

STUDY ON OPERATORS IN 2-FUZZY 2-INNER PRODUCT SPACE

THANGARAJ BEAULA and R. ABIRAMI

PG and Research, Department of Mathematics (Affiliated to Bharathidasan University Tiruchirappalli) T.B.M.L. College Porayar-609307, India E-mail: edwinbeaula@yahoo.co.in

PG and Research, Department of Mathematics (Affiliated to Bharathidasan University Tiruchirappalli) D.G.G.A. College (W) Mayiladuthurai-609001, India E-mail: mithraa.abi@gmail.com

Abstract

The study on operators in 2-fuzzy 2-inner product space is introduced in this paper. Notions such as self-adjoint fuzzy operator, normal fuzzy operator and unitary operator are coined and some properties of such fuzzy operators are discussed.

1. Introduction

In 1965, Zadeh [13] introduced the idea of fuzzy sets, that established a new revolutionary field in mathematics. Katsaras [6] introduced the concept of a fuzzy norm on a linear space in 1984. Chen and Mordeson [2], Bag and Samanta [1], and others have provided several definitions of fuzzy normed spaces. Somasundaram and Thangaraj Beaula [10] coined the notion of 2fuzzy 2-normed linear spaces, and Thangaraj Beaula and Gifta [12] further developed some standard results. C. R. Diminnie, S. Gahler and A. White [3] introduced the idea of 2-inner product space. Further definitions of fuzzy inner product space [4, 7] and fuzzy normed linear space [5, 8, 9] were given

2020 Mathematics Subject Classification: Primary 03E72; Secondary 46S40. Keywords: self-adjoint fuzzy operator, normal fuzzy operator and unitary operator. Received October 23, 2021; Accepted November 11, 2021

1304 THANGARAJ BEAULA and R. ABIRAMI

by various authors. In [11], Vijayabalaji and Thilaigovindan proposed fuzzy n-inner product space as a generalization of then-inner product space. This paper introduces the study on operators in 2-fuzzy 2-inner product space is introduced in this paper. Various operators such as self-adjoint fuzzy operator, normal fuzzy operator and unitary operator are coined in this generalized fuzzy setting and their properties are discussed.

2. Preliminaries

Definition 2.1. A fuzzy set is defined as $\widetilde{A} = \{(x, \mu_A(x)) : x \in X\}$, with a membership function $\mu_A(x) : X \to [0, 1]$, where $\mu_A(x)$ denotes the degree of membership of the element x to the set A.

Definition 2.2. Let X be a non empty set and F(X) be the set of all fuzzy sets in X. If $f \in F(X)$ then $f = \{(x, \mu)/x \in X \text{ and } \mu \in (0, 1]\}$. Clearly f is bounded function for $|f(x)| \leq 1$. Let K be the space of real numbers then F(X) is a linear space over the field K where the addition and scalar multiplication are defined by $f + g = \{(x, \mu) + (y, \eta)\} = \{(x + y), (\mu, \eta)/(x, \mu) \in f \text{ and } (y, \eta) \in g\}$ and $kf = \{(kf, \mu)/(x, \mu) \in f\}$ where $k \in K$.

The linear space F(X) is said to be normed space if for every $f \in F(X)$ there is associated a non-negative real number ||f|| called the norm of f in such a way,

(i) || f || = 0 if and only if f = 0. For, $|| f || = 0 \Leftrightarrow \{|| (x, \mu) || / (x, \mu) \in f\} = 0$ $\Leftrightarrow x = 0, \mu \in (0, 1] \Leftrightarrow f = 0$ (ii) $|| kf || = |k| || f ||, k \in K$.

For

$$\| kf \| = \{ \| k(x, \mu) \| / (x, \mu)f, k \in K \}$$
$$= \{ \| k \| \| x, \mu \| / (x, \mu) \in f \} = \| k \| \| f \|$$

(iii) || f + g || < || f || + || g || for every $f, g \in F(X)$.

For,

$$\| f + g \| = \{ \| (x, \mu) + (y, \eta) \| / x, y \in X, \mu, \eta \in (0, 1] \}$$
$$= \{ \| (x + y), (\mu \land \eta) \| / x, y \in X, \mu, \eta \in (0, 1] \}$$
$$\leq \{ \| (x, \mu \land \eta) \| + \| (y, \mu \land \eta) \| / (x, \mu) \in f \text{ and } (y, \eta) \in g \}$$
$$= \| f \| + \| g \|$$

Then $(F(X), \|\cdot\|)$ is a normed linear space.

Definition 2.3. A 2-fuzzy set on X is a fuzzy set on F(X).

