

SOME PROPERTIES ON BIPOLAR VALUED MULTI FUZZY SUBFIELD OF A FIELD AND ITS (λ , μ)- LEVEL SUBSETS

C. YAMINI, K. ARJUNAN and B. ANANDH

Department of Mathematics PSNA College of Engineering and Technology Dindigul-624622, Tamilnadu, India

Department of Mathematics Alagappa Government Arts College Karaikudi-630003, Tamilnadu, India

Department of Mathematics H. H. The Rajah's College Pudukkottai-622001, Tamilnadu, India E-mail: yaminichandran@gmail.com arjunan.karmegam@gmail.com drbaalaanandh@gmail.com

Abstract

In this paper, some properties of the bipolar valued multi fuzzy subfield of a field are discussed and studied its lower level subsets and related properties.

Introduction

The fuzzy set theory domain is a wide range and its information is incomplete or inaccurate such as bioinformatics. Initially, the notion of the fuzzy sets and its functions are introduced by Zadeh [16] in 1965. Fuzzy sets are a kind of useful mathematical structure to represent a collection of objects whose boundary is vague. Since then it has become a vigorous area of

Received July 18, 2019; Accepted September 22, 2019

²⁰¹⁰ Mathematics Subject Classification: 03E72, 08A72, 03B52, 20N25.

Keywords: bipolar valued fuzzy subset, bipolar valued multi fuzzy subset, bipolar valued multi fuzzy subfield.

research in different domains, there have been a number of generalizations of this fundamental concept such as intuitionistic fuzzy sets, interval-valued fuzzy sets, vague sets, soft sets etc. W. R. Zhang [17], Lee [6] introduced the notion of bipolar-valued fuzzy sets. After the introduction of fuzzy subgroups many researchers discussed on the expansion of bipolar-valued fuzzy sets notion. However, they are distinct each other [2, 4, 5]. Sabu Sebastian and T. V. Ramakrishnan [8] discussed multi-fuzzy sets. V. K. Shanthi and G. Shyamala [10] discuss about bipolar-valued fuzzy subgroups of a group. K. Chandrasekar Rao and V. Swaminathan [3] defined the Anti-homomorphism in Fuzzy Ideals. Anitha. M. S et al. [1] defined a homomorphism and antihomomorphism of bipolar-valued fuzzy subgroups of a group. B. Yasodara and K. E. Sathappan [14, 15] defined the bipolar valued multi fuzzy subsemirings of a semiring under homomorpisms, Sivaramakrishna das. P [11] studied the Fuzzy groups and level subgroups. This paper confer about the notion of bipolar valued multi fuzzy subfield of a field and established some results.

2. Preliminaries

Definition 2.1 [6]. A bipolar valued fuzzy set (BVFS) A in X is defined as an object of the form $A = \{\langle x, A^+(x), A^-(x) \rangle | x \in X\}$, where $A^+ : X \to [0, 1]$ and $A^- : X \to [-1, 0]$. The positive membership degree $A^+(x)$ denotes the satisfaction degree of an element x to the property corresponding to a bipolarvalued fuzzy set A and the negative membership degree $A^-(x)$ denotes the satisfaction degree of an element x to some implicit counter-property corresponding to a bipolar valued fuzzy set A.

Example 2.2. $A = \{ \langle a, 0.9, -0.6 \rangle, \langle b, 0.8, -0.7 \rangle, \langle c, 0.7, -0.5 \rangle \}$ is a bipolar valued fuzzy subset of $X = \{a, b, c\}.$

Definition 2.3 [10]. A bipolar valued multi fuzzy set (BVMFS) A in X of order is defined as an object of nthe form $A = \{ \langle x, A_1^+(x), A_2^+(x), \dots, A_n^+(x), A_1^-(x), A_2^-(x), \dots, A_n^-(x) \rangle / x \in X \},\$ where $A_i^+: X \to [0, 1]$ and $A_i^-: X \to [-1, 0], i = 1, 2, 3, \dots, n$. The positive membership degrees $A_i^+(x)$ denote the satisfaction degree of an element x to

Advances and Applications in Mathematical Sciences, Volume 18, Issue 11, September 2019

1358

the property corresponding to a bipolar valued multi fuzzy set A and the negative membership degrees $A_i^-(x)$ denote the satisfaction degree of an element x to some implicit counter-property corresponding to a bipolar-valued multi fuzzy set A.

Note: In this paper, the bipolar valued multi fuzzy subfield of a field A means $A = \langle A^+, A^- \rangle = \langle A_1^+, A_2^+, ..., A_n^+, A_1^-, A_2^-, ..., A_n^- \rangle$.

Example 2.4. $A = \{ \langle a, 0.5, 0.6, 0.3, -0.3, -0.6, -0.5 \rangle, \langle b, 0.1, 0.4, 0.7, -0.7, -0.3, -0.6 \rangle, \langle c, 0.5, 0.3, 0.8, -0.4, -0.5, -0.3 \rangle \}$ is a bipolar-valued multi fuzzy subset of order 3 in $X = \{a, b, c\}$.

Definition 2.5 [13]. Let F be a field. A bipolar valued multi fuzzy subset A of F is said to be a bipolar valued multi fuzzy subfield of F if the following conditions are satisfied, for all i,

- (i) $A_i^+(x-y) \ge \min \{A_i^+(x), A_i^+(y)\}$ for all x, y in F.
- (ii) $A_i^-(x-y) \le \max \{A_i^-(x), A_i^-(y)\}$ for all x, y in F.
- (iii) $A_i^+(xy^{-1}) \ge \min \{A_i^+(x), A_i^+(y)\}$ for all $x, y \ne 0$ in F.
- (iv) $A_i^-(xy^{-1}) \le \max \{A_i^-(x), A_i^-(y)\}$ for all $x, y \ne 0$ in F.

Example 2.6. Let $F = Z_3 = \{0, 1, 2\}$ be a field with respect to the ordinary addition and multiplication. Then $A = \{(0, 0.5, 0.8, 0.6, -0.6, -0.5, -0.7) (1, 0.4, 0.7, 0.5, -0.5, -0.4, -0.6), (2, 0.4, 0.7, 0.5, -0.4, -0.6)\}$ is a bipolar valued multi fuzzy subfield of order 3 in *F*.

Definition 2.7 [14]. Let $A = \langle A_1^+, A_2^+, ..., A_n^+, A_1^-, A_2^-, ..., A_n^- \rangle$ be a bipolar valued multi fuzzy subset of X. Then the height $H(A) = \langle H(A_1^+), H(A_2^+), ..., H(A_n^+), H(A_1^-), H(A_2^-), ..., H(A_n^-) \rangle$ is defined as $H(A_i^+) = \sup A_i^+(x)$ for all x in X and $H(A_i^-) = \inf A_i^-(x)$ for all x in X and for all i.

Definition 2.8 [14]. Let $A = \langle A_1^+, A_2^+, \dots, A_n^+, A_1^-, A_2^-, \dots, A_n^- \rangle$ be a bipolar valued multi fuzzy subset of X. Then ${}^0A = \langle {}^0A_1^+, {}^0A_2^+, \dots,$

Advances and Applications in Mathematical Sciences, Volume 18, Issue 11, September 2019

 ${}^{0}A_{n}^{+}, {}^{0}A_{1}^{-}, {}^{0}A_{2}^{-}, ..., {}^{0}A_{n}^{-}\rangle$ is defined as ${}^{0}A_{i}^{+}(x) = A_{i}^{+}(x)H(A_{i}^{+})$ for all x in X and ${}^{0}A_{i}^{-}(x) = -A_{i}^{-}(x)H(A_{i}^{-})$ for all x in X and for all i.

