(α, β) - CUT OF INTUITIONISTIC FUZZY BI-IDEALS OF NEAR-SUBTRACTION SEMIGROUPS

P. ANNAMALAI SELVI and S. JAYALAKSHMI

Department of Mathematics
Sri Parasakthi College for Women
Courtallam-627802, Tamilnadu
Affiliated to Manonmaniam Sundaranar
University, Abishekapatti, Tirunelveli-627012
Tamilnadu, India
E-mail: ananya2015.as@gmail.com
jayarajkutti@gmail.com

Abstract

In this paper, we investigate some algebraic nature of intuitionistic fuzzy bi-ideals of near-subtraction semi group and some interesting properties of (α, β) - cuts of intuitionistic fuzzy bi-ideals of near-subtraction semi group are discussed.

1. Introduction

The fundamental concept of fuzzy set was first initiated by Zadeh [14]. The concept of intuitionistic fuzzy set was introduced by Atanassov [2] as a generalization of the notion of fuzzy set. Narmada et al. [8] introduced the intuitionistic fuzzy bi-ideals in near-rings. The notation of intuitionistic fuzzy R-subgroups of a near-ring is given by Y. B. Jun, Y. H. Yon and K. H. Kim [13]. Sharma [11] studied intuitionistic fuzzy subgroups of a group with the help of their (α, β) -cut sets. Mahalakshmi et al. [6] studied the notation of near subtraction semi groups. In this paper we study the properties of intuitionistic fuzzy bi-ideals of near-subtraction semi group with the help of their (α, β) -cut sets.

2020 Mathematics Subject Classification: 03F55, 03E72, 08A72.

Keywords: Intuitionistic fuzzy set (IFS), Intuitionistic fuzzy bi-ideal, (α, β) -cut sets, near-subtraction semigroup – Homomorphism.

Received May 17, 2021; Accepted June 7, 2021

2. Preliminaries

Definition 2.1. A non empty set X together with two binary operations "–" and "•" is said to be a near subtraction semi group (right) if it satisfies the following conditions:

- (i) (X, -) is a subtraction algebra.
- (ii) (X, \bullet) is a semi group.

(iii)
$$(x - y)z = xz - yz$$

for every $x, y, z \in X$.

It is clear that $0_X = 0$, for all $x \in X$. Similarly we can define a left near-subtraction semi group. Here after a near-subtraction semi group means only a right near-subtraction semi group.

Definition 2.2. A nonempty subset S of a subtraction semi group X is said to be a sub algebra of X, if $x - y \in S$, for all $x, y \in S$.

Definition 2.3. A fuzzy sub algebra μ of X is called a fuzzy bi-ideal of X if for all $x, y, z \in X$

- (i) $\mu(x y) \ge \min \{\mu(x), \mu(y)\}$
- (ii) $\mu(x \ y \ z) \ge \min \{\mu(x), \ \mu(z)\}$

Definition 2.4. An intuitionistic fuzzy set (IFS) A is an object having the form $A = \{(x, \mu_A(x), \lambda_A(x))/x \in X\}$ where the function $\mu_A : X \to [0, 1]$ and $\lambda_A : X \to [0, 1]$ denote the degree of membership and the degree of non membership of each element $x \in X$ to the set A, respectively, and $0 \le \mu_A(x) + \lambda_A(x) \le 1$ for all $x \in X$. We use the symbol $A = (\mu_A, \lambda_A)$ for the intuitionistic fuzzy set $A = \{(x, \mu_A(x), \lambda_A(x))/x \in X\}$.

