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Abstract 

In this paper, the notions of -multi fuzzy sub algebra, -multi fuzzy normal sub algebra, 

-multi anti fuzzy sub algebra and -multi anti fuzzy normal sub algebra of BG-algebra are 

defined by combining the concepts of multi fuzzy sets and -fuzzy sets. And also some of their 

related properties are investigated under cartesian product and homomorphism. 

1. Introduction 

The notion of a fuzzy subset was initially introduced by Zadeh [18] in 

1965, for representing uncertainty. In 2000, S. Sabu and T. V. Ramakrishnan 

[13, 14] proposed the theory of multi-fuzzy sets in terms of multi-dimensional 

membership functions and investigated some properties of multilevel 

fuzziness. Theory of multi-fuzzy set is an extension of theory of fuzzy sets. 

Complete characterization of many real life problems can be done by multi-

fuzzy membership functions of the objects involved in the problem. P. K. 

Sharma [15, 16, 17] defined -fuzzy set and gave the notion of -fuzzy 

subgroups in 2013. Y. Imai and K. Iseki introduced two classes of abstract 
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algebras: BCK algebras and BCI-algebras [4, 5, 6]. It is shown that the class 

of BCK-algebras is a proper subclass of the class of BCI-algebras. J. Neggers 

and H. S. Kim [12] introduced a new notion, called a B-algebra. In 2005, C. B. 

Kim and H. S. Kim [7] introduced the notion of a BG-algebra which is a 

generalization of B-algebras. With these ideas, fuzzy sub algebras of BG-

algebra were developed by S. S. Ahn and H. D. Lee [1]. R. Muthuraj and S. 

Devi [9, 10, 11] introduced the concept of multi-fuzzy sub algebra and multi 

anti fuzzy sub algebra of BG-algebra in 2016. In this paper, we define -multi 

fuzzy sub algebra and -multi anti fuzzy sub algebra of BG-algebra and 

discuss their related properties. Also the homomorphic image and pre-image 

of -multi fuzzy sub algebra are obtained.  

2. Preliminaries 

In this section, the basic definitions of a BG-algebra, multi-fuzzy sets are 

recalled. 

Definition 2.1 [7]. A BG-algebra is a non-empty set X with a constant 0 

and a binary operation “” satisfying the following axioms: 

1. 0 xx  

2. ,0 xx   

3.     xyyx  0  for all ., Xyx   

Example 2.2 [7]. Let  2,1,0X  be a set with the following table: 

Table 2.1. 

∗ 0 1 2 

0 0 1 2 

1 1 0 1 

2 2 2 0 

Then  0,; X  is a BG-algebra. 

Definition 2.3 [13]. Let X be a non-empty set and let  PiLi :  be a 

family of complete lattices. A multi-fuzzy set A in X is a set of ordered 
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sequences: 

       ,:,,,,, 21 XxxxxxA i    where ,x
ii L  for .Pi    

Remarks 2.4 [13]. 

(i) If the sequences of the membership functions have only k-terms (finite 

number of terms), k is called the dimension of A. 

(ii) In this paper  1,0iL  (for .,,2,1 ki   

(iii) The multi-membership function A  is a function from X to kI  such 

that for all x in         .,,,, 21 xxxxX kA    

(iv) For the sake of simplicity, we denote the multi-fuzzy set 

       XxxxxxA k  :,,,, 21   as  .,,, 21 kA    

Definition 2.5 [13]. Let k be a positive integer and let  and  in 

 ,XFSMk  that is          Xxxxxx kk  :,,,,,,, 2121   and 

         Xxxxxx kk  :,,,,,,, 2121   then we have the 

following relations and operations: 

(i)   if and only if ,ii   for all ;,,2,1 ki   

(ii)   if and only if ,ii   for all ;,,2,1 ki   

(iii)         ,,,max,,, 1111  xxxkk   

     ;:,max Xxxx kk   

(iv)        ,,min,,, 1111 xxxkk    

     .:,min Xxxx kk   

Definition 2.6 [9]. Let A be a multi-fuzzy set in a BG-algebra X. Then A 

is called a multi-fuzzy sub algebra of X if       ,,min yAxAyxA   

., Xyx   

Definition 2.7 [10]. Let A be a multi-fuzzy set in a BG-algebra X. Then A 

is called a multi anti fuzzy sub algebra of X if       ,,max yAxAyxA   

., Xyx   
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Definition 2.8 [15]. Let A be a fuzzy subset of a group G. Let  .1,0  