Definition 2.9 [14]. Let $A = \langle A_1^+, A_2^+, ..., A_n^+, A_1^-, A_2^-, ..., A_n^- \rangle$ be a bipolar valued multi fuzzy subset of X. Then ${}^{\Delta}A = \langle {}^{\Delta}A_1^+, {}^{\Delta}A_2^+, ..., {}^{\Delta}A_n^+, {}^{\Delta}A_1^-, {}^{\Delta}A_2^-, ..., {}^{\Delta}A_n^- \rangle$ is defined as ${}^{\Delta}A_i^+(x) = A_i^+(x)/H(A_i^+)$ for all x in X and ${}^{\Delta}A_i^-(x) = -A_i^-(x)/H(A_i^-)$ for all x in X and for all i.

Definition 2.10 [14]. $A = \langle A_1^+, A_2^+, ..., A_n^+, A_1^-, A_2^-, ..., A_n^- \rangle$ be a bipolar valued multi fuzzy subset of X. Then ${}^{\oplus}A = \langle {}^{\oplus}A_1^+, {}^{\oplus}A_2^+, ..., {}^{\oplus}A_n^+, {}^{\oplus}A_1^-, {}^{\oplus}A_2^-, ..., {}^{\oplus}A_n^- \rangle$ is defined as ${}^{\oplus}A_i^+(x) = A_i^+(x) + 1 - H(A_i^+)$ for all x in X and ${}^{\oplus}A_i^-(x) = A_i^-(x) - 1 - H(A_i^-)$ for all x in X and for all *i*.

Definition 2.11 [14]. Let If $A = \langle A_1^+, A_2^+, ..., A_n^+, A_1^-, A_2^-, ..., A_n^- \rangle$ and $B = \langle B_1^+, B_2^+, ..., B_n^+, B_1^-, B_2^-, ..., B_n^- \rangle$ be any two bipolar valued multi fuzzy subsets of sets G and H, respectively. The product of A and B, denoted by $A \times B$, is defined as $A \times B = \{\langle (x, y), (A_1 \times B_1)^+(x, y), (A_2 \times B_2)^+(x, y), ..., (A_n \times B_n)^+(x, y), (A_1 \times B_1)^-(x, y), (A_2 \times B_2)^-(x, y), ..., (A_n \times B_n)^-(x, y) \rangle$ for all x in G and y in H where $(A_i \times B_i)^+(x, y) = \min\{A_i^+(x), B_i^+(y)\}$ and $(A_i \times B_i)^-(x, y) = \max\{A_i^-(x), B_i^-(y)\}$ for all x in G and y in H and for all i.

Definition 2.11 [14]. Let $A = \langle A_1^+, A_2^+, ..., A_n^+, A_1^-, A_2^-, ..., A_n^- \rangle$ be a bipolar valued multi fuzzy subset in a set S, the strongest bipolar valued multi fuzzy relation on S, that is a bipolar valued multi fuzzy relation on A is $V = \{\langle (x, y), V_1^+(x, y), V_2^+(x, y), ..., V_n^+(x, y), V_1^-(x, y), V_2^-(x, y), ..., V_n^-(x, y) \rangle / x$ and y in S} given by $V_i^+(x, y) = \min \{A_i^+(x), A_i^+(y)\}$ and $V_i^-(x, y) = \max \{A_i^-(x), A_i^-(y)\}$ for all x and y in S and for all i.

3. Properties

Theorem 3.1. If A and B are any two bipolar valued multi fuzzy subfield of a field F_1 and F_2 respectively, then $A \times B$ is a bipolar valued multi fuzzy subfield of $F_1 \times F_2$.

Advances and Applications in Mathematical Sciences, Volume 18, Issue 11, September 2019

Proof. Let x_1 and x_2 be in F_1 , y_1 and y_2 be in F_2 . Then (x_1, y_1) and (x_2, y_2) are in $F_1 \times F_2$. Now $(A_i \times B_i)^+ [(x_1, y_1) - (x_2, y_2)] = (A_i \times B_i)^+$ $[(x_1 - x_2), (y_1 - y_2)] = \min \{A_i^+(x_1 - x_2), B_i^+(y_1 - y_2)\} \ge \min \{\min \{A_i^+(x_1), A_i^+(x_2), A_i^+(x_2),$ $A_i^+(x_2)$, min $\{B_i^+(y_1), B_i^+(y_2)\}$ = min $\{\min\{A_i^+(x_1), B_i^+(y_1)\}, \min\{A_i^+(x_2), B_i^+(y_2)\}\}$ $= \{\min \{(A_i \times B_i)^+(x_1, y_1), (A_i \times B_i)^+(x_2, y_2)\} \text{ for all } i.$ Therefore $(A_i \times B_i)^+[(x_1, y_1) - (x_2, y_2)] \ge \min \{(A_i \times B_i)^+(x_1, y_1), (A_i \times B_i)^+(x_2, y_2)\}$ for all (x_1, y_1) and (x_2, y_2) in $F_1 imes F_2$ and for all *i*. And $(A_i \times B_i)^{-}[(x_1, y_1) - (x_2, y_2)] = (A_i \times B_i)^{-}(x_1 - x_2, y_1 - y_2)$ $= \max \{A_i^-(x_1 - x_2), B_i^-(y_1 - y_2)\} \le \max \{\max \{A_i^-(x_1), A_i^-(x_2)\},\$ $\max \{B_i^-(y_1), B_i^-(y_2)\}\} = \max \{\max \{A_i^-(x_1)B_i^-(y_1)\}, \max \{A_i^-(x_2)B_i^-(y_2)\}\}$ $= \max \{(A_i \times B_i)^{-}(x_1, y_1), (A_i \times B_i)^{-}(x_2, y_2)\}$ for all *i*. Therefore $(A_i \times B_i)^{-}[(x_1, y_1) - (x_2, y_2)] \le \max \{(A_i \times B_i)^{-}(x_1, y_1), (A_i \times B_i)^{-}(x_2, y_2)\}$ for all (x_1, y_1) and (x_2, y_2) in $F_1 imes F_2$ and for all i. Also $(A_i \times B_i)^+[(x_1, y_1)(x_2, y_2)^{-1}] = (A_i \times B_i)^+(x_1x_2^{-1}, y_1y_2^{-1})$ $= \min \{A_i^+(x_1x_2^{-1}), B_i^+(y_1y_2^{-1})\} \ge \min \{\min \{A_i^+(x_1), A_i^+(x_2)\},\$ $\min \{B_i^+(y_1), B_i^+(y_2)\}\} = \min \{\min \{A_i^+(x_1), B_i^+(y_1)\}, \min \{A_i^+(x_2), B_i^+(y_2)\}\}$ $= \min \{ (A_i \times B_i)^+ (x_1, y_1), (A_i \times B_i)^+ (x_2, y_2) \} \text{ for all } i.$ Therefore $(A_i \times B_i)^+[(x_1, y_1)(x_2, y_2)^{-1}] \ge \min\{(A_i \times B_i)^+(x_1, y_1), (A_i \times B_i)^+(x_2, y_2)\}$ for all (x_1, y_1) and (x_2, y_2) in $F_1 \times F_2$ and for all *i*. And $(A_i \times B_i)^{-1}[(x_1, y_1)(x_2, y_2)^{-1}] = (A_i \times B_i)^{-1}(x_1 x_2^{-1}, y_1 y_2^{-1})$ $= \max \{A_i^-(x_1x_2^{-1}), B_i^-(y_1y_2^{-1})\} \le \max \{\max \{A_i^-(x_1), A_i^-(x_2)\}, A_i^-(x_2)\}, A_i^-(x_2)\}$ $\max\{B_i^{-}(y_1), B_i^{-}(y_2)\}\} = \max\{\max\{A_i^{+}(x_1), B_i^{+}(y_1)\}, \max\{A_i^{-}(x_2), B_i^{-}(y_2)\}\}$ $= \max \{ (A_i \times B_i)^{-} (x_1, y_1), (A_i \times B_i)^{-} (x_2, y_2) \}$ for all *i*. Therefore $(A_i \times B_i)^{-}[(x_1, y_1)(x_2, y_2)^{-1}] \le \max \{(A_i \times B_i)^{-}(x_1, y_1), (A_i \times B_i)^{-}(x_2, y_2)\}$ for all (x_1, y_1) and (x_2, y_2) in $F_1 \times F_2$ and for all *i*. Hence $A \times B$ is a bipolar valued multi fuzzy subfield of $F_1 \times F_2$.

