TOTAL EDGE IRREGULARITY STRENGTH OF SOME POLYTOPE STRUCTURES

S. TERESA AROCKIAMARY and J. MARIA ANGELIN VISITHRA

1,2 Department of Mathematics
Stella Maris College (Autonomous), Chennai
Affiliated to the University of Madras, Chennai, India
E-mail: drtessys70@gmail.com
jpa367@gmail.com

Abstract

Given a graph G with vertex set and edge set, a function defined from vertex set and edge set to $1,2, \ldots, k$ is called an edge irregular total k-labeling if for every pair of distinct edges, the weight of the edges are all distinct. The minimum k for which G has an edge irregular total k labeling is called the total edge irregularity strength of G. The total edge irregularity strength of G is denoted by $\operatorname{tes}(G)$. In our present study we have considered some graphs of the family of convex polytopes and have obtained its total edge irregularity strength.

1. Introduction

Graph theory has always been an interesting area of research. One of the key branches in it is graph labeling. Most graph labeling techniques trace their origin to one introduced by Rosa [8]. Rosa identified three types of labelings, which he called α-labeling, β-labeling and ρ-labeling [8]. The β labeling were later renamed as graceful by Golomb and since then graceful labeling has been well studied [8].

Labeled graphs have broad range of applications such as coding theory, communication network, addressing, database management, secret sharing schemes, models for constraint programming over finite domains and network passwords [8].

2020 Mathematics Subject Classification: 07C78.
Keywords: Edge irregular total k-labeling, Total edge irregularity strength, The graphs of convex polytopes, Prism graph, Antiprism graph.
Received March 22, 2022; Accepted July 13, 2022

5842 S. TERESA AROCKIAMARY and J. MARIA ANGELIN VISITHRA

Baca, Jendrol, Miller and Ryan [9] introduced the total edge irregularity strength of a graph. Total edge irregularity strength has been well studied for honeycomb mesh networks [6], hexagonal networks [7], butterfly networks [2, 4], benes networks [2], series compositions of uniform theta graphs [3] and generalized uniform theta graph [5]. Umer et al. [12] applied the technique of 3 -total edge product cordial labeling on some classes of convex polytopes. Syed Ahtshma Ul Haq Bokhary et al. [11] proved the total irregularity strength of convex polytope graphs S_{n}, T_{n}, U_{n}.

Definition 1.1 [8]. Given a graph $G=(V, E)$ a labeling $\partial: V \cup E \rightarrow\{1,2, \ldots, k\}$ is called an edge irregular total k-labeling if for every pair of distinct edges $u v$ and $x y$, the weights $\partial(u)+\partial(u v)+\partial(v) \neq \partial(x)$ $\partial(x y)+\partial(y)$. The minimum k for which G has an edge irregular total k labeling is called the total edge irregularity strength of G. The total edge irregularity strength of G is denoted by $\operatorname{tes}(G)$.

We now begin with some known results on $t e s(G)$ and basic definitions.
Theorem 1.1 [9]. Let G be a graph with m edges. Then tes (G) $\geq\lceil(m+2) / 3\rceil$.

Theorem 1.2 [9]. Let G be a graph with maximum degree Δ. Then tes $(G) \geq\lceil(\Delta+2) / 3\rceil$.

In our study, we have considered some families of convex polytopes. Our results on edge irregular total k-labeling applied to these graphs of convex polytopes are presented in this paper. Further we have proved that the bound on tes is sharp as given in Theorem 1.1. In our paper we call the weight of the edges as edge sums.

Definition 1.2 [1]. For $m \geq 5$, convex polytope D_{m} consists of $2 m 5$ sided faces and a pair of m-sided faces. For our convenience we call the cycle induced by u_{i} the inner cycle, the vertices v_{i} are called interior vertices, the vertices w_{i} are called exterior vertices, cycle induced by z_{i} the outer cycle. The number of vertices of D_{m} is $4 m$ and the number of edges of D_{m} is $6 m$.

Notation 1. The vertex set and edge set of D_{m} are defined as follows:
$V\left(D_{m}\right)=\left\{u_{i}, v_{i}, w_{i}, z_{i}, 1 \leq i \leq m\right\}$ and $E\left(D_{m}\right)=\left\{u_{i} u_{i+1}, v_{i} v_{i+1}, z_{i} z_{i+1}\right.$,
$1 \leq i \leq m\} \cup\left\{u_{i}, v_{i}, v_{i}, w_{i}, v_{i+1}, w_{i}, z_{i}, 1 \leq i \leq m\right\}$. See Figure 1.