Definition 2.5. An intuitionistic fuzzy set $A = (\mu_A, \lambda_A)$ in X is called an intuitionistic fuzzy bi-ideal of X if for all $x, y, z \in X$,

(i)
$$\mu_A(x - y) \ge \min \{\mu(x), \mu(y)\}$$

- (ii) $\mu_A(xyz) \ge \min \{\mu(x), \mu(z)\}$
- (iii) $\lambda_A(x-y) \leq \max \{\lambda(x), \lambda(y)\}$
- (iv) $\lambda_A(x \ y \ z) \le \max\{\lambda(x), \lambda(z)\}$

Theorem 2.6. $A = (\mu_A, \lambda_A)$ be an intuitionistic fuzzy bi-ideal of a near-subtraction semi group X, then $\mu_A(x) \le \mu_A(0)$ and $\lambda_A(x) \ge \lambda_A(0)$ for all $x \in X$.

Definition 2.7. Let X and Y be two near subtraction semi groups. A map $f: X \to Y$ is called near subtraction semi group homomorphism. If it satisfies the following conditions:

- (i) f(x y) = f(x) f(y)
- (ii) f(xy) = f(x)f(y) for all $x, y \in X$.

Definition 2.8. Let A be an intuitionistic fuzzy set of a universe set X. Then (α, β) -cut of A is a crisp set $C_{(\alpha, \beta)}(A)$ of the IFS A is given by $C_{(\alpha, \beta)}(A) = \{x : x \in X \text{ such that } \mu_A(x) \geq \alpha, \lambda_A(x) \leq \beta\}$ where $\alpha, \beta \in [0, 1]$ with $\alpha + \beta \leq 1$.

Proposition 2.9 [11]. If A and B be two IFS's of a universe set X, then the following hold

- (i) $C_{(\alpha, \beta)}(A) \subseteq C_{(\delta, \theta)}(A)$ if $\alpha \ge \delta$ and $\beta \ge \theta$
- (ii) $C_{(1-\beta,\beta)}(A) \subseteq C_{(\alpha,\beta)}(A) \subseteq C_{(\alpha,1-\alpha)}(A)$
- (iii) $A \subseteq B \Rightarrow C_{(\alpha, \beta)}(A) \subseteq C_{(\alpha, \beta)}(B)$
- (iv) $C_{(\alpha, \beta)}(A \cap B) = C_{(\alpha, \beta)}(A) \cap C_{(\alpha, \beta)}(B)$
- (v) $C_{(\alpha, \beta)}(A \cup B) = C_{(\alpha, \beta)}(A) \cup C_{(\alpha, \beta)}(B)$ equality hold if $\alpha + \beta \le 1$.
- (vi) $C_{(\alpha,\beta)}(\cap A_i) = \cap C_{(\alpha,\beta)}(A_i)$
- (vii) $C_{(0,1)}(A) = X$.

Proposition 2.10 [11]. Let map $f: X \to X'$ be a mapping. Then the following hold:

(i)
$$f(C_{(\alpha,\beta)}(A)) \subseteq C_{(\delta,\theta)}(f(A))$$
 for all $A \in IFS(X)$

(ii)
$$f^{-1}(C_{(\alpha, \beta)}(B)) \subseteq C_{(\delta, \theta)}(f^{-1}(B))$$
 for all $A \in IFS(X)$

3. Main Results

Proposition 3.1. Let $A = (\mu_A, \lambda_A)$ be an intuitionistic fuzzy bi-ideal of a near-subtraction semi group X, then $C_{(\alpha, \beta)}(A)$ is a bi-ideal of X if $\mu_A(0) \geq \alpha, \lambda_A(0) \leq \beta$.

Proof. Let $A = (\mu_A, \lambda_A)$ in X is called an intuitionistic fuzzy bi-ideal of a near-subtraction semi group X. Let $\mu_A(0) \ge \alpha$, $\lambda_A(0) \le \beta$. Clearly $C_{(\alpha, \beta)}(A)$ is non-empty.

