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Abstract 

Numerous iterative methods are available in literature for computing multiple roots of 

nonlinear equations. These methods are categorized by their order, informational efficiency and 

efficiency index. Another important criterion for comparing the methods is to study their 

complex dynamics using the graphical tool, namely basin of attraction. In this paper, we 

consider several methods of order four and characterize their basins of attraction by applying 

them on different polynomial functions. 

1. Introduction 

A root  is said to be of multiplicity  of a nonlinear equation   ,0tf  if 

   1,,2,1,0,0  mf m  and    .0f  

A plethora of higher order iterative methods, independent or based on the 

Newton’s method (see [11]) 
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have been derived and analyzed in literature [1-5, 7-10, 12-15, 128, 20]. The 

methods are categorized by their order of convergence (say, q), and the 

number of function and derivative information (say, p) required per step. To 

check the effectiveness of such methods, there are two efficiency measures 
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(see [16]) defined as 
p

q
I   (informational efficiency) and pqE

1

  (efficiency 

index). Besides these the other measure, introduced recently, is to study 

complex dynamics of iterative methods. Kung and Traub [6] in 1974 

introduced the concept of optimality criteria of convergence order. According 

to their hypothesis multipoint methods without memory requiring 1p  

function evaluations may attain order of convergence at most .2p  The 

iterative schemes satisfying this criteria are usually called optimal methods 

(see, for example, [6]). An optimal method of order 2q  is the well known 

Newton’s method defined by (1). 

In this paper, we study the complex dynamics of some existing optimal 

fourth methods for computing multiple roots. For example, we consider the 

fourth order methods proposed by Li-Liao-Cheng [7], Li-Cheng-Neta [8], 

Sharma-Sharma [13], Zhou-Chen-Song [20], Soleymani-Babajee-Lotfi [15] 

and Kansal-Kanwar-Bhatia [5]. Rest of the paper is organized as follows. In 

Section 2, the optimal fourth order methods are introduced. In Section 3, the 

complex dynamics in the form of basins of attraction is studied. Section 4 

contains the concluding remarks. 

2. Methods for Relative Examination 

Let us tabulate the optimal fourth-order methods that are to be 

examined. These are the methods by Li-Liao-Cheng [7], Li-Cheng-Neta [8], 

Sharma-Sharma [13], Zhou-Chen-Song [20], Soleymani-Babajee-Lotfi [15] 

and Kansal-Kanwar-Bhatia [5]. 
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Li-Cheng-Neta method (LCN): 
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Sharma-Sharma method (SS): 
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Zhou-Chen-song method (ZCS): 
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Soleymani-Babajee-Lotfi method (SBL): 
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Kansal-Kanwar-Bhatia method (KKB): 
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3. Basins of Attraction 

In this section, we present complex geometry of the above considered 

methods with a tool, namely basin of attraction, by applying the methods to 

some complex polynomials  .zF  Basin of attraction of the root is an useful 

geometrical tool for comparing convergence regions of the iterative methods 

[17, 19]. To start with, let us recall some basic ideas concerning with this 

graphical tool. 
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Let  :R  be a rational mapping on the Riemann sphere. We define 

orbit of a point 0z  is defined as the set        .,,,,, 00
2

00  zRzRzRz n  

A point 0z  is a fixed point of the rational function R if it satisfies the 

equation   .00 zzR   A point 0z  is said to be periodic with period 1m  if 

  ,00 zzRm   where m is the smallest such integer. A point 0z  is called 

attracting if   ,10  zR  repelling if   10  zR  and neutral if 

  .10  zR  Moreover, if   ,00  zR  the fixed point is super attracting. 

Let 
fz  be an attracting fixed point of the rational function R. The basin of 

attraction of the fixed point 
fz  is defined as 

     .,: 00   nzzRzzA f
n

f   

The set of points whose orbits tend to an attracting fixed point 
fz  is called 

the Fatou set. The complementary set, called the Julia set, is the closure of 

the set consisting of repelling fixed points, which establishes the borders 

between the basins of attraction of the roots. Attraction basins allow us to 

assess those starting points which converge to the concerned root of a 

polynomial when we apply an iterative method, so we can visualize which 

points are good options as starting points and which are not. 