Figure 1. Convex Polytope D_{8}.
Definition 1.3 [10]. Convex polytope C_{m} consisting of $3 m 3$-sided faces, $m 4$-sided faces, $m 5$-sided faces and a pair of m-sided faces is obtained by the combination of the convex polytope Q_{m} and graph of an antiprism A_{m}. The convex polytope C_{m} can also be obtained from the convex polytope B_{m} by adding new edges $y_{i+1} z_{i}$ and having the same vertex set that is $V\left(C_{m}\right)=V\left(B_{m}\right)$ and $E\left(C_{m}\right)=E\left(B_{m}\right) \cup\left\{y_{i+1} z_{i}: 1 \leq i \leq m\right\}$. The vertex set and edge set of B_{m} are $V\left(B_{m}\right)=\left\{u_{i}, v_{i}, w_{i}, y_{i}, z_{i}, 1 \leq i \leq m\right\} \quad$ and $E\left(B_{m}\right)=\left\{u_{i} u_{i+1}, v_{i} v_{i+1}, y_{i} y_{i+1}, z_{i} z_{i+1}, 1 \leq i \leq m\right\} \cup\left\{u_{i} v_{i}, v_{i} w_{i}, v_{i+1} w_{i}, w_{i} y_{i}\right.$, $\left.y_{i} z_{i}, 1 \leq i \leq m\right\}$. For our convenience, we call the cycle induced by $\left\{u_{i}, 1 \leq i \leq m\right\}$, the inner cycle, cycle induced by $\left\{v_{i}, 1 \leq i \leq m\right\}$, the interior cycle, the set of vertices $\left\{w_{i}, 1 \leq i \leq m\right\}$, the set of interior vertices, cycle induced by $\left\{y_{i}, 1 \leq i \leq m\right\}$, the exterior cycle, cycle induced by $\left\{z_{i}, 1 \leq i \leq m\right\}$, the outer cycle. The number of vertices of C_{m} is $5 m$ and the number of edges of C_{m} is 10 m .

Notation 2. The vertex set and edge set of C_{m} are defined as follows: $V\left(C_{m}\right)=\left\{u_{i}, v_{i}, w_{i}, y_{i}, z_{i}, 1 \leq i \leq m\right\} \quad$ and $\quad E\left(C_{m}\right)=\left\{u_{i} u_{i+1}, v_{i} v_{i+1}, y_{i} y_{i+1}\right.$, $\left.z_{i} z_{i+1}, 1 \leq i \leq m\right\} \cup\left\{u_{i} v_{i}, v_{i} w_{i}, w_{i} y_{i}, y_{i} z_{i}, v_{i+1} w_{i}, y_{i+1} z_{i}, 1 \leq i \leq m\right\}$. See
Figure 2.

Figure 2. Convex Polytope C_{8}.
Definition 1.4 [13]. The graph G_{m} with $3,5,6$ and m-sided faces. The order, size and faces of $G_{m}, 5 m, 8 m$ and $3 m+2$. For our convenience, we call the cycle induced by $\left\{u_{i}, 1 \leq i \leq m\right\}$, the inner cycle, cycle induced by $\left\{v_{i}, 1 \leq i \leq m\right\}$, the central vertices, the set of vertices $\left\{w_{i}, 1 \leq i \leq m\right\}$ and $\left\{y_{i}, 1 \leq i \leq m\right\}$, the middle cycle vertices, cycle induced by $\left\{z_{i}, 1 \leq i \leq m\right\}$, the outer cycle. The number of vertices of G_{m} are $4 m$ and the number of edges of G_{m} is $8 m$.

Notation 3. The vertex set and edge set of G_{m} are defined as follows: $V\left(G_{m}\right)=\left\{u_{i}, v_{i}, w_{i}, y_{i}, z_{i}, 1 \leq i \leq m\right\} \quad$ and $\quad E\left(G_{m}\right)=\left\{u_{i} u_{i+1}, z_{i} z_{i+1}\right.$, $1 \leq i \leq m\} \cup\left\{u_{i} v_{i}, u_{i+1} v_{i}, v_{i} w_{i}, w_{i} y_{i}, w_{i+1} y_{i}, y_{i} z_{i}, 1 \leq i \leq m\right\}$. See Figure 3.