Theorem 3.2. Let A be a bipolar valued multi fuzzy subset of a sub field F and $V = \langle V_1^+, V_2^+, ..., V_n^+, V_1^-, V_2^-, ..., V_n^- \rangle$ be the strongest bipolar valued multi fuzzy relation of F. If A is a bipolar valued multi fuzzy subfield of F, then V is a bipolar valued multi fuzzy subfield of $F \times F$.

Proof. Suppose that A is a bipolar valued multi fuzzy subfield of F. Then for any $x = (x_1, x_2)$ and $y = (y_1, y_2)$ are in $F \times F$. We have $V_i^+(x-y) = V_i^+[(x_1, x_2) - (y_2, y_2)] = V_i^+(x_1 - y_1, x_2 - y_2) = \min \{A_i^+(x_1 - y_1), A_i^+(x_1 - y_1)\}$ $A_i^+(x_2 - y_2) \ge \min \{\min \{A_i^+(x_1), A_i^+(y_1)\}, \min \{A_i^+(x_2), A_i^+(y_2)\}\} = \min \{\min \{\min \{A_i^+(x_2), A_i^+(y_2)\}\} = \min \{\min \{A_i^+(x_1), A_i^+(y_1)\}, \min \{A_i^+(x_2), A_i^+(y_2)\}\}$ $\{A_i^+(x_1), A_i^+(x_2)\}, \min \{A_i^+(y_1), A_i^+(y_2)\}\} = \min \{V_i^+(x_1, x_2), V_i^+(y_1, y_2)\} =$ $\min \{V_i^+(x), V_i^+(y)\}$ for all *i*. Therefore $V_i^+(x-y) \ge \min \{V_i^+(x), V_i^+(y)\}$ for all x and y in $F \times F$ and for all i. And $V_i^{-}(x - y) = V_i^{-}[(x_1, x_2) - (y_1, y_2)]$ $A_i^{-}(y_1)$, max $\{A_i^{-}(x_2), A_i^{-}(y_2)\}$ = max $\{\max\{A_i^{-}(x_1), A_i^{-}(x_2)\}, \max\{A_i^{-}(y_1), A_i^{-}(y_1)\}\}$ $A_i^{-}(y_2)$ = max $\{V_i^{-}(x_1, x_2), V_i^{-}(y_1, y_2)\}$ = max $\{V_i^{-}(x), A_i^{-}(y)\}$ for all *i*. Therefore $V_i^-(x-y) \le \max \{A_i^-(x), V_i^-(y)\}$ for all x and y in $F \times F$ and for all *i*. Also we have $V_i^+(xy^{-1}) = V_i^+[(x_1, x_2)(y_1, y_2)^{-1}] = V_i^+[(x_1y_1^{-1}, x_2y_2^{-1})]$ $= \min \{A_i^+(x_1y_1^{-1}), A_i^+(x_2y_2^{-1})\} \ge \min \{\min \{A_i^+(x_1), A_i^+(y_1)\}, \min \{A_i^+(x_2), A_i^+(y_2)\}\}$ $= \min \{\min \{A_i^+(x_1), A_i^+(x_2)\}, \min \{A_i^+(y_1), A_i^+(y_2)\}\} = \min \{V_i^+(x_1, x_2), V_i^+(y_1, y_2)\}$ $=\min\{V_i^+(x), V_i^+(y)\}$ for all *i*. Therefore $V_i^+(xy^{-1}) \ge \min\{V_i^+(x), V_i^+(y)\}$ for all x $\nu \neq 0$ in $F \times F$ and and for all i. And $V_i^{-}(xy^{-1}) = V_i^{-}[(x_1, x_2)(y_1, y_2)^{-1}] = V_i^{-}[(x_1y_1^{-1}, x_2y_2^{-1})] = \max \{A_i^{-}(x_1y_1^{-1}), x_2^{-}(x_1y_1^{-1})\}$ $\{A_i^-(x_1), A_i^-(x_2)\}, \max\{A_i^-(y_1), A_i^-(y_1)\}\} = \max\{V_i^-(x_1, x_2), V_i^-(y_1, y_2)\}$ $= \max \{V_i^{-}(x), V_i^{-}(y)\}$ for all *i*. Therefore $V_i^{-}(xy^{-1}) \le \max \{V_i^{-}(x), V_i^{-}(y)\}$ for all x and $y \neq 0$ in $F \times F$ and for all *i*. Hence V is a bipolar valued multi fuzzy subfield of $F \times F$.

Theorem 3.3. If A is a bipolar valued multi fuzzy subfield of a field F, then ${}^{\oplus}A$ is a bipolar valued multi fuzzy subfield of a field F.

Proof. Let x and y in F. We have ${}^{\oplus}A_i^+(x-y) = A_i^+(x-y) + 1 - H(A_i^+) \ge 1$ $\min \{A_i^+(x), A_i^+(y)\} + 1 - H(A_i^+) = \min \{A_i^+(x) + 1 - H(A_i^+), A_i^+(y) + 1 - H(A_i^+)\}$ $= \min \{ {}^{\oplus}A_i^+(x), {}^{\oplus}A_i^+(y) \}$ which implies ${}^{\oplus}A_i^+(x-y) \ge \min \{ {}^{\oplus}A_i^+(x), {}^{\oplus}A_i^+(y) \}$ for all x and y in F and for all i. And $\oplus A_i(x-y) = A_i(x-y) - 1 - H(A_i) \le 1$ $\max \{A_i^{-}(x), A_i^{-}(y)\} - 1 - H(A_i^{-}) = \max \{A_i^{-}(x) - 1 - H(A_i^{-}), A_i^{-}(y) - 1 - H(A_i^{-})\}$ $= \max \{ {}^{\oplus}A_i^-(x), {}^{\oplus}A_i^-(y) \}$ which implies ${}^{\oplus}A_i^-(x-y) \le \max \{ {}^{\oplus}A_i^-(x), {}^{\oplus}A_i^-(y) \}$ for all x and y in F and for all i. Also ${}^{\oplus}A_i^+(xy^{-1}) = A_i^+(xy^{-1}) + 1 - H(A_i^+) \ge 1$ $\min \{A_i^+(x), A_i^+(y)\} + 1 - H(A_i^+) = \min \{A_i^+(x) + 1 - H(A_i^+), A_i^+(y) + 1 - H(A_i^+)\}$ $= \min \{ {}^{\oplus}A_i^+(x), {}^{\oplus}A_i^+(y) \} \text{ which implies } {}^{\oplus}A_i^+(xy^{-1}) \ge \min \{ {}^{\oplus}A_i^+(x), {}^{\oplus}A_i^+(y) \}$ for all x and $y \neq 0$ in F and for all i. And $^{\oplus}A_i^-(xy^{-1}) = A_i^-(xy^{-1}) - 1 - H(A_i^+) \le$

 $\max \{A_i^-(x), A_i^-(y)\} - 1 - H(A_i^-) = \max \{A_i^-(x) - 1 - H(A_i^-), A_i^-(y) - 1 - H(A_i^-)\}$ = max $\{ {}^{\oplus}A_i^-(x), {}^{\oplus}A_i^-(y)\}$ which implies ${}^{\oplus}A_i^+(xy^{-1}) \le \max \{ {}^{\oplus}A_i^-(x), {}^{\oplus}A_i^-(y)\}$ for all x and $y \ne 0$ in F and for all i. Hence ${}^{\oplus}A$ is a bipolar valued multi fuzzy subfield of a field F.

Theorem 3.4. Let A be a bipolar valued multi fuzzy subfield of a field F. Then

(i) H(A_i⁺) = 1 if and only if [⊕]A_i⁺(x) = A_i⁺(x) for all x in F
(ii) H(A_i⁻) = -1 if and only if [⊕]A_i⁻(x) = A_i⁻(x) for all x in F.
(iii) [⊕]A_i⁺(x) = 1 if and only if H(A_i⁺) = A_i⁺(x) for all x in F
(iv) [⊕]A_i⁻(x) = -1 if and only if H(A_i⁻) = A_i⁻(x) for all x in F.
(v) [⊕]([⊕]A) = [⊕]A.

