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Abstract

In this paper, the notion of partial modular-like metric space from partial modular metric
spaces with some properties and examples, and observed that the restriction of partial modular-
like metric space to equivalent to dislocated (modular-like) metric space is self distance axiom.
All the results are also study in non-Archimedean modular sense. Some fixed point results via
C-class function are introduced with suitable examples to validate the results. As an application
for the existence and uniqueness of solutions for a system of Volterra integral equations is

given.
1. Introduction

In [13], Matthews introduced partial metric space which is a
generalization of metric space as self-distance is nonzero. In [3], Amini-
Harandi introduced metric like space as generalization of partial metric
space. In [6], Chistyakov introduced modular metric space which generalizes
metric space. For some nonlinear contraction fixed point theorem in modular
spaces is not possible, to remove this difficulty, in ([15], [16]) Paknazar et al.
introduced non-Archimedean modular metric spaces by changing its
triangular property. In [8], Hosseinzadeh and Paryaneh, introduced partial
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modular metric space which generalizes modular metric space. Recently, in
[18], Rasham et al. introduced modular-like metric spaces. In [21], Taki-
Eddine and Aliouche, introduced convex partial metric spaces which
generalizes convex metric spaces. In [10], Karapinar and Salimi, analyzed
that metric-like space and dislocated metric spaces are exactly same. Since
then, many researchers developed fixed point theory in these generalized
spaces (see [9], [12], [14], [17], [19)).

Using altering distance function ([11]), Alber and Guerre-Delabriere ([2]),
introduced weakly contractive mapping in Hilbert space, and in [20], Rhoades
this mapping in metric spaces. Later, in [7], Dutta and Choudhury
generalized this mapping and the results related to Banach fixed point. In [4],
Ansari introduced C-class function.

In this paper, first part is about the development of modular metric
spaces, modular-like metric spaces, partial modular metric spaces and
generalized contractive condition. The second part includes the concept of
modular-like metric spaces as a generalization of partial modular metric
spaces and partial modular-like metric spaces, some basic definitions,
properties and examples. The third part includes some fixed point results via
C-class function and examples in partial modular-like metric spaces and
modular-like metric spaces. The fourth part is on non-Archimedean modular
sense. The last part includes an application for the existence and uniqueness
of solutions for a system of Volterra integral equation.

2. Preliminaries

Throughout this paper R, denotes set of real numbers, and R*, denotes
set of positive numbers.

In [18], Rasham et al., defined modular-like metric spaces which is
exactly same as dislocated modular metric spaces (see [10]).

Definition 2.1. A function ®: (0, + ©)x X x X — [0, + o0) is called a

modular-like metric on X if for all x, y, z € X, it satisfies:
@) if ©;(x, ) =0, for all A > 0 then x =y,

(i) O, (x, y) = 0, (y, x) forall A > 0 and
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(iil) Oy ,pu(x, ¥) < Oy (x, 2) + O, (2, y) forall A, p > 0.

The pair (X, ©®,) is called modular-like metric space or dislocated

modular metric space.

If (i) is replaced by “if ©,(x, y) =0 if and only if x =y, for all A > 0”
then it is a modular metric space, (X, »,). The space will be regular
modular-like metric space if (i) is replaced by “if ©, (x, y) = 0 for some, A > 0
then x = y”. The space satisfies all conditions of modular metric space except

positiveness of w, (x, x) for each x € X.

The space will be non-Archimedean modular-like metric space if (iii) is
replaced by “Omayp (%, ¥) < 0 (x, 2) + Oy(y, 2)” for all x, ye X, and
A, u > 0.

The space will be convex modular-like metric space if (iii) is replaced by

« <
®k+p(x’ y) - A+ n

H ”»
0, (x, 2) + i 0,(y, 2)” for all x, y € X, and %, p > 0.
For a fixed x5 e X, the set Xg = Xg(xp) ={fx € X : 0Oy (x, x9) > ¢ as

L —>o,c>0 is said to be modular space, the set Xg = Xg(xg)
={xeX:3=Ax)>0, 0 (x, x9) <o is said to be convex modular-like

space.
For xy € X, and € > 0, > 0, By, (xq, €) = {x € X : | ©y(x, x9) — Oy (x, x) |
< ¢} is a closed ball in Xg.