We select 0z  as the initial point belonging to D, where D is a rectangular 

region in  containing all the roots of the equation   .0zf  An iterative 

method beginning at a point Dz 0  can converge to the zero of the function 

 zF  or diverge. In order to assess the basins we consider 10-3 as the 

stopping criterion for convergence up to maximum of 25 iterations. If this 

tolerance is not achieved in the required iterations, the procedure is 

dismissed with the result showing the divergence of the iteration function 

started from .0z  While drawing the basins the following criterion is adopted: 

A color is allotted to every initial guess 0z  in the attraction basin of a zero. If 

the iterative formula begins at the point 0z  converges then it forms the 

basins of attraction with that assigned color and if the formula fails to 

converge in the required number of iteration then it is painted with black 

color. 



SUNIL KUMAR, JANAK RAJ SHARMA and DEEPAK KUMAR 

Advances and Applications in Mathematical Sciences, Volume 21, Issue 1, November 2021 

46 

To view the complex geometry, the above considered methods are applied 

to the following five problems: 

Example 1. Firstly, consider the function    22
1 1 zzF  having two 

roots  1,1  with multiplicity .2  Basins of attraction assessed by the 

methods are shown in Figure 1 ((i)-(vi)). A color is allotted to each basin of 

attraction of the concerned root. In particular, we assign red and green colors 

corresponding to the roots −1 and 1. 

 

Figure 1. Basins of attraction for methods in polynomial  .1 zF  

Example 2. In the next trial, let us consider the polynomial 

   23
2 zzzF   having three roots  ii,,0   with multiplicity .2  The 

result for the basins of attraction are depicted in Figure 2 ((i)-(vi)). To 

distinguish the basins, the red, green and blue colors have been allotted to 

the roots ii ,  and 0, respectively. 

Example 3. Now, we consider the polynomial    324
3 2

1

4

9
 zzzF  

having four roots  2,2
2

1
,

2

1
  with multiplicity .3  The graphics of 

basins of attraction obtained by the methods are shown in Figure 3 ((i)-(vi)). A 

color is allotted to each basin of attraction of a root. The colors chosen are red, 

green, blue and yellow corresponding to roots .
2

1
,2,2   and .

2

1
 

 

Figure 2. Basins of attraction for methods in polynomial  .2 zF  
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Figure 3. Basins of attraction for methods in polynomial  .3 zF  

Example 4. Consider the fifth degree polynomial    45
4 zzzF   

which has five roots  ii  ,,1,1,0  of multiplicity .4  The corresponding 

basins of attraction analyzed by the methods are shown in Figure 4 ((i)-(vi)). 

The basins so generated are distinguished by the colors red, purple, blue, 

yellow and green corresponding to basins of the roots 1,1,,  ii  and 0. 

 

Figure 4. Basins of attraction for methods in polynomial  .4 zF  

Example 5. Lastly, consider the polynomial    5246
5

4

9

4

9
 zzzzF  

having six roots  iiii
2

3
,

2

3
,,1,1   with multiplicity .4  The 

corresponding basins of attraction are given in Figure 5 ((i)-(vi)). The colors, 

assigned to characterize the basins of attraction, are sky-blue, green, yellow, 

blue, red and purple for the roots iii
2

3
,,1,1   and ,

2

3
i  respectively. 

Along with basins of attraction we also provide some other useful 

information of the performance of methods in Tables 1-5, which include: 

 OC: Order of convergence. 

 

Figure 5. Basins of attraction for methods in polynomial  .5 zF  
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 E-Time: Elapsed CPU time (in seconds) consumed by a method to draw 

the basins. 

 IP: Mean of iterations, measured in iterations/point. 

 NC: Nonconvergent points, as a percentage of the total number of 

starting points evaluated. 

 IC: Mean of iterations, measured in iterations/(point–nonconvergent 

points). 