Definition 2.4. Let F(X) be a linear space over the real field K. A fuzzy subset N of $F(X) \times F(X) \times R(R)$, the set of real numbers) is called a 2-fuzzy 2-norm on X (or fuzzy 2-norm on F(X)) if and only if,

 (N_1) for all $t \in R$ with $t \leq 0$, $N(f_1, f_2, t) = 0$.

 (N_2) for all $t \in R$ with $t \leq 0$, $N(f_1, f_2, t) = 1$ if and only if f_1 and f_2 are linearly dependent.

 $(N_3) N(f_1, f_2, t)$ is invariant under any permutation of f_1, f_2 .

 (N_4) for all $t \in R$, with $t \le 0$, $N(f_1, cf_2, t) = N(f_1, f_2, t / |c|)$ if $c \ne 0, c \in K$ (field).

 (N_5) for all $s, t \in \mathbb{R}$, $N(f_1, f_2 + f_3, s + t) \ge \min\{N(f_1, f_2, s), N(f_1, f_3, t)\}$.

 $(N_6) N(f_1, f_2, \cdot) : (0, \infty) \to [0, 1]$ is continuous.

$$(N_7) \lim_{t \to \infty} N(f_1, f_2, t) = 1.$$

Then (F(X), N) is a fuzzy 2-normed linear space or (X, N) is a 2-fuzzy 2-normed linear space.

Definition 2.5. A 2-fuzzy 2-normed linear space (X, N) is said to be complete if every Cauchy sequence in *X* converge to some point in *X*.

Definition 2.6. Let F(X) be a linear space over the complex field \mathbb{C} .

Define a fuzzy subset μ as a mapping from $F(X) \times F(X) \times F(X) \times \mathbb{C} \to [0, 1]$ such that $f_1 \in F(X)$ and $\alpha_1, \alpha_2 \in \mathbb{C}$ satisfying the following conditions

Then μ is said to be the 2-fuzzy 2-inner product on F(X) and the pair (X, μ) is called 2-fuzzy 2-inner product space.

3. Adjoint Fuzzy Operator in 2-Fuzzy 2-Hilbert Space

Definition 3.1. Let (X, μ) be the 2-fuzzy 2-inner product space. A linear functional T defined on F(X) is said to be continuous if f_n converges to f implies sequence $\{Tf_n\}$ converges to Tf, for any $\{f_n\}$, $f \in F(X)$. For a given t > 0 and 0 < r < 1 there exist a positive number $n_0 \in N$ such that

$$\mu(f_n - f, f_n - f, h, t) > 1 - r$$

For $h \in F(X)$ and for every $n \ge n_0$, where $0 < t' \le 1$ and $r \in (0, 1)$.

Then for a given t' > 0 and 0 < r' < 1 there exist a positive number Advances and Applications in Mathematical Sciences, Volume 21, Issue 3, January 2022 $n_0 \in N$ such that

$$\mu(Tf_n - Tf, Tf_n - Tf, h, t') > 1 - r'$$

For $h \in F(X)$ and for every $n \ge n_0$, where $0 < t' \le 1$ and $r' \in (0, 1)$.

Theorem 3.2. Let (X, μ) be a 2-fuzzy 2-inner product space and $\inf\{t : \mu(f, g, h, t) \ge \alpha\} < \infty$ for all $f, g \in F(X)$ then

$$\begin{split} \inf\{t+s: \mu(f+g,\,f_1,\,h,\,t+s) \geq \alpha\} &= \inf\{t: \mu(f,\,f_1,\,h,\,t) \geq \alpha\} \\ &+ \inf\{s: \mu(g,\,f_1,\,h,\,s) \geq \alpha\}. \end{split}$$

Proof. Let us consider

 $\inf\{t: \mu(f, f_1, h, t) \ge \alpha\} + \inf\{s: \mu(g, f_1, h, s) \ge \alpha\} = \inf\{t+s: \mu(f, f_1, h, t) \ge \alpha, \mu(f, f_1, h, s) \ge \alpha\} = \inf\{t+s: \inf\{\mu(f, f_1, h, t) \ge \alpha, \mu(g, f_1, h, s) \ge \alpha\}\} \ge \inf\{t+s: \mu(f+g, f_1, h, t+s) \ge \alpha\}$ (1)