Definition 2.2 [8]. A function p : (0, + ) x X x X — [0, + o) is called a

partial modular metric on X if the following conditions holds:
(P)x = y ifand only if p,; (x, y) = p;(x, x) = p)(y, y) for L > 0;

(P) py(x, x) < pp(x, y) for all A >0 and for all x, y € X, (self distance

axiom)

(B) p(x, ¥) = pp(y, x) for all A > 0 and for all x, y € X,

(Py) Drvp (2, ¥) = po(x, 2) + pu(y, 2)
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B {px(x, x)+ py(2, 2) + pu(2, 2) + Py, y)}
2

forall A, u >0 and x, y, z € X.

Then the pair (X, p, ) is called partial modular metric space.

From P, and P,, p,(x, y) =0 implies x = y. From P,, for all A, un > 0
and x, y,z € X, we infer that p;.,(x, y) = pp(x, 2) + p,(y, 2) (see [12]).
With these conditions except P, the space is equivalent to modular-like

metric space. But with P,, the space is called a partial modular-like metric

space. The space will be non-Archimedean partial modular-like metric space
if P is replaced by “Pmax o, u}(%: ¥) < py(x, 2) + pu(y, 2)” for all x, y € X,

and A, p > 0.

Each modular-like metric space generates a topology t,, whose base is

w?’

the family of open balls, for xy € X, and ¢ A >0, By, (xg, €)={x e X :
| p?u(x’ xO)_ pk(x’ .X') | < 6}’
For a fixed x € X, the set X, =X, (x0) ={x € X : p)(x, x9) = ¢ as

A — o}, ¢ > 0 is said to be partial modular-like metric space.

Example 2.3. Let X = R", where p, (x, y) = of(x, y), it satisfies all the

properties P, P, P; and P,. Hence it is a partial modular metric.

Example 2.4. Let X # ¢, and p, be a partial modular-like metric.
Define p;(x, y) = %max (x, y) forall A > 0. Thenitisa

(1) Partial modular-like metric space,

(i1) Non-Archimedean partial modular-like metric space,

(iii) Modular-like metric space with modular ©;,
(iv) Non-Archimedean modular-like metric space with modular @, .

Example 2.5. Let X # ¢, ®, be a partial modular-like metric. Define
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A .

0, (x, y) = {e {maxgx, y) - min (x, y)j, Vx # y, forall A >0 and x, y € X.
e max (x, y), Vx = y

Triangular inequality: for x = y,

e max (x, y) < e max (x, z) + e * max (z, )

Now, check for x =y, if x>2z>y, y>2z>x then equality occurs,

otherwisefor z>x >y, z>y>xand y >x >z x >y > z, we have
e Mmax (x, y) — max (x, y)} < e {max (x, z) - min(x, z)} + e *{max (z, y)

—min(z, y)}.

Then the space is a modular-like metric space but not a partial modular
metric space, as well as modular-like metric space because self distance
axiom may not be satisfied, ©, (x, x) £ ©; (x, y).

Remarks. (1) Every partial modular-like metric is a modular-like metric
but converse is not true.

(i1) Every non-Archimedean partial modular-like metric is a non-
Archimedean modular-like metric but converse is not true.

Definition 2.6 [21]. Let (X, p) be a partial metric space and I = [0, 1]
be the closed unit interval. A function Q: X x X x (0, + o0) - X is called a

convex structure on X if it satisfies:
plz, QAx, y, 1) < (1 -A)p(x, 2) + Ap(z, y) forall x, y, z € X and A € I.

A partial metric space (X, p) with this convex structure is called convex

partial metric space.

Definition 2.7. Partial modular-like metric spaces is a convex if we

.. A o
replace condition (Py) by py,(x, ¥) < T p(x, 2) + mp“(y, z) for all

x,y,z€X and y, & > 0. The set X,, =X}, (x9) ={x € X : 31 = Mx) > O,

Dy (x, xg) < o} is said to be partial convex modular-like metric space.