Let $x, y \in C_{(\alpha, \beta)}(A)$. Then $\mu_A(x) \ge \alpha$, $\lambda_A(x) \le \beta$ and $\mu_A(y) \ge \alpha$, $\lambda_A(y) \le \beta$ which implies that $\min \{\mu_A(x), \mu_A(y)\} \ge \alpha$ and $\max \{\lambda_A(x), \lambda_A(y)\} \le \beta$ which implies that $\mu_A(x-y) \ge \alpha$ and $\lambda_A(x-y) \le \beta$ and so $x-y \in C_{(\alpha, \beta)}(A)$.

Let $x, z \in C_{(\alpha, \beta)}(A)$. Then $\mu_A(x) \ge \alpha$, $\lambda_A(x) \le \beta$ and $\mu_A(z) \ge \alpha$, $\lambda_A(z) \le \beta$ which implies that $\min \{\mu_A(x), \mu_A(z)\} \ge \alpha$ and $\max \{\lambda_A(x), \lambda_A(z) \le \beta$ Now $\mu_A(x \ y \ z) \ge \min \{\mu_A(x), \mu_A(z)\}\} \ge \alpha$ and $\lambda_A(x \ y \ z) \le \max \{\lambda_A(x), \lambda_A(z)\} \le \beta$ which implies that $\mu_A(x \ y \ z) \ge \alpha$ and $\lambda_A(x \ y \ z) \ge \beta$ and so $x \ y \ z \in C_{(\alpha, \beta)}(A)$. Hence $C_{(\alpha, \beta)}(A)$ is a bi-ideal of X.

Proposition 3.2. Let $A = (\mu_A, \lambda_A)$ be an intuitionistic fuzzy bi-ideal of a near-subtraction semi group X, then A is intuitionistic fuzzy bi-ideal of X if and only if $C_{(\alpha,\beta)}(A)$ is a bi-ideal of X, for all $\alpha, \beta \in [0,1]$ with $\alpha + \beta \leq 1$ and $\mu_A(0) \geq \alpha$ and $\lambda_A(0) \leq \beta$.

Proof. Let $A = (\mu_A, \lambda_A)$ be an intuitionistic fuzzy bi-ideal of a near-

subtraction semi group X, then $C_{(\alpha,\beta)}(A)$ is a bi-ideal of X, for all $\alpha, \beta \in [0, 1]$ with $\alpha + \beta \le 1$ and $\mu_A(0) \ge \alpha$ and $\lambda_A(0) \le \beta$ follows from proposition 3.1.

Conversely, let $A=(\mu_A,\lambda_A)$ be an intuitionistic fuzzy bi-ideal of a near-subtraction semi group X, then $C_{(\alpha,\beta)}(A)$ is a bi-ideal of X, for all $\alpha,\beta\in[0,1]$ with $\alpha+\beta\leq 1$ and $\mu_A(0)\geq \alpha$ and $\lambda_A(0)\leq \beta$. Suppose that $x,y\in X$ and $\mu_A(x-y)<\min\{\mu_A(x),\mu_A(y)\}$ and $\lambda_A(x-y)>\max\{\lambda_A(x),\lambda_A(y)\}$. Choose α,β such that $\mu_A(x-y)<\alpha<\min\{\mu_A(x),\mu_A(y)\}$ and $\lambda_A(x-y)>\beta>\max\{\lambda_A(x),\lambda_A(y)\}$. Then we get $x,y\in C_{(\alpha,\beta)}(A)$. But $x-y\notin C_{(\alpha,\beta)}(A)$, which is a contraction. Hence $\mu_A(x-y)\geq \min\{\mu_A(x),\mu_A(z)\}$ and $\lambda_A(x-y)\leq \max\{\lambda_A(x),\lambda_A(z)\}$. A similar argument shows that $\mu_A(x,y,z)\geq \min\{\mu_A(x),\mu_A(z)\}\geq \alpha$ and $\lambda_A(x,y,z)\leq \max\{\lambda_A(x),\lambda_A(z)\}\geq \beta$ for all $x,y,z\in X$. Hence $A=(\mu_A,\lambda_A)$ is an intuitionistic fuzzy bi-ideal of a near-subtraction semi group X.