Proof. It is trivial.

Theorem 3.5. If A is a bipolar valued multi fuzzy subfield of a field F, then ${}^{0}A$ is a bipolar valued multi fuzzy subfield of a field F.

Proof. For any x in F, we have ${}^{0}A_{i}^{+}(x-y) = A_{i}^{+}(x-y)H(A_{i}^{+}) \ge$ $\min \{A_i^+(x), A_i^+(y)\}H(A_i^+) = \min \{A_i^+(x)H(A_i^+), A_i^+(y)H(A_i^+)\} = \min \{{}^0A_i^+(x), A_i^+(y)H(A_i^+)\} = \min \{A_i^+(x), A_i^+(y), A_i^+(y),$ ${}^{0}A_{i}^{+}(y)$ which implies that ${}^{0}A_{i}^{+}(x-y) \ge \min\{{}^{0}A_{i}^{+}(x), {}^{0}A_{i}^{+}(y)\}$ for all x, y in all *i*. And ${}^{0}A_{i}^{-}(x-y) = -A_{i}^{-}(x-y)H(A_{i}^{-})$ for Fand $\leq (-) \max \{A_i^-(x), A_i^-(y)\} H(A_i^-) = \max \{-A_i^-(x) H(A_i^-), -A_i^-(y) H(A_i^-)\}$ $= \max \{ {}^{0}A_{i}(x), {}^{0}A_{i}(y) \}$ which implies that ${}^{0}A_{i}(x-y) \le \max \{A_{i}(x), A_{i}(y) \}$ for all x, y in F and for all i. Also ${}^{0}A_{i}^{+}(xy^{-1}) = A_{i}^{+}(xy^{-1})H(A_{i}^{+})$ $\geq \min \{A_i^+(x), A_i^+(y)\}H(A_i^+) = \min \{A_i^+(x)H(A_i^+), A_i^+(y)H(A_i^+)\}$ $= \min \{ {}^{0}A_{i}^{+}(x), {}^{0}A_{i}^{+}(y) \}.$ Therefore ${}^{0}A_{i}^{+}(xy^{-1}) \ge \min \{ {}^{0}A_{i}^{+}(x), {}^{0}A_{i}^{+}(y) \}$ for all x and $y \neq 0$ in F and for all i. And ${}^{0}A_{i}(xy^{-1}) = -A_{i}(xy^{-1})H(A_{i})$ $\leq (-) \max \{A_i^-(x), A_i^-(y)\} H(A_i^-) = \max \{-A_i^-(x), H(A_i^-), -A_i^-(y) H(A_i^-)\}$ $= \max \{ {}^{0}A_{i}(x), {}^{0}A_{i}(y) \}$. Therefore ${}^{0}A_{i}(xy^{-1}) \le \max \{ {}^{0}A_{i}(x), {}^{0}A_{i}(y) \}$ for all x and $y \neq 0$ in F and for all i. Hence ${}^{0}A$ is a bipolar valued multi fuzzy subfield of a field *F*.

Theorem 3.6. If A is a bipolar valued multi fuzzy subfield of a field F, then ${}^{\Delta}A$ is a bipolar valued multi fuzzy subfield of F.

Proof. For any x in F, we have ${}^{\Delta}A_i^+(x-y) = A_i^+(x-y)/H(A_i^+) \ge \min \{A_i^+(x), A_i^+(y)\}/H(A_i^+) = \min \{A_i^+(x)/H(A_i^+), A_i^+(y)/H(A_i^+)\} = \min \{{}^{\Delta}A_i^+(x), {}^{\Delta}A_i^+(y)\}$ which implies that ${}^{\Delta}A_i^+(x-y) \ge \min \{{}^{\Delta}A_i^+(x), {}^{\Delta}A_i^+(y)\}$ for all x, y in F and for all i. And ${}^{\Delta}A_i^-(x-y) = -A_i^-(x-y)/H(A_i^-) \le \max \{A_i^-(x), A_i^-(y)\}/H(A_i^-) = \max \{-A_i^-(x)/H(A_i^-), -A_i^-(y)/H(A_i^-)\} = \max \{{}^{\Delta}A_i^-(x), {}^{\Delta}A_i^-(y)\}$ which implies that ${}^{\Delta}A_i^-(x-y) \le \max \{{}^{\Delta}A_i^-(x), {}^{\Delta}A_i^-(y)\}$ for all x, y in F and for all i. Also ${}^{\Delta}A_i^+(xy^{-1}) = A_i^+(xy^{-1})/H(A_i^+) \ge \min \{A_i^+(x), A_i^+(y)\}/H(A_i^+) = \min \{A_i^+(x)/H(A_i^+), A_i^+(y)/H(A_i^+)\} = \min \{{}^{\Delta}A_i^+(x), {}^{\Delta}A_i^+(y)\}$. Therefore ${}^{\Delta}A_i^+(xy^{-1}) \ge \min \{{}^{\Delta}A_i^+(x), {}^{\Delta}A_i^+(y)\}$ for all x, y = 0 in F and for all i. And ${}^{\Delta}A_i^-(xy^{-1}) = -A_i^-(xy^{-1})/H(A_i^-) \le (-)\max \{A_i^-(x), A_i^-(y)\}/H(A_i^-) = \max \{-A_i^-(x), {}^{\Delta}A_i^-(x)\}$

 $/H(A_i^-), -A_i^-(y)/H(A_i^-)\} = \max \{ {}^{\Delta}A_i^-(x), {}^{\Delta}A_i^-(y) \}.$ Therefore ${}^{\Delta}A_i^+(xy^{-1}) \le \max \{ {}^{\Delta}A_i^-(x), {}^{\Delta}A_i^-(y) \}$ for all x and $y \ne 0$ in F and for all i. Hence ${}^{\Delta}A$ is a bipolar valued multi fuzzy subfield of a field F.

Theorem 3.7. Let A be a bipolar valued multi fuzzy subfield of a field F,

- (i) If $H(A_i^+) < 1$, then ${}^0A_i^+ < A_i^+$.
- (ii) $H(A_i^-) > -1$, then ${}^0A_i^- > A_i^-$.
- (iii) $H(A_i^+) < 1$, and $H(A_i^-) > -1$, then ${}^0A < A$.

Proof. It is trivial.

4. (λ, μ) -Level Subsets of Bipolar Valued Multi Fuzzy Subfields

Definition 4.1. Let *A* be a bipolar valued multi fuzzy subset of *X*. For $\lambda = (\lambda_1, \lambda_2, ..., \lambda_n)$, in [0, 1] and $\mu = (\mu_1, \mu_2, ..., \mu_n), \mu_i$ in [-1, 0], then the (λ, μ) -level subset of *A* is the set $A_{(\lambda, \mu)} = \{x \in X : A_i^+(x) \ge \lambda_i \text{ and } A_i^-(x) \le \mu_i \text{ for all } i\}.$

-0.1, -0.5, -0.7, (1, 0.4, 0.5, 0.8, -0.3, -0.5, -0.6), (2, 0.6, 0.4, 0.8, -0.05, -0.4, -0.5, (3, 0.45, 0.6, 0.9, -0.2, -0.4, -0.7), (4, 0.2, 0.4, 0.5, -0.5, -0.6, -0.7) be multi fuzzy subset а bipolar valued of Χ and $\lambda_1 = 0.4, \, \lambda_2 = 0.3, \, \lambda_3 = 0.4, \, \mu_1 = -0.1, \, \mu_2 = -0.2, \, \mu_3 = -0.1.$ Then ((0.4, 0.3, 0.4), (-0.1, -0.2, -0.1))- level subset of Α is $A_{((0,4,0,3,0,4,-0,1,-0,2,-0,1))} = \{1,3\}.$