Conversely, for any $\delta > 0$

Assume that,

$$\begin{split} k &= \inf\{1 - \left(1 - \mu\left(f, f_{1}, h, \inf\{t : \mu(f, f_{1}, h, t) \ge \alpha\} - \frac{\delta}{2}\right)\right) \\ &\qquad \left(1 - \mu\left(g, f_{1}, h, \inf\{s : \mu(g, f_{1}, h, s) \ge \alpha\} - \frac{\delta}{2}\right)\right)\} \\ &= \inf\{\left(1 - \mu\left(-f, f_{1}, h, -\inf\{t : \mu(f, f_{1}, h, s) \ge \alpha\} + \frac{\delta}{2}\right)\right) \\ &\qquad \mu\left(-g, f_{1}, h, -\inf\{s : \mu(g, f_{1}, h, s) \ge \alpha\} + \frac{\delta}{2}\right)\} \\ &\geq 1 - \mu\left(-f, -g, f_{1}, h, -\inf\{t : \mu(f, f_{1}, h, s) \ge \alpha\} - \inf\{s : \mu(g, f_{1}, h, s) \ge \alpha\} + \delta\right) \\ &\geq \alpha\} + \delta) = \mu(f + g, f_{1}, h, \inf\{t : \mu(f, f_{1}, h, t) \ge \alpha\} + \inf\{s : \mu(g, f_{1}, h, s) \ge \alpha\} - \delta) \end{split}$$

By the definition of infimum $\mu\left(f, f_1, h, \inf\{t : \mu(f, f_1, h, t) \ge \alpha\} - \frac{\delta}{2}\right) < \alpha$

Hence
$$1 - \mu \left(g, f_1, h, \inf\{t : \mu(g, f_1, h, s) \ge \alpha\} - \frac{\delta}{2}\right) < 1 - \alpha$$

Similarly $1 - \mu \left(g, f_1, h, \inf\{s : \mu(g, f_1, h, s) \ge \alpha\} - \frac{\delta}{2}\right) < 1 - \alpha$
Therefore $\inf\left\{\left(1 - \mu(f, f_1, h, \inf\{t : \mu(f, f_1, h, t) \ge \alpha\})\right) - \frac{\delta}{2}\right),$
 $\left(1 - \mu \left(g, f_1, h, \inf\{s : \mu(g, f_1, h, s) \ge \alpha\} - \frac{\delta}{2}\right)\right)\right\} > 1 - \alpha$
(i.e) $1 - k > 1 - \alpha$ which implies that $k < \alpha$
As a result

 $\mu(f + g, f_1, h, \inf\{t : \mu(f, f_1, h, t) \ge \alpha\} + \inf\{s : \mu(g, f_1, h, s) \ge \alpha\} - \delta)$ $\leq k < \alpha \text{ (i.e.) } \inf\{t + s : \mu(f + g, f_1, h, t + s) \ge \alpha\} \ge \inf\{t : \mu(f, f_1, h, t) \ge \alpha\}$ $+ \inf\{s : \mu(g, f_1, h, t) \ge \alpha\} \quad (2)$

From (1) and (2),

$$\inf\{t + s : \mu(f + g, f_1, h, t + s) \ge \alpha\} = \inf\{t : \mu(f, f_1, h, t) \ge \alpha\}$$

$$+\inf\{s : \mu(g, f_1, h, t) \ge \alpha\}$$

Theorem 3.3. Let (X, μ) be a 2-fuzzy 2-Hilbert space and T be a continuous linear functional then there exists a unique T^* a continuous linear functional on F(X) such that

$$\inf \{t : \mu(Tf, g, h, t) \ge \alpha\} = \inf \{t : \mu(f, T^*g, h, t) \ge \alpha\}$$

for every $f, g, h \in F(X)$.

Proof. Choose $g \in F(X)$, define: $G_g : F(X) \to \mathbb{R}$, by $G_g(f)$ = $\inf\{t : \mu(f, g, h, t) \ge \alpha\}$ for every $f \in F(X)$ such that,

$$G_g(f + l) = G_g(f) + G_g(l)$$
$$G_g(kf) = kG_g(f)$$

for every $f, g, l \in F(X)$, k a scalar in \mathbb{R} .

Also, there exists $l_g \in F(X)$ such that

$$G_g(f) = \inf\{t : \mu(f, g, h, t) \ge \alpha\}$$

Define $T^*: F(X) \to \mathbb{R}$ such that $T_g^* = l_g$, for every $g \in F(X)$

Let $g, l \in F(X)$ and k, s are scalar, then

$$\inf \{t : \mu(f, T^*(kg + sl), h, t) \ge \alpha\} = \inf \{t : \mu(Tf, kg, sl, h, t) \ge \alpha\}$$

By the theorem (3.2) and (I_4)

$$\inf\{t : \mu(f, T^*(kg + sl), h, t) \ge \alpha\} = \inf\{t : \mu(Tf, kg, h, t) \ge \alpha\} + \inf\{t : \mu(Tf, sl, h, t) \ge \alpha\} = k. \inf\{t : \mu(Tf, g, h, t) \ge \alpha\} = s. \inf\{t : \mu(Tf, l, h, t) \ge \alpha\} = k. \inf\{t : \mu(f, T^*g, h, t) \ge \alpha\} = s. \inf\{t : \mu(f, T^*l, h, t) \ge \alpha\}$$