Proposition 3.3. Let $A = (\mu_A, \lambda_A)$ be an intuitionistic fuzzy bi-ideal of a near-subtraction semi group X, then the set $M = \{x \in X : \mu_A(x) = \mu_A(0), \lambda_A(x) = \lambda_A(0)\}$ is a bi-ideal in near-subtraction semi group X.

Proof. Let $A = (\mu_A, \lambda_A)$ be an intuitionistic fuzzy bi-ideal of a near-subtraction semi group X. To show that $M = \{x \in X : \mu_A(x) = \mu_A(x), \lambda_A(0) = \lambda_A(0)\}$ is a bi-ideal in near-subtraction semi group X.

Let $x, y \in M$, then $\mu_A(x) = \mu_A(0)$, $\lambda_A(x) = \lambda_A(0)$ and $\mu_A(y) = \mu_A(0)$, $\lambda_A(y) = \lambda_A(0)$. Since $A = (\mu_A, \lambda_A)$ is an intuitionistic fuzzy bi-ideal of a near-subtraction semi group X, we get $\mu_A(x-y) \ge \min \{\mu_A(x), \mu_A(y)\}$ $= \mu_A(0)$. By Theorem 2.6, we get $\mu_A(x-y) = \mu_A(0)$. Also $\lambda_A(x-y) \le \max \{\lambda(x), \lambda(y)\} = \lambda_A(0)$. By Theorem 2.6, we get $\lambda_A(x-y) = \lambda_A(0)$. Hence $\mu_A(x-y) = \mu_A(0)$, $\lambda_A(x-y) = \lambda_A(0)$ and so $x-y \in M$. Thus M is a subgroup of X.

Let $x, y \in M$ and $y \in X$. Then $\mu_A(z) = \lambda_A(0)$. Since $A = (\mu_A, \lambda_A)$ is an intuitionistic fuzzy bi-ideal of a near-subtraction semi group X,

we get $\mu_A(x\,y\,z) \ge \min \{\mu_A(x), \, \mu_A(z)\} = \mu_A(0)$. By Theorem 2.6, we get $\mu_A(x\,y\,z) = \mu_A(0)$. Also $\lambda_A(x\,y\,z) \le \max \{\lambda(x), \, \lambda(z)\} = \lambda_A(0)$. By Theorem 2.6, we get $\lambda_A(x\,y\,z) = \lambda_A(0)$. Hence $\mu_A(x\,y\,z) = \mu_A(0), \, \lambda_A(x\,y\,z) = \lambda_A(0)$ and so $x\,y\,z \in M$. Thus M is a bi-ideal of X.

Corollary 3.4. Let X be a near-subtraction semi group. Then the intuitionistic fuzzy set $A = \{ \langle x, \mu_A(x), \lambda_A(x) \rangle, x \in X : \mu_A(x) = \mu_A(0), \lambda_A(x) = \lambda_A(0) \}$ of X an intuitionistic fuzzy bi-ideal of a near-subtraction semi group X.

Proof. Taking $\alpha = \mu_A(0)$, $\beta = \lambda_A(0)$, then $C_{(\alpha, \beta)}(A) = M$. Therefore by theorem 3.2, A is an intuitionistic fuzzy bi-ideal of a near-subtraction semi group X.

Theorem 3.5. If A and B be two intuitionistic fuzzy bi-ideal of a near-subtraction semi group X, then $A \cap B$ is also an intuitionistic fuzzy bi-ideal of a near-subtraction semi group X.

Proof. Since A and B be two intuitionistic fuzzy bi-ideals of a near-subtraction semi group X, by Theorem 3.1 $C_{(\alpha, \beta)}(A)$ and $C_{(\alpha, \beta)}(B)$ are bi-ideals in a near-subtraction semi group X. Since intersection of two bi-ideals in the near-subtraction semi group X is a bi-ideal in X, $C_{(\alpha, \beta)}(A) \cap C_{(\alpha, \beta)}(B)$ is a bi-ideal of X. Therefore $C_{(\alpha, \beta)}(A \cap B)$ is a bi-ideal of X (by proposition 2.9 (iv)). Hence $A \cap B$ is an intuitionistic fuzzy bi-ideal of a near-subtraction semi group X. By the Theorem 3.2, the converse is true.