Definition 4.3. Let A be a bipolar valued multi fuzzy subset of X. For $\lambda = (\lambda_1, \lambda_2, ..., \lambda_n), \lambda_i$ in [0, 1], the A^+ -level λ -cut of A is the set $P(A^+, \lambda) = \{x \in X : A_i^+(x) \ge \lambda_i \text{ for all } i\}.$

Example 4.4. Consider the set $X = \{0, 1, 2, 3, 4\}$. Let $A = \{(0, 0.5, 0.6, 0.3, -0.1, -0.5, -0.7), (1, 0.4, 0.5, 0.8, -0.3, -0.5, -0.6), (2, 0.6, 0.4, 0.8, -0.05, -0.4, -0.5), (3, 0.45, 0.6, 0.9, -0.2, -0.4, -0.7), (4, 0.2, 0.4, 0.5, -0.5, -0.6, -0.7)\}$ be

Advances and Applications in Mathematical Sciences, Volume 18, Issue 11, September 2019

a bipolar valued multi fuzzy subset of X and $\lambda_1 = 0.4, \lambda_2 = 0.3, \lambda_3 = 0.4$. Then A^+ -level (0.4, 0.3, 0.4)- cut of A is $P(A_i^+, (0.4, 0.3, 0.4) = \{1, 2, 3\}$.

Definition 4.5. Let A be a bipolar valued multi fuzzy subset of X. For $\mu_1 = (\mu_1, \mu_2, ..., \mu_n), \mu_i$ in [-1, 0], the A⁻-level μ -cut of A is the set $N(A^-, \mu) = \{x \in X : A_i^-(x) \le \mu_i \text{ for all } i\}.$

Example 4.6. Consider the set $X = \{0,1,2,3,4\}$. Let $A = \{(0,0.5,0.6,0.3, -0.1, -0.5, -0.7), (1, 0.4, 0.5, 0.8, -0.3, -0.5, -0.6), (2, 0.6, 0.4, 0.8, -0.05, -0.4, -0.5), (3, 0.45, 0.6, 0.9, -0.2, -0.4, -0.7), (4, 0.2, 0.4, 0.5, -0.5, -0.6, -0.7)\}$ be a bipolar valued multi fuzzy subset of X and $\mu_1 = -0.1$, $\mu_2 = -0.2$, $\mu_3 = -0.1$. Then A^- -level (-0.1, -0.2, -0.1)-cut of A is $N(A_i^-, (-0.1, -0.2, -0.1))$ = $\{0, 1, 3, 4\}$.

Theorem 4.7. Let A be a bipolar valued multi fuzzy subfield of a field F. Then for λ_i in [0, 1] and μ_i in [-1, 0] such that $\lambda_i \leq A_i^+(e)$ and $\mu_i \geq A_i^-(e)$ for all i, $A_{(\lambda,\mu)}$ is a (λ, μ) -level subfield of F.

Proof. For all x and y in $A_{(\lambda,\mu)}$, we have, $A_i^+(x) \ge \lambda_i$ and $A_i^-(x) \le \mu_i$ and $A_i^+(y) \ge \lambda_i$ and $A_i^-(y) \le \mu_i$ for all *i*. Now $A_i^+(x-y) \ge \min\{A_i^+(x), A_i^+(y)\}$ $\ge \min\{\lambda_i, \lambda_i\} = \lambda_i$, which implies that $A_i^+(x - y) \ge \lambda_i$ for all *i*. And $A_i^+(xy^{-1}) \ge \min\{A_i^+(x), A_i^+(y)\} \ge \min\{\lambda_i, \lambda_i\} = \lambda_i$, which implies that $A_i^+(xy^{-1}) \ge \lambda_i$ for all *i* and for $x, y \ne 0$. Also $A_i^-(x - y)$ $\le \max\{A_i^-(x), A_i^-(y)\} \le \max\{\mu_i, \mu_i\} = \mu_i$, which implies that $A_i^-(xy^{-1}) \le \mu_i$ for all *i*. And for x and $y \ne 0$, we have $A_i^-(xy^{-1})$ $\le \max\{A_i^-(x), A_i^-(y)\} \le \max\{\mu_i, \mu_i\} = \mu_i$, which implies that $A_i^-(xy^{-1}) \le \mu_i$ for all *i*. Therefore $x - y, xy^{-1}$ in $A_{(\lambda,\mu)}$. Hence $A_{(\lambda,\mu)}$ is a (λ, μ) -level subfield of *F*.

Theorem 4.8. Let A be a bipolar valued multi fuzzy subfield of a field F. Then for λ_i, γ_i in $[0, 1], [-1, 0], \mu_i, \delta_i$ in $[0, 1], \lambda_i \leq A_i^+(e),$

Advances and Applications in Mathematical Sciences, Volume 18, Issue 11, September 2019

 $\gamma_i \leq A_i^+(e), \ \mu_i \geq A_i^-(e), \ \delta_i \geq A_i^-(e), \ \gamma_i < \lambda_i \ and \ \mu_i < \delta_i, \ for \ all \ i, \ the \ two (\lambda, \mu) - level subfields \ A_{(\lambda,\mu)} \ and \ A_{(\gamma,\delta)} \ of \ A \ are \ equal \ if \ and \ only \ if \ there \ is \ no x \ in \ F \ such \ that \ \lambda_i > A_i^+(x) > \gamma_i \ and \ \mu_i < A_i^-(x) < \delta_i \ for \ all \ i.$

Proof. Assume that $A_{(\lambda, \mu)} = A_{(\gamma, \delta)}$. Suppose there exists x in F such that $\lambda_i > A_i^+(x) > \gamma_i$ and $\mu_i < A_i^-(x) < \delta_i$ for all i. Then $A_{(\lambda, \mu)} \subseteq A_{(\gamma, \delta)}$ implies x belongs to $A_{(\gamma, \delta)}$, but not in $A_{(\lambda, \mu)}$. This is contradiction to $A_{(\lambda, \mu)} = A_{(\gamma, \delta)}$. Therefore there is no x in F such that $\lambda_i > A_i^+(x) > \gamma_i$ and $\mu_i < A_i^-(x) < \delta_i$ for all i. Conversely, if there is no x in F such that $\lambda_i > A_i^+(x) > \gamma_i$ and $\mu_i < A_i^-(x) > \gamma_i$ and $\mu_i < A_i^-(x) < \delta_i$. Then $A_{(\lambda, \mu)} = A_{(\gamma, \delta)}$ (By the definition of (λ, μ) -level subset).

Theorem 4.9. Let A be a bipolar valued multi fuzzy subfields of a subfield F. If any two (λ, μ) -level subfields of A belongs to F, then their intersection is also (λ, μ) -level subfield of A in F.

Proof. Let λ_i , γ_i in [0, 1], μ_i , δ_i in [-1, 0], $\lambda_i \leq A_i^+(e)$, $\gamma_i \leq A_i^+(e)$, $\mu_i \geq A_i^-(e)$, $\delta_i \geq A_i^-(e)$, for all i.

Case (i). If $\lambda_i > A_i^+(x) > \gamma_i$ and $\mu_i < A_i^-(x) < \delta_i$ for all *i*, then $A_{(\lambda,\mu)} \subseteq A_{(\gamma,\delta)}$.

Therefore $A_{(\lambda,\mu)} \cap A_{(\gamma,\delta)} = A_{(\lambda,\mu)}$, but $A_{(\lambda,\mu)}$ is a (λ,μ) -level subfield of A.

Case (ii). If $\lambda_i < A_i^+(x) < \gamma_i$ and $\mu_i > A_i^-(x) > \delta_i$ for all *i*, then $A_{(\gamma, \delta)} \subseteq A_{(\lambda, \mu)}$.

Therefore $A_{(\lambda,\mu)} \cap A_{(\gamma,\delta)} = A_{(\gamma,\delta)}$, but $A_{(\gamma,\delta)}$ is a (λ,μ) -level subfield of A.

