,, uTuTuGkuTuTuG   This contradiction implies that 

 .uTu   

To prove uniqueness, suppose that vu   such that   ,vvT   then 

       0,,,,,max,,  uuuGvvvGkvvuG  which implies that .vu   

To show that T is G-continuous at u, let   Xyn   be a sequence such 

that   ,lim uyn   then 

               nnnnn yTyTyGuTuTuGkyTyTuG ,,,,,, 1    

    .,, nnn yTyTyGk  (2.9) 

But,            ,,,,,,, nnnnnn yTyTuGuuyGyTyTyG   the N 
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         .,,1,, uuyGkkyTyTuG nnn   

Taking the limit as ,n  from which we see that 

     ,0,, nn yTyTuG  and so by Proposition 1.3,   .TuuyT n   So, T is 

G-continuous at u. 

Corollary 2.1. Let  GX,  be a complete G-metric space and let 

XXT :  be a mapping satisfying one of the following conditions for some 

.Nm   

      zTyTxTG mmm ,,  

               zTzTzGyTyTyGxTxTxGk mmmmmm ,,,,,,1    (2.10) 

or 

                zTzzGyTyyGxTxxGkzTyTxTG mmmmmm ,,,,,,,, 1   

(2.11) 

for all ,,, Xzyx   then T has a unique fixed point (say u) and mT  is           

G-continuous at u. 

Proof. We can see that mT  has a unique fixed point (say u), that is, 

  .uuTm   But          ,1 uTTuTuTTuT mmm    so  uT  is another 

fixed point for mT  and by uniqueness .uTu   

Theorem 2.2. Let  GX,  be a complete G-metric space, and let 

XXT :  be a mapping satisfying one of the following conditions: 

                      yTyTyGxTxTyGyTyTxGkyTyTxTG ,,,,,,,, 1   

(2.12) 

or 

                ,,,,,,,,, 1 yTyyGxTyyGyTxxGkyTyTxTG   (2.13) 

for all ,, Xyx   where  .1,0k  Then T has a unique fixed point (say u), 

and T is G-continuous at u. 
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Proof. Suppose that T satisfies condition (2.11), then for all ,, Xyx    

        ,,,,,,,,, 1 TyTyyGTxTxyGTyTyxGkTyTyTxG   

        .,,,,,,,,max,, TxTxxGTxTxyGTyTyxGkTxTxTyG   

        ,,,,,,,,, 1 TxTxxGTxTxyGTyTyxGkTxTxTyG   

        .,,,,,,,,max,, TxTxxGTxTxyGTyTyxGkTxTxTyG   (2.14) 

Suppose that  GX,  is symmetric, then by definition of the metric 

 GdX ,  and definition (1.2), we have  

        TyydTxydTyxd
k

TyTxd GGGG ,,,
2

, 1   

      TxxdTxydTyxd
k

GGG ,,,
2
1   

         .,,,,,,,,,max XyxTyydTxxdTxydTyxdk GGGG   (2.15) 

Since ,10  k  then the existence and uniqueness of the fixed point 

follows from a theorem in metric space  ., GdX  

However, if  GX,  is not symmetric, then by definition of the metric 

 GdX ,  and Proposition 1.1, we have 

        TyydTxydTyxd
k

TyTxd GGGG ,,,
3

2
, 1   

      TxxdTxydTyxd
k

GGG ,,,
3

2 1   

        TyydTxydTyxd
k

TyTxd GGGG ,,,,,
3

max2
,   

      TxxdTxydTyxd
k

GGG ,,,,,
3

max2
  (2.16) 

for all ,, Xyx   then the metric space  GdX ,  gives no information about 

this map since 34k  need not be less than 1. But we will proof it by G-metric. 

Let Xx 0  be arbitrary point, and define the sequence  nx  by 
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 ,0xTx nn   then by (2.12) and using ,1k  we deduce that 

      11111111 ,,,,,,   nnnnnnnnn xxxGxxxGkxxxG  

 .,, 111  nnn xxxGk  (2.17) 

So,  

   ,,,,, 11111   nnnnnn xxxGkxxxG  (2.18) 

and using 

 11,,  nnn xxxG  

      ,,,,,,,,,max 1111112  nnnnnnnnn xxxGxxxGxxxGk   (2.19) 

then, 

      .,,,,,max,, 11112
2

11   nnnnnnnnn xxxGxxxGkxxxG   (2.20) 

Continuing in this procedure, we will have 

  ,,, 11 nkxxxG n
nnn   (2.21) 

where   ;,,max jji xxxGn   for all  .1,,1,0,  nji   

For ,;, mnmn N  let  ,max i  for all .1,,  mni   

Then, for all ,;, mnmn N  we have by rectangle inequality 

     22111 ,,,,,,   nnnnnnmmn xxxGxxxGxxxG  

   mmmnnn xxxGxxxG ,,,, 1332     

1
1

1
1





  m

n
n

n
n

n kkk   

 11   mnn kkk   

1m  

11 


 m

n

k

k
 (2.22) 

This prove that   ,0,,lim mmn xxxG  as ,, mn  and thus  nx  is G-
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Cauchy sequence. Since  GX,  is G-complete then there exists Xu   such 

that  nx  is G-converge to u. 

Suppose that   ,uuT   then 

            ,,,,,,max,, 111  nnnn xxuGuTuTxGkuTuTxG  

    .,, uTuTuG  (2.23) 

Taking the limit as ,n  and using the fact that the function G is 

continuous, we get          ,,,,, uTuTuGkuTuTuG   this contradiction 

implies that  .uTu   

To prove the uniqueness, suppose that vu   such that   .vvT   So, by 

(2.12), we have that 

      uuvGvvuGkvvuG ,,,,,, 1   

      uuvGvvuGkvvuG ,,,,,max,,   

   .,,,, uuvGkvvuG    (2.24) 

Again we will find    ,,,,, vvuGkuuvG   so 

   ,,,,, 2 vvuGkvvuG   (2.25) 

since ,1k  this implies that .vu   

To show that T is G-continuous at u, let  ny  X be a sequence such that, 

then 

    nn yTyTuG ,,  

               ,,,,,,,1 nnnnnn yTyTyGuTuTyGyTyTuGk   

    nn yTyTuG ,,  

               .,,,,,,max nnnnnn yTyTyGuTuTyGyTyTuGk    (2.26) 

But,            ,,,,,,, nnnnnn yTyTuGuuyGyTyTyG   so, 

         .,,1,, uuyGkkyTyTuG nnn   
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Taking the limit as ,n  from which we see that 

     0,, nn yTyTuG  and so, by Proposition 1.3, we have   TuuyT n   

which implies that T is G-continuous at u. 
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