Then the fuzzy set A  of G is called the -fuzzy subset of G (w. r. to fuzzy set 

A) and is defined as     ,,min  xAxA  for all .Gx   

Remark 2.9 [15]. Clearly AA 1  and .00 A  

Remark 2.10 [15]. (i) Let A and B be two fuzzy subsets of X. Then 

  
 BABA   

(ii) Let YXf :  be a mapping and A and B be two fuzzy subsets of X 

and Y respectively, then       BfBf 11  and      .
  AfAf  

Definition 2.11 [16]. Let A be a fuzzy subset of a group G. Let  .1,0  

Then the fuzzy set A  of G is called the α-anti fuzzy subset of G (w. r. t fuzzy 

set A) and is defined as     ,1,max  xAxA  for all .Gx   

Definition 2.12 [7]. Let X and Y be BG-algebras. A mapping YX  :  

is called a BG-homomorphism if      yxyx   for any ., Xyx   

3. -Multi Fuzzy BG-Sub Algebra 

In this section, we define -multi fuzzy sub algebra and -multi fuzzy 

normal sub algebra of BG-algebra and discussed some of its properties. 

Definition 3.1. Let A be a multi-fuzzy subset in X. Let  .1,0  Then 

the multi fuzzy set A  of X is called -multi fuzzy subset of X and is defined 

as                .:,min,,min,,min 1 XxxxxxAxA k    

Definition 3.2. Let A be a multi-fuzzy subset of a BG-algebra X. Let 

 .1,0a  

Then A is called -multi fuzzy subalgebra of X if A  is a multi-fuzzy 

subalgebra of X i.e., if 
A  satisfies the following condition: 

      yAxAyxA   ,min  for all ., Xyx   

Theorem 3.3. If A is a multi-fuzzy subalgebra of X then A is also -multi 

fuzzy sub algebra of X. 
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Proof. Let ., Xyx   Then      ,min yxAyxA  

      ,,,minmin  yAxA  since A is a multi-fuzzy sub algebra of X. 

       ,min,,minmin yAxA  

     .,,,min XyxyAxA    

      .,min yAxAyxA    

Hence A is -multi fuzzy sub algebra of X. 

Remark 3.4. The converse of the above theorem is not true. 

Example. Consider a BG-algebra  2,1,0X  as in example 2.1. 

Define a multi-fuzzy set A as        ,6.0,7.0,8.01,4.0,5.0,6.00  AA  

and    .2.0,3.0,4.02 A  

Since        AAAA ,1,1min0   is not a multi-fuzzy sub algebra of X. 

Let  .1,01.0   Then   xA  for all x in X. 

Therefore       yAxAyxA   ,min  for all yx,  in X. 

Hence A is -multi fuzzy sub algebra of X. 

Theorem 3.5. The intersection of two -multi fuzzy sub algebra of X is 

also -multi fuzzy sub algebra of X. 

Proof. Let A and B be two -multi fuzzy sub algebras of X. 

Let ., Xyx   

Then        yxBAyxBA     

    yxByxA   ,min  

          yBxByAxA  ,min,,minmin  

          yByAxBxA  ,min,,minmin  

       yBAxBA   ,min  
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       yBAxBA


  ,min  

           .,min yBAxBAyxBA


    

Remark 3.6. Union of two -multi fuzzy sub algebras of a BG-algebra X 

need not be -multi fuzzy sub algebra of X which is shown in the following 

example. 

Example. Let  5,4,3,2,1,0X  be a BG-algebra with the following 

cayley table: 

 0 1 2 3 4 5 

0 0 2 1 3 4 5 

1 1 0 2 5 3 4 

2 2 1 0 4 5 3 

3 3 4 5 0 1 2 

4 4 5 3 2 0 1 

5 5 3 4 1 2 0 

Define the two multi fuzzy sets A and B by      7.0,8.030  AA  and 

               5.0,6.0402.0,3.05421  BBAAAA  and      21 BB  

     .3.0,4.053  BB  Take .1  Clearly A and B are 1-multi fuzzy sub 

algebra of X. Now,        .,max xBxAxBA   Therefore    0BA    

                   3.0,4.0521,7.0,8.03  BABABABA   and 

     .5.0,6.04 BA   Since          3.0,4.0143  BABA   

          BABABA  ,4,3min5.0,6.0   is not a 1-multi fuzzy sub 

algebra of X. Hence union of two -multi fuzzy sub algebra need not be a -

multi fuzzy sub algebra of X. 