Example 2.8. Let (X, ®, ) be a modular-like metric space, and p; be a
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O, (x, ¥y)+c, ¢ >0 f #
partial modular-like metric. Define p, (x, y) ={ n(® y)+ e e orxsy

O, (x, y),c=0for x =y
forall x, y e X and A > 0.

1) If O, (x, x) < O,(x, y), then (X, p,) is partial modular-like metric

space.

() If (X, ®,;) is a convex modular-like metric space and O, (x, x)

< Oy (x, y) then (X, p,) is a convex partial modular-like metric space.
In both cases B, P, and P; are satisfied. Now we will check for P;.

P, . For (i); Di(x, ¥) = 0;(x, ) +¢c <Oy (x, 2)+c+ 0y (z, y)+c
= py(x, 2) + Py (2, ).

.. A
For (ii); p; (x, y) = Oy (x, y)+c < T n 0O, (x, 2) + 7 5 " 0;(z, )

A 1) A u)
+(x+u+x+“)c_ X+ppk(x’2)+K+“p“(y’ Z)'

Lemma 2.9. (see [8]). (1) Let (X, ©®,) be a modular-like metric space.
Then p: (0, +0)x X x X — [0, + o) is a partial modular-like metric on X,

where p;(x, y) = Oy (x, y) with O;(x, x) < Oy(x, y), for all L>0 and
x, ye X.

(i) Let (X,p,) be a partial modular metric space, and
O:(0,+0)x XxX — [0, +) be a modular-like metric space on X. If

2 _ _
P (x, y) = { P 3) = Pax, %) = pa(y, 3), % # y’ for all x,yeX,A>0

b,x=y
such that b > 0, then (X, OF) is a modular-like metric space.
Definition 2.10 (see [8], [18]). Let (X, p,) be a partial modular-like
metric space. Then,

(1) A sequence {x,} in X is convergences to a point x ¢ X if and only if for

A >0, im py(x,, x) = p)(x, x).
n—oo
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(i) A sequence {x,} in X is Cauchy if for A >0, lim p;(x,,, x,)

m, n—»o0

= lim p,(x,,, x,,) = lim p;(x,, x,).
m—o n—o

(ii1) X is complete if any Cauchy sequence in X is convergent to a point
xeX.

(iv) {x,} is a Cauchy sequence in (X, p,) if and only if it is a Cauchy

sequence in the modular-like metric space (X, ®,).
(v) (X, p) is complete if and only if (X, ©, ) is complete.
Lemma 2.11 (see [3], [10]). Let (X, ©, ) be a modular-like metric space.
Q) If ©,(x, y) =0 then ©,;(x, x) = O, (y, y) = 0.

@) If {x,} is a sequence with lim ©;(x,.1, x,) = 0 then
n—»0

0 = lim @ (x,41, %p11) = lim 0 (x,, x,).
n—o n—o

(i) If x # y then ©,(x, y) > 0.
. 2 .
(iv) Og; (x, x) < EZ?ZI O)(x, x;)1<i<n

. 2 .
(In non-Archimedean modular 0, (x, x) < EZ;; Oy (x, x;)1<i<n
W) If x,, > x, as n — © then lim ©,;(x,, y) = 0, (x, ¥).
n—»o

Note. These results are also true for partial modular-like metric spaces.

All the results are also true in the sense of non-Archimedean modular.

Definition 2.12 [4]. A mapping F : [0, o) x [0, ) — R is called C-class

function if it is continuous and satisfies following axioms:
() F(x, y) <x,
(i) F(x,y)=x=>x=0or y =0 forall x, y € [0, ).

Definition 2.13 ([4], [11]). Let ¥ be the set of altering distance function
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and ® be the set of ultra altering distance function. Define

Y, ¢ : [0, ©) — [0, ©) such that both are non-decreasing and continuous if

@) () = 0 if and only if ¢ = 0, then y is called altering distance function.