Corollary 3.6. Intersection of family of intuitionistic fuzzy bi-ideal of a near-subtraction semi group X is an intuitionistic fuzzy bi-ideal in X.

Theorem 3.7. Let X and X' be two near-subtraction semi groups of X and let $: X \to X'$ be a near-subtraction semi group homomorphism. If $A = (\mu_A, \lambda_A)$ be an intuitionistic fuzzy bi-ideal of a near-subtraction semi group X', then the pre-image $f^{-1}(A)$ of A under f is an intuitionistic fuzzy bi-ideal of X.

Proof. Since $A = (\mu_A, \lambda_A)$ be an intuitionistic fuzzy bi-ideal of a near-

subtraction semi group of X, for all $\alpha, \beta \in [0, 1]$ with $\alpha + \beta \leq 1$ and $\mu_A(0) \geq \alpha$ and $\lambda_A(0) \leq \beta$ (by proposition 3.1). Therefore $f^{-1}(C_{(\alpha, \beta)}(A))$ is a bi-ideal of X. But $f^{-1}(C_{(\alpha, \beta)}(A)) = C_{(\alpha, \beta)}(f^{-1}(A))$ (by proposition 2.9 (ii)) which implies that $C_{(\alpha, \beta)}(f^{-1}(A))$ is a bi-ideal of X and by theorem 3.2 $f^{-1}(A)$ of A is an intuitionistic fuzzy bi-ideal of a near-subtraction semigroup of X.

References

- J. C. Abbott, Sets, Lattices and Boolean Algebras, Allyn and Bacon, Inc., Boston, Mass. 1969.
- [2] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set and Syst. 20 (1986), 87-96.
- [3] Gunter Pilz Near rings, The theory and its applications, North Holland Publishing Company, Amsterdam, New York, Oxford, 1983.
- [4] Y. B. Jun and H. S. Kim, On ideals in subtraction algebras, Sci. Math. Jpn. 65(1) (2007), 129-134.
- [5] O. Kazanci, S. Yamak and S. Yilmaz, On Intuitionistic Q-fuzzy R-subgroups of nearrings, International Math. Forum 2(59) (2007), 2859-2910.
- [6] V. Mahalakshmi, S. Maharasi and S. Jayalakshmi, Bi-ideals of near subtraction semi group, Indian Advances in Algebra 6(1) (2013), 35-48.
- [7] T. Manikandan, Fuzzy bi-ideals of near-rings, J. Fuzzy Math. 17(3) (2009), 659-671.
- [8] S. Narmada and V. Mahesh Kumar, On intuitionistic fuzzy bi-ideals and regularity in near-rings, International Journal of Algebra 5(10) (2011), 483-490.
- [9] O. Ratnabala Devi, On the intuitionistic Q-fuzzy ideals of near-rings, NIFS 15(3) (2009), 25-32.
- [10] P. K. Sharma, Homomorphism of intuitionistic fuzzy groups, International Mathematical Forum 6(64) (2011), 3139-3178.
- [11] P. K. Sharma, (α, β) cut of intuitionistic fuzzy groups, International Mathematical Forum 6(53) (2011), 2605-2614.
- [12] T. Tamizh Chelvam and N. Ganesan, On bi-ideals of near-rings, Indian J. Pure and Appl. Math. 18(11) (1987), 1002-1005.
- [13] Y. H. Yon, Y. B. Jun and K. H. Kim, Intuitionistic fuzzy R-subgroups of near-rings, Soochow Journal of Mathematics 27(3) (2001), 243-253.
- [14] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338-353.