From the above graphics we can observe that, in general, the methods by 

Li-Liao-Cheng (LLC) and Sharma-Sharma (SS) perform better, since in the 

examples either they have no divergent points or very few divergent points. 

This feature can also be verified by the numerical results shown in the Tables 

.51   In example 1, Li-Liao-Cheng (LLC), Li-Cheng-Neta (LCN) and 

Soleymani-Babajee-Lotfi (SBL) methods show divergent nature at some 

points as indicated by black spots in the pictures. In example 2 all methods 

have some divergent points except SS. In examples 3, 4 and 5, the methods by 

Li-Liao-Cheng (LLC) and Sharma-Sharma (SS) perform better than rest of 

the methods. The elapsed CPU time, to generate the graphics, is small in LLC 

than rest of the methods, which indicates less complexity of this method. 

Table 1. Performance of methods for example 1. 

Methods LLC LCN SS ZCS SBL KKB 

OC 4.00 4.00 4.00 4.00 4.00 4.00 

E-Time 44.34 61.62 46.21 58.59 50.79 61.56 

IP 3.06 3.06 2.84 3.50 3.06 3.35 

NC 1.98 1.98 0.40 0.51 1.98 0.45 

IC 2.62 2.62 2.75 3.39 2.62 3.25 

Table 2. Performance of methods for example 2. 

Methods LLC LCN SS ZCS SBL KKB 

OC 4.00 4.00 4.00 4.00 4.00 4.00 

E-Time 62.37 82.12 65.19 91.85 72.48 95.44 

IP 3.74 3.74 3.49 4.85 3.74 4.64 

NC 2.13 2.13 0.00 1.33 2.13 0.81 

IC 3.28 3.28 3.49 4.57 3.28 4.47 
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Table 3. Performance of methods for example 3. 

Methods LLC LCN SS ZCS SBL KKB 

OC 4.00 4.00 4.00 4.00 4.00 4.00 

E-Time 73.69 112.21 87.91 116.66 117.30 123.96 

IP 3.57 4.61 3.91 4.96 5.13 5.02 

NC 0.40 5.21 0.40 2.69 7.42 2.87 

IC 3.49 3.49 3.83 4.41 3.54 4.43 

Table 4. Performance of methods for example 4. 

Methods LLC LCN SS ZCS SBL KKB 

OC 4.00 4.00 4.00 4.00 4.00 4.00 

E-Time 69.67 99.53 85.71 102.71 111.62 120.68 

IP 4.02 4.51 4.54 5.25 5.83 5.70 

NC 0.00 1.96 0.15 2.75 8.90 3.98 

IC 4.02 4.10 4.51 4.69 3.96 4.90 

Table 5. Performance of methods for example 5. 

Methods LLC LCN SS ZCS SBL KKB 

OC 4.00 4.00 4.00 4.00 4.00 4.00 

E-Time 115.39 161.99 162.51 207.81 269.07 232.63 

IP 4.84 6.12 6.45 7.55 10.60 8.02 

NC 0.08 7.24 1.21 10.65 31.68 13.15 

IC 4.84 4.65 6.03 5.48 3.93 5.45 

 

4. Conclusions 

We have analyzed the basins of attraction of multiple zeros by employing 

some existing optimal fourth order techniques for computing multiple zeros of 

functions. These graphics are very useful tool to observe the behavior and 

suitability of any method. If we choose an initial guess 0t  in a domain where 

different basins of the roots meet each other, it is uncertain to predict which 

root is going to be reached by the iterative method that begins at .0t  Thus, it 

is not advisable to start the methods with the initial guess lying in such a 

domain. Also, black zones and the zones with different colors (i.e. borders) are 
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not suitable to choose the initial guess 0t  when we want to achieve a 

particular root. The most attractive graphics appear when we have very 

intricate frontiers of the basins. Such graphics belong to the cases where the 

iteration is failing with respect to the initial guess. We conclude the paper 

with the remark that among all the considered methods, the methods of 

Sharma-Sharma and Li-Liao-Cheng show the excellent convergence behavior. 
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