Moreover if

(i) ¢(¢) > 0,¢ > 0 and ¢(0) > O, then ¢ is ultra altering distance function

Definition 2.14 [4]. A tripled (v, ¢, F) where y € ¥, ¢ € ® and F € C
is say to be monotone if for any x,ye[0, o), x <y= F(yp(x), ¢(x))
< F(y(x), ¢(x)). Strictly monotonic if ‘<’ changes to ‘<’

Definition 2.15 [1]. Let X be a partial modular metric space. Let A, B

self mappings of X, a point a in X is called a coincidence point of A and B;
Aa = Ba. We shall call ¢ = Aa = Ba a point of coincidence (POC) of A and

B. Moreover, A and B is said to be weakly compatible if they commute at
coincidence points.

Lemma 2.16 (see [1]). Let X # ¢, A and B be two self-mappings which

are weakly compatible and have unique point of coincidence. Then A and B
have common unique fixed point.

3. Main Results

A. Fixed Point Results in partial modular-like metric spaces and
modular-like metric spaces.

Theorem 3.1. Let A and B be two self maps defined on a complete partial
modular-like metric space (X, p, ) satisfying the following conditions.

I. A(X) < B(X)
IL 9(py (Ax, Ay)) < F(p(M(x, v)), d(M(x, y)))

holds for all x, y € X, where v € ¥, ¢ € ® and F e C, such that (y, ¢, F)

is monotone and
M(x’ y) = max {pl(Bxa By)7 pl(Bxa Ax)a pk(Bx7 Ay)}

If the pair (A, B) is weakly compatible, then A and B have a unique

common fixed point.
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Proof. Let x; be any point in X. Define the sequence {y,} such that
Yn = Ax,, = Bx, 1. By II, we have

WL (Vs Yns1)) = WP (Brni1, Bryio)) = (i (Ax,, Axy 1))
< F(M(xp, xp41)) 9Dy, Xp41)) < My, %p41))) (1)
and M(x,, x,.1) = max {py(Bxy,, Brp1), p(Bry, Axy), o (B, Axyir))
= max {Dy (Yn-15 Yn ) P1.(Vn-1> ) P> Ynsa )}

= max {pk(yn—l’ yn)’ pk(yn’ yn+1)}

Case I. M(x,, x,,1) = D). (¥ns Yns1) Since y is non decreasing so from

(1), we have w(pl(yn’ yn+1)) < w(M(xn7 xn+1)) = ’l’(px(yn, yn+1))’ which is a

contradiction.
Case II. M(xn’ xn+1) = px(ym yn+1)~

So, WPy (0n> Yp41)) < Y215 ¥n)) = P1.(0n> Ypa1) < (Yn-1, ¥p). Thus,
{D.(¥> ¥n41)} 1s a non-increasing sequence of non-negative real numbers.

Let
im p; (Y, Yns1) =72 037 € [0, o).
n—>w
Now we show that r = 0. Taking n — « in (1); y(r) < F(y(r), ¢(r)) So,
Y(r) = 0 or ¢(r) = 0; shows r = 0.
Now we will show that {y,} is a Cauchy sequence in X; i.e., lim {y,} = 0.

n—o

In the contrary, we suppose {y,} is not a Cauchy sequence. Since,
im p; (¥, Yn41) =0 2)
n—w

so, we can find € >0 and subsequences {¥,()} {¥n(k)} of {y,} such that
n(k) is the smallest index for which n(k)>m(k)>k and

P.(Ym(k)> In(k)) 2 €& 1. Dr(Ym(k)> Yn(k)-1) = € Now,

€ < D (Ym(k)> Yn(k) = PrOm(k)> Yn(k)-1) + PrVm(k)-1> In(k))
2 2

Advances and Applications in Mathematical Sciences, Volume 21, Issue 10, August 2022