Definition 3.7. Let A and B be two -multi fuzzy subsets in X. Then their 

Cartesian product   BA  is defined as      
21, xxBA  

    21 ,min xBxA   where   ., 21 XXxx   

Theorem 3.8. The Cartesian product of two -multi fuzzy sub algebra of 

X is also -multi fuzzy sub algebra of X. 
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Proof. Let     .,,, 2121 XXyyxx   Then 

       22112121 ,,, yxyxBAyyxxBA    

    2211 ,min yxByxA    

          2211 ,min,,minmin yBxByAxA   

          2121 ,min,,minmin yByAxBxA   

       .,,,min 2121 yyBAxxBA    

Hence  BA  is -multi fuzzy sub algebra of X. 

Definition 3.9. Let A be a multi-fuzzy subset of X. Then A is called -

multi fuzzy normal sub algebra of X if A  is multi-fuzzy normal sub algebra 

of X i.e., A  satisfies the following condition: 

        baAyxAbyaxA   ,min  for every ., Xyx   

Theorem 3.10. If A is a multi fuzzy normal sub algebra of X, then A is 

also -multi fuzzy normal sub algebra of X. 

Proof. Let .,,, Xbayx   

Since A is a multi fuzzy normal sub algebra of 

         baAyxAbyaxAX  ,min,  

            ,min byaxAbyaxA  

       ,,minmin baAyxA  

        ,min,,minmin baAyxA  

     .,,,min XyxbaAyxA    

Hence A is -multi fuzzy normal sub algebra of X. 

4. -Multi Anti Fuzzy BG-Sub Algebra 

In this section, we define -multi anti fuzzy sub algebra and -multi anti 

fuzzy normal sub algebra of BG-algebra and discussed some of its properties.  
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Definition 4.1. Let A be a multi fuzzy subset in X. Let  .1,0  Then 

the multi fuzzy set A  of X is called -multi anti fuzzy subset of X and is 

defined as 

              .:1,max,1,max,1,max 1 XxxxxxAxA k    

Definition 4.2. Let A be a multi-fuzzy subset of a BG-algebra X. Let 

 .1,0  Then A is called -multi anti fuzzy sub algebra of X if A  is a 

multi anti fuzzy sub algebra of X i.e., if A  satisfies the following condition: 

      yAxAyxA   ,max  for all ., Xyx   

Theorem 4.3. If A is a multi anti fuzzy sub algebra of X then A is also -

multi anti fuzzy sub algebra of X. 

Proof. Let ., Xyx   

Then             ,1,,maxmax1,max  yAxAyxAyxA  

since A is a multi anti fuzzy sub algebra of    ,1,maxmax  xAX  

            yxAXyxyAxAyA ,,,max1,max  

    .,max yAxA   Hence A is -multi anti fuzzy sub algebra of X. 

Remark 4.4. The converse of the above theorem is not true.  

Example. Consider a BG-algebra  2,1,0X  as in example 2.1. Define 

a multi-fuzzy set A as        ,2.,3.0,4.01,4.0,5.0,6.00  AA  and 

   .6.0,7.0,8.02 A  Since        AAAA ,1,1max0   is not a               

multi anti fuzzy sub algebra of X. Let .05.0  So that 

     .11,max  xAxA  Then   ,1 xA  for all x in X. Therefore 

      yAxAyxA   ,max  for all x in X. Hence A is -multi anti fuzzy 

sub algebra of X. 

Theorem 4.5. The union of two -multi anti fuzzy sub algebra of X is also 

-multi anti fuzzy sub algebra of X. 

Proof. Let A and B be two -multi anti fuzzy sub algebras of X. Let 

., Xyx   Then 
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      yxBAyxBA     

    yxByxA   ,max  

          yBxByAxA  ,max,,maxmax  

          yAyAxBxA  ,max,,maxmax  

       yBAxBA   ,max  

        XyxyBAxBA   ,,,max   

           .,max yBAxBAyxBA     

Remark 4.6. Intersection of two -multi anti fuzzy sub algebras of a BG-

algebra X need not be -multi anti fuzzy sub algebra of X. 