Case (iii). If $\lambda_i < A_i^+(x) < \gamma_i$ and $\mu_i < A_i^-(x) < \delta_i$ for all *i*, then $A_{(\gamma,\mu)} \subseteq A_{(\lambda,\delta)}$.

Therefore $A_{(\gamma,\mu)} \cap A_{(\lambda,\delta)} = A_{(\gamma,\mu)}$, but $A_{(\gamma,\mu)}$ is a (λ,μ) -level subfield of A.

Case (iv). If $\lambda_i > A_i^+(x) < \gamma_i$ and $\mu_i > A_i^-(x) > \delta_i$ for all *i*, then $A_{(\lambda, \delta)} \subseteq A_{(\gamma, \mu)}$.

Therefore $A_{(\lambda,\delta)} \cap A_{(\gamma,\mu)} = A_{(\lambda,\delta)}$, but $A_{(\lambda,\delta)}$ is a (λ, μ) -level subfield of A.

Case (v). If $\lambda_i = \gamma_i$ and $\mu_i = \delta_i$, then $A_{(\lambda, \mu)} = A_{(\gamma, \delta)}$.

The other cases are true, so, in all the cases, intersection of any two (λ, μ) -level subfields is a (λ, μ) -level subfield of A.

Theorem 4.10. Let A be a bipolar valued multi fuzzy subfield of a field F. The intersection of a collection of (λ, μ) -level subfields of A is also a (λ, μ) -level subfield of A.

Proof. It is trivial.

Theorem 4.11. Let A be a bipolar valued multi fuzzy subfield of a field F. If any two (λ, μ) -level subfields of A belongs to F, then their union is also (λ, μ) -level subfield of A in F.

Proof. Let λ_i, γ_i in $[0, 1], \mu_i, \delta_i$ in $[-1, 0], \lambda_i \leq A_i^+(e), \gamma_i \leq A_i^+(e), \mu_i \geq A_i^-(e), \delta_i \geq A_i^-(e)$ for all i.

Case (i). If $\lambda_i > A_i^+(x) > \gamma_i$ and $\mu_i < A_i^-(x) < \delta_i$ for all *i*, then $A_{(\lambda,\mu)} \subseteq A_{(\gamma,\delta)}$.

Therefore $A_{(\lambda,\mu)} \cup A_{(\gamma,\delta)} = A_{(\gamma,\delta)}$, but $A_{(\lambda,\delta)}$ is a (λ, μ) -level subfield of A.

Case (ii). If $\lambda_i < A_i^+(x) < \gamma_i$ and $\mu_i > A_i^-(x) > \delta_i$ for all *i*, then $A_{(\gamma, \delta)} \subseteq A_{(\lambda, \mu)}$.

Therefore $A_{(\lambda,\mu)} \cup A_{(\gamma,\delta)} = A_{(\lambda,\mu)}$, but $A_{(\lambda,\mu)}$, is a (λ, μ) -level subfield of A.

Case (iii). If $\lambda_i < A_i^+(x) < \gamma_i$ and $\mu_i < A_i^-(x) < \delta_i$ for all *i*, then $A_{(\gamma,\mu)} \subseteq A_{(\lambda,\delta)}$.

Therefore $A_{(\gamma,\mu)} \cup A_{(\lambda,\delta)} = A_{(\lambda,\delta)}$, but $A_{(\lambda,\delta)}$ is a (λ, μ) -level subfield of A.

Case (iv). If $\lambda_i > A_i^+(x) > \gamma_i$ and $\mu_i > A_i^-(x) > \delta_i$ for all *i*, then $A_{(\lambda, \delta)} \subseteq A_{(\gamma, \mu)}$.

Therefore $A_{(\lambda,\delta)} \cup A_{(\gamma,\mu)} = A_{(\gamma,\mu)}$, but $A_{(\lambda,\mu)}$ is a (λ, μ) -level subfield of A.

Case (v). If $\lambda_i = \gamma_i$ and $\mu_i = \delta_i$, then $A_{(\lambda,\mu)} = A_{(\gamma,\delta)}$.

In other cases are true, so, in all the cases, union of any two (λ, μ) -level subfield is a (λ, μ) -level subfield of *A*.

Theorem 4.12. Let A be a bipolar valued multi fuzzy subfield of a field F. The union of a collection of (λ, μ) -level subfields of A is also a (λ, μ) -level subfield of A.

Proof. It is trivial.

Theorem 4.13. The homomorphic image of a (λ, μ) -level subfield of a bipolar valued multi fuzzy subfield of a field F is a (λ, μ) -level subfield of a bipolar valued multi fuzzy subfield of a field F'.

Proof. Let U = g(A). Here $A = \langle A_1^+, A_2^+, ..., A_n^+, ..., A_1^-, A_2^-, ..., A_n^- \rangle$ a bipolar valued multi fuzzy subfield of *F*, is and $U = \langle U_1^+, U_2^+, ..., U_n^+, ..., U_1^-, U_2^-, ..., U_n^- \rangle$ is a bipolar valued multi fuzzy subfield of F'. Let x and y in F. Then g(x) and g(y) in F'. Let $A_{(\lambda,\mu)}$ be a $(\lambda, \mu) = ((\lambda_1, \lambda_2, \dots, \lambda_n), (\mu_1, \mu_2, \dots, \mu_n))$ -level subfield of A. That is, $A_i^+(x) \ge \lambda_i$ and $A_i^-(x) \le \mu_i$; $A_i^+(y) \ge \lambda_i$ and $A_i^-(y) \le \mu_i$; $A_i^+(x-y) \ge \lambda_i$, $A_i^-(x-y) \leq \mu_i, A_i^+(xy^{-1}) \geq \lambda_i, A_i^-(xy^{-1}) \leq \mu_i$ for all *i*. We have to prove that $g(A_{(\lambda,\mu)})$ is a (λ,μ) -level subfield of U. Now $U_i^+(g(x)) \ge A_i^+(x) \ge \lambda_i$ which implies that $U_i^+(g(x)) \ge \lambda_i$; and $U_i^+(g(y)) \ge A_i^+(y) \ge \lambda_i$ which implies that $U_{i}^{+}(g(y)) \geq \lambda_{i}$ for all *i*. Then $U_{i}^{+}(g(x)-g(y))=U_{i}^{+}(g(x-y))\geq A_{i}^{+}(x-y)\geq \lambda_{i}$, which implies that $U_i^+(g(x) - g(y)) \ge \lambda_i$ for all *i*. And $U_i^-(g(x)) \le A_i^-(x) \le \mu_i$ which implies that $U_i^-(g(x)) \le \mu_i$; and $U_i^-(g(y)) \le A_i^-(y) \le \mu_i$ which implies $U_i^{-}(g(y)) \le \mu_i$ for all *i*. Then $U_i^{-}(g(x) - g(y)) = U_i^{-}(g(x - y))$ that

 $\leq A_i^-(x-y) \leq \mu_i, \text{ which implies that } U_i^-(g(x) - g(y)) \leq \mu_i \text{ for all } i. \text{ And for all } U_i^+(g(x)) \geq \lambda_i \text{ and } U_i^+(g(y)) \geq \lambda_i \text{ for all } i, U_i^+(g(x)g(y)^{-1}) = U_i^+(g(xy^{-1})) \\ \geq A_i^+(xy^{-1}) \geq \lambda_i, \text{ which implies that } U_i^+(g(x)g(y)^{-1}) \geq \lambda_i \text{ for all } i. \text{ And for all } U_i^-(g(x)) \leq \mu_i \text{ and } U_i^-(g(y)) \leq \mu_i \text{ for all } i, U_i^-(g(x)g(y)^{-1}) = U_i^-(g(xy^{-1})) \\ \leq A_i^-(xy^{-1}) \leq \mu_i, \text{ which implies that } U_i^-(g(x)g(y)^{-1}) \leq \mu_i \text{ for all } i. \text{ Hence } g(A_{(\lambda,\mu)}) \text{ is a } (\lambda,\mu) \text{ level subfield of a bipolar valued multi fuzzy subfield } U \text{ of } F'.$

Theorem 4.14. The homomorphic pre-image of a (λ, μ) - level subfield of a bipolar valued multi fuzzy subfield of a field F' is a (λ, μ) - level subfield of a bipolar valued multi fuzzy subfield of a field F.