6006 DIPANKAR DAS, SANTANU NARZARY and NIRANJAN BORA

<e+ p% (Vim(k)-1> Yn(k))
Taking k — oo and using (2) we get, lim p; (y(x)> ) = € (3)
P.(Ym(k)-15 Yn(k)) < p% (Ym(k)=1> In(k)) + p% (Ym(k)s Yn(k)) (4)
Taking & — o> and using (2) and (3) we get, lim p; (n(s) 1. Ya(h) = €
Pr(Ym(k)-1> In(k)) < p% (Vim(k)-15 In(k)) + p% (Ymi(k)s Yn(k))
Taking k — oo and using (2) and (3) we get, Tm p (yin(e)-1, u(h) = ¢

(®)

P (m(k)-1> In(k)-1) < Pr Ym(k)-1> Yn(k)) + Pr.Vm(k)s Yn(k)-1)
2 2
< Pa Om(k)-1> Yn(k) < PrVm(k)> In(k) + Pr. Ym(k)-15 Yn(k))
4 4 2
Taking & — o0 and using (2) and (3) we get, lim pk(ym(k)—l’ yn(k)_l) =€
n—o0

(6)
Now, (D). (Vm(k)> In(k)) = Y(21.(A%pmk)s Axp(r)))
= F(M(xm(k)> Xn(r)s QM (Xp(r)s %n(r))) < WM (Xp(r)s Xn(r)))
M(xpy()s Xn(r)) = max Py (B p(r)s Benr))s Pr(Bp(r)s AXn(r));
Py.(BXp(r)> Axp(r))}
= max {Py (Ym(k)-15 Yn(k)-1) PrYm(k)-15 Yn(k)h Pr.(Ym(k)-1> In(k))}
Using (2), (3 (4), (5) and (6) we get. lim M(xp(a). %) = ¢ (7
YL (Ym()s In(r) < FOM(Xmr)s %nii))s (M (Xp(r)s Xn(r))))

Taking k£ — o and using (3) and (7) we get
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Y(e) < F(y(e), () so, y(e) =0 or ¢(e) =0, which shows ¢ =0, ie.,

Lim py (¥m(k)> Yn(k)) = 0- Hence {y,} is a Cauchy sequence. Since X is
n—o

complete so there exists ¢ € X such that lim y, = ¢
n—0

Thus  lim p;, (v, ¥p) = lim p,(v,, ¢) = p(q, @) =0, and lim Ax,
n—o n—o0

n—»0
lim Bx,,.; =q¢;n=0,1,2,....

n—o0o

Suppose there exists a point ve X such that ¢ = Bv. We claim
Av = Bu.

Wwy (Axy, Av)) < F(p(M(xy, v)), §(M(xy, ) ®)
where
M(xy, v) = max {py (Bxy,, Bv), pp(Bxy, Axy), p.(Bu, Av)}
= max {p) (¥p—1, B), pp(¥n-1, Ax,), py,(Bo, Av)}
M(x,, v) = max {p, (g, @) Pr(a: @), py(g, Av)}.
Taking n — o, in (8) Av = q = Bv, POC(A, B) = §.
Since, (A, B) weakly compatible, so Ag = Bq. If possible let,
Aq =Bg =q and Aq = Bq =r.
Wb (r, 4) = Y(pr(Ag, Qq)) < F(y(M(q, 9)), #(Ml(g. ))
M(r, v) = max {p,(Bq, Bq), p(Ba, Aq), pp(Ba, Aq)} = py.(r, q')

By definition of C-class function we have r = ¢'. Hence the pair (A, B)
have a unique point of coincidence. Since the pair is weakly compatible so by

the Lemma 2.16, A and B have common unique fixed point.

It is observed above theorem is true for modular-like metric space with all
the conditions stated in the theorem. As modular-like metric spaces
generalized partial modular-like metric spaces. So, above theorem will be

more generalized in modular-like metric spaces.

Corollary 3.2. Let A and B be two self maps defined on a complete
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modular-like metric space (X, ©,) satisfying the following conditions I and II
of Theorem 3.1. If the pair (A, B) is weakly compatible, then A and B have a

common fixed point.

Example 3.3. Let A and B be two self maps defined on a complete partial
modular-like metric space (X, p,) where X = R*. Let Ax =1, Bx = 2x — 1.

