
 

Advances and Applications in Mathematical Sciences 
Volume 18, Issue 1, November 2018, Pages 75-84 
© 2018 Mili Publications 

 

2010 Mathematics Subject Classification: Primary 26A33; Secondary 34B15. 

Keywords: Riemann-Liouville fractional derivative, fixed point theorem. 

*Corresponding author. 

Received January 3, 2018; Accepted March 1, 2018 

EXISTENCE OF SOLUTIONS OF A NONLINEAR 

FRACTIONAL DIFFERENTIAL EQUATION WITH 

FRACTIONAL DERIVATIVE AND FRACTIONAL 

INTEGRAL BOUNDARY CONDITIONS 

ANKIT KUMAR NAIN1*, RAMESH KUMAR VATS2 

SACHIN KUMAR VERMA3 and VIZENDAR SIHAG4 

1,2,3Department of Mathematics 

NIT Hamirpur, H.P. India 

E-mail: sachin8489@gmail.com 

  rkvatsnitham@gmail.com 

  ankitnain744@gmail.com 

4Department of Mathematics 

Guru Jambheshwar University of Science & Technology 

Haryana, India 

E-mail: vsihag3@gmail.com 

Abstract 

This paper is concerned with the existence of solutions of the Fractional Boundary Value 

Problem 
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where pD0
 is Riemann-Liouville fractional derivative of order rIp 0,  denotes the Riemann-

Liouville fractional integral of order        1,0:,0,1,0,3,2, frqpr  be a continuous 

function and 
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.
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
  Some existence results are obtained by means of Krasnoselskii’s 

Fixed Point Theorem and Banach Fixed Point Theorem. 
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1. Introduction 

There are several kinds of fractional derivatives, such as Riemann- 

Liouville fractional derivative, Marchaud fractional derivative, Caputos 

derivative, Griinwald-Letnikov fractional derivative, etc. Fractional 

differential equations are being used in various fields of science and 

engineering such as control system, electrochemistry, electromagnetics, 

viscoelasticity, physics, biophysics, porous media, blood flow phenomena, 

electrical circuits, biology, fitting of experimental data etc. Due to these 

features, models of fractional order become more practical and realistic than 

the models of integer-order. There has been a significant development in the 

existence and uniqueness of boundary value problems for fractional 

differential equations, However, the theory of BVPs for nonlinear fractional 

differential equations is still in the initial stages and many aspects of this 

theory need to be explored see, [1]-[13] and the references therein. In [14], Li 

et al. considered the following three point BVPs of fractional order 

differential equations 
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Motivated by the work done in [14] [16], we are concerned with the nonlinear 

fractional boundary value problem 
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where pD0  is Riemann-Liouville fractional derivative of order rIp 0,  denotes 

the Riemann-Liouville fractional integral of order    ,1,0,3,2,  qpr  

   1,0:,0 fr  be a continuous function and 
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2. Preliminaries 

First of all, we introduce some notations, definitions and Lemmas. 
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Definition 1 [4]. The Fractional Integral of order 0p  of a function 

  ,0:y  is given by 
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provided that Right integral exists 

Definition 2 [4]. The Riemann-Liouville fractional Derivative of order 

0p  for a continuous function   ,0:y  is defined as 
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where n is the smallest integer greater than or equal to p. 

Lemma 3 [9]. Let 0.p   If we assume    ,1,01,0 LCu   then the 

fractional differential equation 

  00 tuD p  

has unique solution   Nictctctctu i
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N
pp  ,2,1,,2
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where N is the smallest integer greater than or equal to p. 

Lemma 4 [9]. Assume that    1,01,0 LCu   with a fractional 

derivative of order 0p  that belongs to    .1,01,0 LC   Then 
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N
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for some Nici ,,2,1,    where N is the smallest integer greater than 

or equal to p. 

3. Auxiliary Result 

In this section, we present supporting result needed in our main proofs. 

Lemma 5. Let    1,0Lty   and .32  p  Then the problem 
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has a unique solution 
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where 
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Proof. We know that by Lemma 4, (2) is equivalent to 
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2
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for some .3,2,1,0,  ici   

From   00 z  implies .03 c  Therefore 
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using boundary condition     011 00  zIzD rq  
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On putting the value of 1c  in (5), we obtain the solution (3).  

Let  ,1,0CZ   then  
Z

Z ,  is a Banach space equipped with the 

norm 
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we define an operator ZZU :  by 
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It follows from Lemma 5, the fixed point of U are the solution of (1). 

For the forthcoming analysis, we need the following assumptions: 

(A)     yxLytfxtf  ,,  for all  1,0t  
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4. Existence Results 

Theorem 6. Let the function f satisfies assumption (A) with ;
1


L  

where  is given by (7). Then fractional boundary value problem given by (1) 

has a unique solution on  .1,0  

Proof. We shall use the Banach Contraction Principle to prove that U 

has a fixed point. For that, we shall prove U is a contraction. Let 
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Since ,1L  therefore, U is a contraction, which satisfies all the 

conditions of Banach Contraction Principle. Hence, U has a unique fixed 

point which is a solution of the problem (1).  

Next Result is based on Krasnoselskii’s Fixed Point Theorem 

Theorem 7 [26] (Krasnoselskii’s fixed point theorem). Let M be a closed 

convex and nonempty subset of a Banach space X. Let BA,  be the operators 

such that 

(1) MByAx   whenever ;, Myx   

(2) A is compact and continuous; 



EXISTENCE OF SOLUTIONS OF A NONLINEAR FRACTIONAL … 

Advances and Applications in Mathematical Sciences, Volume 18, Issue 1, November 2018 

81 

(3) B is a contraction mapping. 

Then there exists Mz   such that .BzAzz   

Theorem 8. Let   ZZf 1,0:  be a continuous function maps 

bounded subsets of   Z1,0  into relatively compact subset of Z and A and B 

holds along with 
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for ,, 21 rBzz   we find that 
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Thus .21 rBzQPz   Also Q is a contraction mapping by (8). Continuity 

of f implies that P is continuous. Also, P is uniformly bounded on rB  as 
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In view of (A), define       ,,sup 1,0, futf
rBut   we have 
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which is independent of u. Thus, P is equicontinuous. Using the fact, f maps 

bounded subsets into relatively compact subsets, we have that  VP  is 

relatively compact in Z for every t, where V is a bounded subset of Z. So P is 

relatively compact on .rB  

Hence by Arzela-Ascoli Theorem, P is compact on .rB  Thus all 

assumptions of Theorem 7 are Satisfied. So bvp (1) has at least one solution 

on [0, 1].  

5. Examples 

Example 1. Consider the following fractional boundary value problem 
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As     ,,, vuvtfutf   therefore (A) is satisfied along with 1L  

and 
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Also 
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Therefore all the conditions of Theorem (6) are satisfied. So fractional 

boundary value problem (9) has unique solution on [0, 1]. 
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