Figure 3. Convex Polytope G_{8}.

2. Main Results

Theorem 1. For every $m \geq 3$ the total edge irregularity strength of convex polytope D_{m} is tes $\left(D_{m}\right)=\lceil(6 m+2) / 3\rceil=2 m+1$.

Proof of Theorem 1. The vertices and edges of D_{m} are traversed in the anticlockwise direction. First we label the vertices of the inner cycle, the interior vertices then the exterior vertices followed by the vertices of the outer cycle. The edges are also labeled in the same sequence so that the edge sums are consecutive.

Input. The graph of convex polytope $D_{m}, m \geq 3$.

Algorithm.

Step 1. $f\left(u_{i}\right)=1$

$$
\begin{aligned}
& f\left(v_{i}\right)=m+1 \\
& f\left(w_{i}\right)=m+1 \\
& f\left(z_{i}\right)=2 m+1,1 \leq i \leq m
\end{aligned}
$$

Step 2. $f\left(u_{i} u_{i+1}\right)=i, 1 \leq i \leq m-1$

$$
f\left(u_{m} u_{1}\right)=m
$$

Thus the edge sums of the inner cycle are $3,4, \ldots, m+2$.

Step 3.

$$
f\left(u_{i} v_{i}\right)=i, 1 \leq i \leq m
$$

Thus the edge sums are $m+3$ to $2 m+2$.

Step 4.

$$
\begin{aligned}
& f\left(u_{i} w_{i}\right)=2 i-1 \\
& f\left(v_{i+1} w_{i}\right)=2 i, 1 \leq i \leq m \\
& f\left(v_{1} w_{m}\right)=2 m
\end{aligned}
$$

Thus the edge sums are from $2 m+3$ to $4 m+2$.

Step 5.

$$
f\left(w_{i} z_{i}\right)=m+i, 1 \leq i \leq m .
$$

Thus the edge sums are $4 m+3$ to $5 m+2$.

Step 6.

$$
\begin{aligned}
& f\left(z_{i} z_{i+1}\right)=m+i, 1 \leq i \leq m \\
& f\left(z_{m} z_{1}\right)=2 m .
\end{aligned}
$$

Thus the edge sums of the outer cycle are $5 m+3$ to $6 m+2$.
Output. $\operatorname{tes}\left(D_{m}\right)=\lceil(6 m+2) / 3\rceil=2 m+1$.
Proof of Correctness. By the above stepwise procedure we see that the edge sums obtained are all unique. Hence D_{m} is total edge k-irregular. Labeling of D_{5} is shown in Figure 4.

Figure 4. tes $\left(D_{5}\right)=11$.
Theorem 2. For every $m \geq 3$ the total edge irregularity strength of convex polytope C_{m} is tes $\left(C_{m}\right)=\lceil(10 m+2) / 3\rceil=3 m+3$.

Proof of Theorem 2. The vertices and edges of C_{m} are traversed in the anticlockwise direction. First we label the vertices of the inner cycle, interior cycle, set of interior vertices then the exterior cycle followed by the vertices of the outer cycle. The edges are also labeled in the same sequence so that the edge sums are consecutive.

Advances and Applications in Mathematical Sciences, Volume 21, Issue 10, August 2022

Input. The graph of convex polytope C_{m} for $m \geq 3$.

Algorithm.

Step 1.
$f\left(u_{i}\right)=1$
$f\left(v_{i}\right)=m+1$
$f\left(w_{i}\right)=m+3$
$f\left(y_{i}\right)=3 m$
$f\left(z_{i}\right)=3 m+3,1 \leq i \leq m$.

Step 2.

$f\left(u_{i} u_{i+1}\right)=i, 1 \leq i \leq m-1$
$f\left(u_{m} u_{1}\right)=m$.
Thus the edge sums of the inner cycle are $3,4, \ldots, m+2$.

Step 3.