Let 3 :[0, 0) — [0, ) by w(t)=%t,¢:[0, ©) = [0, ©) by (I)(t):%t
and F : [0, ) - [0, 0) > R by F(S,T)=rS,0<r <1. Then (y, ¢, F) is

monotone. (see [5])

1. Clearly, A(X)={l} c B(X)=R". The pair POC(A, B)# ¢, and
weakly compatible at that point.

2. Y(p) (Ax, Ay)) < M(x, y) = yp(py(Ax, Ay)) < r(% M(x, y))

Yo (Ax, Ay)) < F(p(M(x, y)), §(M(x, ¥)))
M(x7 y) = max {p;\’(BX', By)’ p}»(Bx’ AJC), pK(By’ Ay)}

It satisfies all the condition of Theorem 3.1. So {1} is the unique fixed
point of A and B.

B. Fixed Point Results in non-Archimedean partial modular-like
metric spaces and non-Archimedean modular-like metric spaces.

In this part, for any X = ¢ and two self maps A and B the following
nonlinear contraction is taken in the sense of non-Archimedean modular (see

[10], [15], [16])

Ax) + py(Bx, Ay)]

M(x, ) = max {py(B, By), py(Bx, Ax), py(By, Ay), 2B A4) b

Vax,ye X

Theorem 3.4. Let A and B be two self maps defined on a complete non-
Archimedean partial modular-like metric space (X, p;) satisfying the

following conditions:
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I. AX) c B(X)
IL y(p(Ax, Ay)) < Fp(M(x, y)), §(M(x, ¥)))

holds for all x, y € X, where v € ¥, ¢ € ® and F e C, such that (y, ¢, F)
is monotone. If the pair (A, B) is weakly compatible, then A and B have a

unique common fixed point.

Proof. Let x;, be any point in X. Define the sequence {y,} such that
Yn = Ax,, = Bx, 1 ByIl, we have

YL (Vs Yns1)) = WDr (B, Brpio)) = Y(py(Axy, Ax,y i)

< F(w(M(xn’ xn—o—l))’ (I)(M(xn’ xn+1)) < w(M(xn’ xn+1)) (9)

Since,

[P1 (Vs ) + L1 15 V)] o [P1Ons ) + D115 Yn) + P1(Ons Yni1)]
2 = 4

M(xm xn+1) = max {pl(an’ an+1)’ pl(an’ Axn)’ pl(erH—l’ Axn+1)’
and [pl(an+1’ Axn) + pl(an’ Axn+1 )]}
4

b + —1?
= max {pl(yn+1’ yn)’ pl(yn—l’ yn)’ pl(yn’ yn+1)’ [pl(yn yn) fl)l(yn ! yn+1)]}

= max {Py (¥p-1, ¥n), PL > Yns1) PLOVns> )}
Case I. M(x,, x,.1) = p1(%, ¥n)- Since 9 is non decreasing so from (9),

we have W(pl(yna yn+1)) < W(M(xn’ xn+1)) = W(pl(yn’ yn))’ which is a
contradicts property P.

Case II. M(x,, %,,1) = 2.(n> Yn+1) Since ¥ is non decreasing so from

<9>7 we have w(pl(yn’ yn+1)) < w(M(xn’ xn+1)) = w(pl(yn’ yn+1))’ which is a
contradiction.

Case III. M(xn’ xn+1) = pk(ynfl’ yn)-

So, Y(DL(Vns Yna1)) < UL (Vn-1> Y1) = PL(Vns Yna1) < PLVn1s In)-

Thus, {p1(¥,,> Yns1)} 1s a non-increasing sequence of non-negative real

numbers. Let
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im p(yps Yps1) =7 = 0;r € [0, ).
n—o

Now we show that r = 0. Taking n — o in (9); y(r) < F(y(r), &(r)) So,
Y(r) =0 or ¢(r) = 0, which shows r = 0. Now we will show that {y,} is a