Proof. Let U = g(A). Here $U = \langle U_1^+, U_2^+, ..., U_n^+, U_1^-, U_2^- ... U_n^- \rangle$ is a subfield of F', fuzzv bipolar valued multi and $A = \langle A_1^+, A_2^+, \dots, A_n^+, A_1^-, A_2^- \dots A_n^- \rangle$ is a bipolar valued multi fuzzy subfield of F. Let g(x) and g(y) in F'. Then x and y in F. Let $g(A_{(\lambda, \mu)})$ be a $U_i^+(g(x)) \ge \lambda_i$ (λ, μ) -level subfield of U. That isand $U_i^-(g(x)) \le \mu_i; U_i^+(g(y)) \ge \lambda_i$ and $U_i^-(g(y)) \le \mu_i; U_i^+(g(x) - g(y)) \ge \lambda_i$, $U_i^-(g(x) - g(y)) \le \mu_i, U_i^+(g(x)g(y)^{-1}) \ge \lambda_i, U_i^-(g(x)g(y)^{-1}) \le \mu_i$ for all *i*. We have to prove that $A_{(\lambda,\mu)}$ is a (λ,μ) -level subfield of A. Now $A_i^+(x) = U_i^+(g(x)) \ge \lambda_i$ implies that $A_i^+(x) \ge \lambda_i$; $A_i^+(y) = U_i^+(g(y)) \ge \lambda_i$ implies that $A_i^+(y) \ge \lambda_i$ for all *i*. Then $A_i^+(x-y) = U_i^+(g(x-y)) = U_i^+(g(x)-g(y)) \ge \lambda_i$, which implies that $A_i^+(x-y) \ge \lambda_i$ for all *i*. And $A_i^-(x) = U_i^-(g(x)) \le \mu_i$ implies that $A_i^-(x) \le \mu_i; A_i^-(y) = U_i^-(g(y)) \le \mu_i$ implies that $A_i^-(y) \le \mu_i$ for all *i*. $A_i^-(x-y) = U_i^-(g(x-y)) = U_i^-(g(x)-g(y)) \le \mu_i$, which implies that $A_i^-(x-y) \le \mu_i$ for all *i*. And for $A_i^+(x) \ge \lambda_i$ and $A_i^+(y) \ge \lambda_i$ for all *i*, $A_i^+(xy^{-1}) = U_i^+(g(xy^{-1})) = U_i^+(g(x)g(y)^{-1}) \ge \lambda_i$ which implies that $A_i^+(xy^{-1}) \ge \lambda_i$ for all *i*. Also for all $A_i^-(x) \le \mu_i$ and $A_i^-(y) \le \mu_i$ for all

Advances and Applications in Mathematical Sciences, Volume 18, Issue 11, September 2019

i, $A_i^-(xy^{-1}) = U_i^-(g(xy^{-1})) = U_i^-(g(x)g(y)^{-1}) \le \mu_i$, which implies that $A_i^-(xy^{-1}) \le \mu_i$ for all *i*. Hence $A_{(\lambda,\mu)}$ is a (λ,μ) -level subfield of bipolar valued multi fuzzy subfield A of F.

Theorem 4.15. The anti-homomorphic image of a (λ, μ) -level subfield of a bipolar valued multi fuzzy subfield of a field F is a (λ, μ) -level subfield of a bipolar valued multi fuzzy subfield of a field F'.

Proof. Let U = g(A). Here $A = \langle A_1^+, A_2^+, ..., A_n^+, A_1^-, A_2^- ... A_n^- \rangle$ is a subfield multi fuzzy F. bipolar valued of and $U = \langle U_1^+, U_2^+, \dots, U_n^+, \dots, U_1^-, U_2^-, \dots, U_n^- \rangle$ is a bipolar valued multi fuzzy subfield of F'. Let x and y in F. Then g(x) and g(y) in F'. Let $A_{(\lambda,\mu)}$ be a (λ, μ) -level subfield of A. That is $A_i^+(x) \ge \lambda_i$ and $A_i^-(x) \le \mu_i$; $A_i^+(y) \ge \lambda_i$ and $A_i^-(y) \le \mu_i$ for all *i*. And $A_i^+(y-x) \ge \lambda_i$ and $A_i^+(yx^{-1}) \ge \lambda_i$ and $A_i^-(y-x) \le \mu_i, \ A_i^-(yx^{-1}) \le \mu_i$ for all *i*. We have to prove that $g(A_{(\lambda,\mu)})$ is a (λ, μ) -level subfield of U. Now $U_i^+(g(x)) \ge A_i^+(x) \ge \lambda_i$ which implies that $U_i^+(g(x)) \ge \lambda_i$; and $U_i^+(g(y)) \ge A_i^+(y) \ge \lambda_i$ which implies that $U_i^+(g(y)) \ge \lambda_i$ for all *i*. Also $U_i^+(g(x) - g(y)) = U_i^+(g(y - x)) \ge A_i^+(y - x) \ge \lambda_i$ which implies that $U_i^+(g(x) - g(y)) \ge \lambda_i$ for all *i*. And $U_i^-(g(x)) \le A_i^-(x) \le \mu_i$ which implies that $U_i^-(g(x)) \le \mu_i$; and $U_i^-(g(y)) \le A_i^-(y) \le \mu_i$ which implies that $U_i^-(g(y)) \le \mu_i \text{ for all } i. \text{ Also } U_i^-(g(x) - g(y)) = U_i^-(g(y - x)) \le A_i^-(y - x) \le \mu_i$ which implies that $U_i^-(g(x) - g(y)) \le \mu_i$ for all *i*. For $U_i^+(g(x)) \ge \lambda_i$ and $U_i^+(g(y)) \ge \lambda_i \text{ for all } i, \text{ And } i, U_i^+(g(x)g(y)^{-1}) = U_i^+(g(yx^{-1})) \ge A_i^+(yx^{-1})$ $\geq \lambda_i$ which implies that $U_i^+(g(x)g(y)^{-1}) \geq \lambda_i$ for all *i*. Also For $U_i^-(g(x)) \leq \mu_i$ $U_i^-(g(y)) \le \mu_i$ for all *i*. And $U_i^-(g(x)g(y)^{-1}) = U_i^-(g(yx^{-1}))$ and $\leq A_i^{-}(yx^{-1}) \leq \mu_i$ which implies that $U_i^{-}(g(x)g(y)^{-1}) \leq \mu_i$ for all *i*. Hence $g(A_{(\lambda,\mu)})$ is a (λ,μ) -level subfield of bipolar valued multi fuzzy subfield U of F'.

Theorem 4.16. The anti-homomorphic pre-image of a (λ, μ) -level subfield of a bipolar valued multi fuzzy subfield of a field F' is a (λ, μ) -level subfield of a bipolar valued multi fuzzy subfield of a field F.