$f\left(u_{i} v_{i}\right)=i, 1 \leq i \leq m$
Thus the edge sums are $m+3$ to $2 m+2$.
Step 4.
$f\left(v_{i} v_{i+1}\right)=i, 1 \leq i \leq m-1$
$f\left(v_{m} v_{1}\right)=m$.
Thus the edge sums of the interior cycle are $2 m+3$ to $3 m+2$.

Step 5.

$f\left(v_{1} w_{1}\right)=m-1$
$f\left(v_{i} w_{i}\right)=(m-3)+2 i, 2 \leq i \leq m-1$
$f\left(v_{2} w_{1}\right)=m$

5848 S. TERESA AROCKIAMARY and J. MARIA ANGELIN VISITHRA

$$
\begin{aligned}
& f\left(v_{i+1} w_{i}\right)=(m-2)+2 i, 2 \leq i \leq m-2 \\
& f\left(v_{1} w_{m}\right)=3 m-2
\end{aligned}
$$

Thus the edge sums of the alternating band of triangles are from $3 m+3$ to $5 m+2$.

Step 6.

$$
f\left(w_{i} y_{i}\right)=(m-1)+i, 1 \leq i \leq m .
$$

Thus the edge sums are $5 m+3$ to $6 m+2$.
Step 7.

$$
\begin{aligned}
& f\left(y_{i} y_{i+1}\right)=i+2,1 \leq i \leq m-1 \\
& f\left(y_{1} y_{m}\right)=m+2
\end{aligned}
$$

Thus the edge sums of the exterior cycle are $6 m+3$ to $7 m+2$.

Step 8.

$$
f\left(y_{1} z_{1}\right)=m
$$

$$
f\left(y_{i} z_{i}\right)=(m-3)+2 i, 2 \leq i \leq m-1
$$

$$
f\left(y_{2} z_{1}\right)=m+1
$$

$$
f\left(y_{i+1} z_{i}\right)=(m-1)+2 i, 2 \leq i \leq m-2
$$

$$
f\left(y_{1} z_{m}\right)=3 m-1
$$

Thus the edge sums of the alternating band of triangles are from $7 m+3$ to $9 m+2$.

Step 9.

$$
\begin{aligned}
& f\left(z_{i} z_{i+1}\right)=3 m+i-4,1 \leq i \leq m-1 \\
& f\left(z_{m} z_{1}\right)=4 m-4
\end{aligned}
$$

Thus the edge sums of the outer cycle are $9 m+3$ to $10 m+2$.
Output. tes $\left(C_{m}\right)=\lceil(10 m+2) / 3\rceil=3 m+3$.

Proof of Correctness. By the above stepwise procedure we see that the edge sums obtained are all unique. Hence C_{m} is total edge k-irregular. Labeling of C_{5} is shown in Figure 5.

Figure 5. $\operatorname{tes}\left(C_{5}\right)=18$.
Theorem 3. For every $m \geq 3$ the total edge irregularity strength of convex polytope G_{m} is tes $\left(G_{m}\right)=\lceil(8 m+2) / 3\rceil=3 m-1$.

Proof of Theorem 3. The vertices and edges of G_{m} are traversed in the anticlockwise direction. First we label the vertices of the inner cycle, the central vertices, then the middle cycle vertices followed by the vertices of the outer cycle. The edges are also labeled in the same sequence so that the edge sums are consecutive.

Input. The graph of convex polytope G_{m} for $m \geq 3$.

Algorithm.

Step 1.

$$
\begin{aligned}
& f\left(u_{i}\right)=1 \\
& f\left(v_{i}\right)=m+1 \\
& f\left(w_{i}\right)=m+3 \\
& f\left(y_{i}\right)=2 m+2
\end{aligned}
$$

$$
f\left(z_{i}\right)=3 m-1,1 \leq i \leq m .
$$

Step 2.

$$
\begin{aligned}
& f\left(u_{i} u_{i+1}\right)=i, 1 \leq i \leq m-1 \\
& f\left(u_{m} u_{1}\right)=m .
\end{aligned}
$$

Thus the edge sums of the inner cycle are $3,4, \ldots, m+2$.

Step 3.

$$
\begin{aligned}
& f\left(u_{i} v_{i}\right)=2 i-1,1 \leq i \leq m \\
& f\left(u_{i+1} v_{i}\right)=2 i, 1 \leq i \leq m \\
& f\left(u_{1} v_{m}\right)=2 m
\end{aligned}
$$

Thus the edge sums of the alternating band of triangles are form $m+3$ to $3 m+2$.