Cauchy sequence in X; i.e., lim{y,} = 0. In the contrary, we suppose {y,} is
n—

not a Cauchy sequence. Since,

Lim py (¥, Yn41) =0 (10)
n—o0o

so, we can find e >0 and subsequences {y,)} {¥nx)} of {y,} such that

n(k) is the smallest index for which n(k) > m(k) > k and pi(¥m(r)s Yn(k)) = €

ie., pl(ym(k)’ yn(k)—l) > €. Now,
€ < P1(m(k) Ynk) = PLm(k)> Yn(k)-1) + PLYm(k)-1> Yn(k))
< e+ P1(Ym(k)-1> Yn(k))

Taking k& — o and using (10) we get, lim pl(ym(k), yn(k)) = (11)
n—w

PLn(k)-1 Ym(k)) < PL(Vn(k)-1> Ym(k)) + PL(Vn(k)> Ym(k))
Taking & — o and using (10) and (11) we get, lim pl(ym(k),l, yn(k)) =e
n—0
(12)
PLm(k)-1> Yn(k)) < PL(Ym(k)-1> Yn(k)) + P1(Im(k)> In(k))
Taking k£ — « and using (10) and (11) we get, lim pl(ym(k)—l’ yn(k)) =€
n—0
(13)
PLYm(k)-1> Yn(k) < PLm(k)-1> Yn(k)) + P1(Vm(k)> Yn(k))
< D1 m(k)-15 Yn(k) + PLm(k)s Yn(k)) + P1(Yn(k)-15 Ym(k))
Taking k& — o and using (10) and (11) we get, lim pl(ym(k)_l, yn(k)) =€
n—o
(14)
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Now,
Y1V m(k)> In(k) = Y(P1(AX 1), Axp(r))) < Y (Xp(r)s X))
M%) %n(r)) =

max {p; (B ) Ben())h PUBXp() AXin(ie))s PL(BXp(r)s A1),

(D1 (Bxy(1)s AXpa()) + P1(BX(r)s Axn(k))]}
4

= max {P1 (Ym(k)-15 Yn(k)-1) PLVmk)-1> Ym(k)» PL(Vn(k)-15 n(k)):

(D1 (Vn(k)-15 Ym()) + PLm()15 yn(k))]}
1

Using (10), (11), (12), (13) and (14) we get, lim M(xm(k), xn(k)) =e (15)

Y1 (Ym(r)s In(r) < FQOM(xp(r)s %ne))s QM (%p(r)s Xn(k))

Taking & — o and using (11) and (15) we get y(€) < F(y(e), d(€)) so,
Y(€) = 0 or ¢(e) = 0, which shows ¢ = 0.
Hence {y,} is a Cauchy sequence. Since X is complete so there exists

q € X such that lim y, =q.

n—»o0

Thus Lim py(yy, ¥) = im py(y,, @) = pi(g, q) = 0,
n—o0 n—o0

and lim Ax,, = lim Bx, ; =q;n=0,1,2, ....
n— n—>0

Suppose there exists a point v e X such that ¢ = Bv. We claim
Av = Bu. This shows POC(A, B) # ¢. If possible, suppose there exists a
point ve X such that ¢' = Av = Bv. Now we show unique point of

coincidence:
Y(p1(Ax,, Av)) < F(p(M(x,, v)), §(M(xy, v)) (16)

M(x, v)
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+ pr(Bry, Av)],

Bv, Ax
 max {py(Br,, Bo), py(Br,, Ax,). py(Bo, Av), 2B At) ¢

Bu, + 1, A
= max (p, (1. B0} 201 3n) 2 (Bo, Av), LB 20) = 2Oy, AV))

Taking n — oo, in (16) Av = g = Bv, POC(A, B) # ¢.

Since, (A, B) weakly compatible, so Ag = Bq. If possible, let
Aq = Bgq =q and Aq = Bq =r.

Ypi(r, @) = w1 (Ag, Ag)) < F(y(M(q, q)), #(M(q, q)))
M(r, q') = max {p,(Bq, Bq), p1(Bq, Aq), p\(Bq, Aq),

Bq', Ar)+ p;(Br, Aq' ,
[p1(Bg )4 piBr AL)y )

By definition of C-class function we have ¢ = Av, hence g = Bv = Auv.
Hence, we can show (A, B) have unique point of coincidence. Since the pair

is weakly compatible so by the Lemma 2.16, A and B have common unique

fixed point.