Example. Consider a BG-algebra X as in the example 3.6 and define two 

multi fuzzy sets      2.0,3.030  AA  and          7.0,8.05421  AAAA  

     3.0,4.040 BB  and          .5.0,6.05321  BBBB  Take .95.0  

Clearly A and B are (0.95)-multi anti fuzzy sub algebra of X. Now, 

       .,min xBxAxBA   Therefore          ,2.0,3.030  BABA   

          5.0,6.0521  BABABA   and     .3.0,4.04 BA   

Since             ,3max3.0,4.05.0,6.0143 BABABA    

    BABA  ,4  is not a (0.95)-multi anti fuzzy sub algebra of X. Hence 

intersection of two -multi anti fuzzy sub algebra of x need not be -multi 

anti fuzzy sub algebra of X. 

Definition 4.7. Let A and B two -multi anti fuzzy sub algebra in X. 

Then their cartesian product   BA  is defined as 

        ,,max, 2121 xBxAxxBA    where   ., 21 XXxx    

Theorem 4.8. The Cartesian product of two -multi anti fuzzy sub 

algebra of X is also -multi anti fuzzy sub algebra of X. 

Proof. Let     .,,, 2121 XXyyxx   

       22112121 ,,, yxyxBAyyxxBA    
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    2211 ,max yxByxA    

          2211 ,max,,maxmax yBxByAxA   

          2121 ,max,,maxmax yByAxBxA   

       .,,,max 2121 yyBAxxBA    

 Definition 4.9. Let A be a multi-fuzzy subset of X. Then A is called -

multi anti fuzzy normal sub algebra of X if A  is multi anti fuzzy normal sub 

algebra of X i.e., A  satisfies the following condition:       byaxA  

    baAyxA   ,max  for every ., Xyx   

Theorem 4.10. If A is a multi anti fuzzy normal sub algebra of X, then A 

is also -multi anti fuzzy normal sub algebra of X. 

Proof. Let .,,, Xbayx   Then 

            1,max byaxAbyaxA  

       1,,maxmax baAyxA  

         1,max,1,maxmax baAyxA  

     .,,,max XyxbaAyxA    

Hence A is -multi anti fuzzy normal subalgebra of X. 

5. Homomorphism of -multi Fuzzy sub Algebra of BG-Algebra 

Theorem 5.1. Let YXf :  be a homomorphism of a BG-algebra X 

into a BG-algebra Y. Let B be -multi fuzzy sub algebra of Y. Then  Bf 1  is 

-multi fuzzy sub algebra of X. 

Proof. Let Xxx 21 ,  

        21
1

21
1 xxBfxxBf    

  21 xxfB    

    21 xfxfB    
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      21 ,min xfBxfB   

       2
1

1
1 ,min xBfxBf   

         .,min 2
1

1
1 xBfxBf

  

Theorem 5.2. Let YXf :  be a homomorphism of a BG-algebra X 

into a BG-algebra Y. Let B be -multi fuzzy normal sub algebra of Y. Then 

 Bf 1  is -multi fuzzy normal sub algebra of X. 

Theorem 5.3. Let YXf :  be a bijective homomorphism of a BG-

algebra X onto a BG-algebra Y. Let A be -multi fuzzy sub algebra of X. Then 

 Af  is -multi fuzzy subalgebra of Y. 

Proof. Let ., 21 Yyy   Then there exists Xxx 21 ,  such that 

  11 yxf   and   22 yxf   

          


,min 2121 yyAfyyAf  

         ,min 21 xfxfAf  

       ,min 21 xxfAf  

     2121 ,min xxAxxA    

    21 ,min xAxA   

for all Xxx 21 ,  such that     2211 , yxfyxf   

            222111 |min,|minmin yxfxAyxfxA    

        21 ,min yAfyAf   

        .,min 21 yAfyAf


  

Theorem 5.4. Let YXf :  be a bijective homomorphism of a BG-

algebra X onto a BG-algebra Y. Let A be -multi fuzzy normal sub algebra of 

X. Then  Af  is -multi fuzzy normal sub algebra of Y. 
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