Step 4.

$$
f\left(v_{i} w_{i}\right)=(m-2)+i, 1 \leq i \leq m .
$$

Thus the edge sums are $3 m+3$ to $4 m+2$.
Step 5.
$f\left(w_{1} y_{1}\right)=2 i+1$
$f\left(w_{i+1} y_{i}\right)=2 i+2,1 \leq i \leq m$
$f\left(w_{1} y_{m}\right)=2 m+2$.
Thus the edge sums are from $4 m+3$ to $6 m+2$.

Step 6.

$f\left(y_{i} z_{i}\right)=i+6,1 \leq i \leq m$.
Thus the edge sums are $6 m+3$ to $7 m+2$.
Step 7.
$f\left(z_{i} z_{i+1}\right)=(m+4)+i, 1 \leq i \leq m-1$
$f\left(z_{m} z_{1}\right)=2 m+4$.
Thus the edge sums of the outer cycle are $7 m+3$ to $8 m+2$.
Output. tes $\left(G_{m}\right)=\lceil(8 m+2) / 3\rceil=3 m-1$.
Proof of Correctness. By the above stepwise procedure we see that the edge sums obtained are all unique. Hence G_{m} is total edge k-irregular. Labeling of G_{5} is shown in Figure 6.

Figure 6. $\operatorname{tes}\left(G_{5}\right)=14$.

Conclusion

From the above mentioned findings discussed we have proved that some polytope structures D_{m}, C_{m}, G_{m} satisfies the conditions of edge irregular total k-labeling. Our future study is extended to other families of convex polytopes.

References

[1] B. Gowri, K. Sathish and R. Bharati, On the edge domination of certain convex polytopes, Novyimir Research Journal 5(12) (2020), 32-40.
[2] Indra Rajasingh, Bharati Rajan and S. Teresa Arockiamary, Irregular total labeling of butterfly and benes networks, Informatics Engineering and Information Science (2011), 284-293.
[3] Indra Rajasingh and S. Teresa Arockiamary, Total edge irregularity of strength of series parallel graphs, International Journal of Pure and Applied Mathematics 99(1) (2015), 1121.

5852 S. TERESA AROCKIAMARY and J. MARIA ANGELIN VISITHRA

[4] Indra Rajasingh, Bharati Rajan and S. Teresa Arockiamary, Total Edge irregularity strength of butterfly networks, International Journal of Computer Applications 49(3) (2012).
[5] Indra Rajasingh and S. Teresa Arockiamary, Total edge irregularity strength of generalized uniform theta graph, International Journal of Scientific Research 7(8) (2018).
[6] Indra Rajasingh and S. Teresa Arockiamary, Total edge irregularity strength of honeycomb torus networks, Global Journal of Pure and Applied Mathematics 13(4) (2017).
[7] J. Quadras and S. Teresa Arockiamary, Total edge irregularity strength of hexagonal networks, Journal of Combinatorial Mathematics and Combinatorial Computing (2015), 131-138.
[8] J. A. Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics, $22^{\text {nd }}$ edition, 2021.
[9] Martin Baca, Stanislav Jendrol, Mirka Miller and Joseph Ryan, On irregular total labellings, Discrete Mathematics (2007), 1378-1388.
[10] Muhammad Imran, Syed Ahtshma Ul Haq Bokhary and A. Q. Baig, On the metric dimension of rotationally-symmetric convex polytopes, Journal of Algebra Comb. Discrete Appl. 3(2) 45-59.
[11] Syed Ahtshma Ul Haq Bokhary, Muhammad Imran and Usman Ali, On the total irregularity strength of convex polytope graphs, Proyecciones Journal of Mathematics 40(5) 1267-1277.
[12] Umer Ali, Muhammad bilal, Sohail Zafar and Zohaib Zahid, Some families of convex polytopes labeled by 3-total edge product cordial labeling, Journal of Mathematics 49(3) (2017), 119-132.
[13] Yu-Ming Chu, Muhammad Faisal Nadeem, Muhammad Azeem and Muhammad Kamran Siddiqui, On Sharp Bounds on Partition Dimension of Convex Polytopes 8 (2020).