Corollary 3.5. Let A and B be two self maps defined on a complete non-
Archimedean modular-like metric space (X, ®,) satisfying the following

conditions 1 and 11 of Theorem 3.3. If the pair (A, B) is weakly compatible,

then A and B have a common fixed point.

Example 3.6. Let A and B be two self maps defined on a complete partial
modular-like metric space (X, p;) where X = R*. Let Ax =1, Bx = 2x — 1.

Let v :[0, ) = [0, ©) by (¢) = %t, ¢ : [0, ©) — [0, ©) by o) = ZLrt
and F : [0, ©) — [0, ©) - R by F(S,T)=rS,0<r <1. From Example 3.3
and Theorem 3.4we get, {1} is the unique fixed point of A and B.

4. Application

Consider the set of Volterra type integral equations: ([14], [17])
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@ o(0) = g0)+ [ ;G(t, s, u(t))ds, where ¢ € [0, k]= I c R and G : [0, k]
x[0, k]x R — R;i = {1, 2} and g : R —> R are continuous functions.

Let C(I, R) be the set of real continuous functions defined on I and
A, B: C(I, R) —» C(I, R) self-mappings defined by

(i) Avlt) = gt) + [ Glt, 5, vi)ds, Yo e C(I, R), t e . Clearly v(t) is a
solution of (i) if and only if it is a common fixed point of A and B.

Theorem 4.1. Let

L. For any v € C(I, R), there exist r € C(I, R) such that Av = Br.

II. ABu(¢) = BAu(t) whenever Au(t) = Bu(¢) forall t € I, v e C(I, R).

III. There exists a continuous function b: I x I — R such that for all
t,sel and v, z € C(I, R)

|Glt, 5, WG)) — Glt, 5, 265)| < £(t, 9] Bols) — Be(s)|.
IV. sup;cfo, ] I(: f(¢, s)ds < 1.

Then the system (i) of integral equations has solutions v* e C(I, R).
Proof. For x € X = C(I, R).

Define | x|, n[laz;e]ﬂ x(t)|}, is taken arbitrarily the modular-like metric
tel0,

-\
t)—yE)|;x #+
induced by the norm is O, (x, y)={tg[l(%)l(e]{e |#(6) = 2O # ¥ for all

bx =y
b>20,A>0x,yeX.
From (), it is clear that A(C(I, R)) < B(C(I, R)).

From (II), the pair (A, B) are weakly compatible.
t
| Av(t) — Az(t)] < J | G(t, s, v(s)) — G(t, s, z(s))|ds
0
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t
< I f(t, s)| Bu(s) — Bz(s)|ds
0

< | Bu(s) — Bz(s)]

- < max {e | Bu(t) — Bz(s
= ma (o] 40) - 42(0) | < mas (o] Bolt) - Be(o)}

— ©,(Aut), Az(t)) < ©,(Bu(t), Bx(t)) < Mult), 2(t))
Let y : [0, «0) — [0, ) by ¢(T') = %T;q) [0, ) > [0, @) by ¢(T') = %T

and F : [0, ©) = [0, ) - R by F(S, T)=¢qS,0<r <1. Then (v, ¢, F) is

monotone.
0, (Av(t), A2(t)) < F(p(M(v, 2)), f(M(, 2)))
where
M(v, z) = max {®, (Bv, Bz), ©,(Bv, Av), ©;(Az, Bz)}

All the conditions of Corollary 3.2 are satisfied. Therefore A and B have a

common unique fixed point v* € C(I, R).

Conclusions

Modular-like metric spaces and dislocated modular metric spaces are
exactly same. Partial modular-like metric spaces cannot be equivalent to
dislocated modular metric spaces unless we drop small self distance axiom.
Because of the restriction of self distance axiom dislocated modular metric
spaces generalized partial modular metric spaces and partial modular-like
metric spaces. All the results are also true in the sense of non-Archimedean
modular.
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