Proof. Let U = g(A). Here $U = \langle U_1^+, U_2^+, ..., U_n^+, U_1^-, U_2^- ... U_n^- \rangle$ is a subfield of F', fuzzv bipolar valued multi and $A = \langle A_1^+, A_2^+, ..., A_n^+, A_1^-, A_2^- ... A_n^- \rangle$ is a bipolar valued multi fuzzy subfield of F. Let g(x) and g(y) in F'. Then x and y in F. Let $g(A_{(\lambda,\mu)})$ be a (λ, μ) -level subfield of U. That is $U_i^+(g(x)) \ge \lambda_i$ and $U_i^-(g(x)) \le \mu_i$; $U_i^+(g(y)) \ge \lambda_i$ and $U_i^-(g(y)) \le \mu_i; U_i^+(g(y) - g(x)) \ge \lambda_i, U_i^-(g(y) - g(x)) \le \mu_i,$ $U_i^+(g(y)g(x)^{-1}) \ge \lambda_i, U_i^-(g(y)g(x)^{-1}) \le \mu_i$ for all *i*. We have to prove that $A_{(\lambda,\mu)}$ is a (λ,μ) -level subfield of A. Now $A_i^+(x) = U_i^+(g(x)) \ge \lambda_i$ which implies that $A_i^+(x) \ge \lambda_i$ and $A_i^+(y) = U_i^+(g(y)) \ge \lambda_i$ which implies that $A_i^+(y) \ge \lambda_i$ for all *i*. Then $A_i^+(x-y) = U_i^+(g(x-y)) = U_i^+(g(y) - g(x)) \ge \lambda_i$ which implies that $A_i^+(x-y) \ge \lambda_i$ for all *i*. And $A_i^-(x) = U_i^-(g(x)) \le \mu_i$ which implies that $A_i^-(x) \le \mu_i$ and $A_i^-(y) = U_i^-(g(y)) \le \mu_i$ which implies that $A_i^{-}(y) \le \mu_i$ for all *i*. Also $A_i^{-}(x-y) = U_i^{-}(g(x-y)) = U_i^{-}(g(y) - g(x)) \le \mu_i$ which implies that $A_i^-(x-y) \le \mu_i$ for all *i*. For $A_i^+(x) \ge \lambda_i$ and $A_i^+(y) \ge \lambda_i$ for all $i, A_i^+(xy^{-1}) = U_i^+(g(xy^{-1})) = U_i^+(g(x)g(y)^{-1}) \ge \lambda_i$ which implies that $A_i^+(xv^{-1}) \ge \lambda_i$ for all *i*. And $A_i^-(x) \le \mu_i$ and $A_i^-(y) \le \mu_i$ for all $i, A_i^-(xy^{-1}) = U_i^-(g(xy^{-1})) = U_i^-(g(y)g(x)^{-1}) \le \mu_i, \quad \text{which}$ implies that $A_i^-(xy) \le \mu_i$ for all *i*. Hence $A_{(\lambda,\mu)}$ is a (λ,μ) -level subfield of bipolar valued multi fuzzy subfield A of F.

Theorem 4.17. Let A be a bipolar valued multi fuzzy subfield of a field F. Then for λ_i in [0, 1] for all i, A_i^+ -level λ -cut $P(A_i^+, \lambda)$ is a A_i^+ -level λ -cut subfield of F.

Proof. For all x and y in $P(A_i^+, \lambda)$, we have $A_i^+(x) \ge \lambda_i$ and $A_i^+(y) \ge \lambda_i$ for

Advances and Applications in Mathematical Sciences, Volume 18, Issue 11, September 2019

all *i*. Now $A_i^+(x-y) \ge \min \{A_i^+(x), A_i^+(y)\} \ge \min \{\lambda_i, \lambda_i\} = \lambda_i$, which implies that $A_i^+(x-y) \ge \lambda_i$ for all *i*. And $A_i^+(xy^{-1}) \ge \min \{A_i^+(x), A_i^+(y)\} \ge \min \{\lambda_i, \lambda_i\} = \lambda_i$, which implies that $A_i^+(xy^{-1}) \ge \lambda_i$ for all *i*. Therefore $x - y, xy^{-1}$ in $P(A_i^+, \lambda)$. Hence $P(A_i^+, \lambda)$ is a A_i^+ -level λ -cut subfield of *F*.

Theorem 4.18. Let A be a bipolar valued multi fuzzy subfield of a field F. Then for μ_i in [-1, 0] for all i, A_i^- -level μ -cut $N(A_i^-, \mu)$ is a A_i^- -level μ -cut subfield of F.

Proof. For all x and y in $N(A_i^-, \mu)$, we have $A_i^-(x) \le \mu_i$ and $A_i^-(y) \le \mu_i$ for all *i*. Now $A_i^-(x-y) \le \max\{A_i^-(x), A_i^-(y)\} \le \max\{\mu_i, \mu_i\} = \mu_i$, which implies that $A_i^-(x-y) \le \mu_i$ for all *i*. And $A_i^-(xy^{-1}) \le \max\{A_i^-(x), A_i^-(y)\} \le \max\{\mu_i, \mu_i\} = \mu_i$, which implies that $A_i^-(xy^{-1}) \le \mu_i$ for all *i*. Therefore $x - y, xy^{-1}$ in $N(A_i^-, \mu)$. Hence $N(A_i^-, \mu)$ is a A_i^- -level μ -cut subfield of *F*.

References

- M. S. Anitha, Muruganantha Prasad and K. Arjunan, Homomorphism and Antihomomorphism of Bipolar-valued fuzzy subgroups of a group, International journal of Mathematical Archive 4(12) (2013), 274-276.
- [2] Arsham Borumand Saeid, Bipolar-valued fuzzy BCK/BCI-algebras, World Applied Sciences Journal 7(11) (2009), 1404-1411.
- [3] K. Chandrasekar Rao and V. Swaminathan, Anti-homomorphism in Fuzzy Ideals, World Academy of Science, engineering and Technology, 44 (2010).
- [4] F. P. Choudhury, A. B. Charaborty and S. S. Khare, A note on fuzzy subgroups and fuzzy homomorphisms, Journal of Mathematical Analysis and Applications131 (1988), 537-553.
- [5] Kyoung Ja Lee, Bipolar fuzzy subalgebras and bipolar fuzzy ideals of BCK/BCI-algebras, Bull. Malays. Math. Sci. Soc. (2) 32(3) (2009), 361-373.
- [6] K. M. Lee, Bipolar-valued fuzzy sets and their operations, Proc. Int. Conf. on Intelligent Technologies, Bangkok, Thailand, (2000), 307-312.
- [7] K. M. Lee, Comparison of interval-valued fuzzy sets, intuitionistic fuzzy sets and bipolar valued fuzzy sets, J. fuzzy Logic Intelligent Systems, 14(2) (2004), 125-129.
- [8] Sabu Sebastian and T. V. Ramakrishnan, Multi-fuzzy sets, International Mathematical Forum 6(50) (2010), 2471-2476.

1374 C. YAMINI, K. ARJUNAN and B. ANANDH

- [9] Samit Kumar Majumder, Bipolar Valued fuzzy Sets in Γ-Semigroups, Mathematica Aeterna 2(3) (2012), 203-213.
- [10] V. K. Shanthi and G. Shyamala, Notes on Bipolar-valued multi fuzzy subgroups of a group, International journal of Mathematical Archive-6(6) (2015), 234-238.
- [11] P. Sivaramakrishna Das, Fuzzy groups and level subgroups, Journal of Mathematical Analysis and Applications 84 (1981), 264-269.
- [12] M. Vasu and D. Sivakumar, Lower Level Subsets of Anti L-Fuzzy Subfield of a Field, International Journal of Engineering Research & Technology (IJERT), vol 2, issue 9, September (2013).
- [13] C. Yamini, K. Arjunan and B. Ananth, Bipolar valued multi fuzzy subfield of a field, International Journal of Management, Technology And Engineering, ISSN NO: 2249-7455, volume 8, issue XI, November (2018).
- [14] B. Yasodara and K. E. Sathappan, Bipolar-valued multi fuzzy subsemirings of a semiring, International Journal of Mathematical Archive, 6(9) (2015), 75-80.
- [15] B. Yasodara and K. E. Sathappa, Homomorphism and anti-homomorphism of bipolarvalued multi fuzzy subsemirings of a semiring, Bulletin of Mathematics and Statistics Research 3(3) (2015), 229-233.
- [16] L. A. Zadeh, Fuzzy sets, Inform. And Control 8 (1965), 338-353.
- [17] W. R. Zhang, Bipolar Fuzzy sets and Relations, a computational Frame work for cognitive modeling and multiple decision Analysis, proceedings of Fuzzy IEEE conferences, (1994), 305-309.
- [18] W. R. Zhang, Bipolar Fuzzy sets, Proceedings of Fuzzy IEEE Conferences (1998), 835-840.