Uniqueness of T^* : Let T_1^*, T_2^* be two adjoint fuzzy operators for $T \in F(X)$,

$$\inf \{t : \mu(Tf, g, h, t) \ge \alpha\} = \inf \{t : \mu(f, T_1^*g, h, t) \ge \alpha\}$$

$$\inf \{t : \mu(Tf, g, h, t) \ge \alpha\} = \inf \{t : \mu(f, T_2^{r}g, h, t) \ge \alpha\}$$

for every $f, g \in F(X)$

It implies that,

$$\inf \{t : \mu(f, T_1^*g, h, t) \ge \alpha\} = \inf \{t : \mu(f, T_2^*g, h, t) \ge \alpha\}$$

and hence T^* is unique.

Definition 3.4. Let (X, μ) be a 2-fuzzy 2-Hilbert space with $\inf \{t : \mu(f, g, h, t) \ge \alpha\}$ for every $f, g \in F(X)$ and let T be a continuous linear functional, then T is selfadjoint fuzzy operator, if

 $\inf\{t: \mu(Tf, g, h, t) \ge \alpha\} = \inf\{t: \mu(T^*f, g, h, t) \ge \alpha\}$

Where T^* is adjoint fuzzy operator of T.

Theorem 3.5. Let (X, μ) be a 2-fuzzy 2-Hilbert space with $\inf \{t : \mu(f, g, h, t) \ge \alpha\}$ and let T be a continuous linear functional, then T is self-adjoint fuzzy operator.

Proof. Since F(X) is set of all fuzzy sets on X a non empty set and $\inf\{t : \mu(f, g, h, t) \ge \alpha\}$ for every $f, g \in F(X)$, then $\inf\{t : \mu(Tf, g, h, t) \ge \alpha\}$ is real for all $f \in F(X)$.

Now

$$\inf\{t: \mu(Tf, g, h, t) \ge \alpha\} = \inf\{\overline{t}: \mu(Tf, g, h, t) \ge \alpha\}$$
$$= \inf\{t: \mu(f, Tg, h, t) \ge \alpha\}$$
$$= \inf\{t: \mu(T^*f, g, h, t) \ge \alpha\}$$

Therefore,

$$\inf\{t: \mu(Tf, g, h, t) \ge \alpha\} = \inf \inf\{t: \mu(T^*f, g, h, t) \ge \alpha\}$$

T is a self-adjoint fuzzy operator.

Theorem 3.6. Let (X, μ) be a 2-fuzzy 2-Hilbert space with $\inf\{t : \mu(f, g, h, t) \ge \alpha\}$ for every $f, g \in F(X)$ and let T^* be the adjoint fuzzy operator of T is a continuous linear functional then

- (i) $\inf\{t : \mu(f, T^{**}g, h, t) \ge \alpha\} = \inf\{t : \mu(f, Tg, h, t) \ge \alpha\}$
- (ii) $\inf\{t: \mu(f, (kT)^*g, h, t) \ge \alpha\} = \inf\{t: \mu(f, kT^*g, h, t) \ge \alpha\}$

(iii) $\inf\{t + s : \mu(f, (kT + sD)^*g, h, t) \ge \alpha\} = \inf\{t + s : \mu(f(kT^* + sD^*), g, h, t) \ge \alpha\}$

(iv)
$$\inf\{t: \mu(f, (TD)^*g, h, t) \ge \alpha\} = \inf\{t: \mu(f, (D^*T^*)g, h, t) \ge \alpha\}$$

Proof.

(i)
$$\inf \{t : \mu(f, T^{**}g, h, t) \ge \alpha\} = \inf \{t : \mu(T^{*}f, g, h, t) \ge \alpha\}$$

 $= \inf \{t : \mu(f, Tg, h, t) \ge \alpha\}$
(ii) $\inf \{t : \mu(f, (kT)^{*}g, h, t) \ge \alpha\} = \inf \{t : \mu(kTf, g, h, t) \ge \alpha\}$
 $= \inf \{t : \mu(kTf, g, h, t) \ge \alpha\}$
 $= \inf \{t : \mu(Tf, g, h, \frac{t}{|k|}) \ge \alpha\}$
 $= \inf \{t : \mu(f, T^{*}g, h, \frac{t}{|k|}) \ge \alpha\}$
 $= \inf \{t : \mu(f, kT^{*}g, h, \frac{t}{|k|}) \ge \alpha\}$
(iii) $\inf \{t + s : \mu(f, (kT + sD)^{*}g, h, t) \ge \alpha\} = \inf \{t + s : \mu(f(kT + sD), g, h, t) \ge \alpha\}$
 $\ge \inf \{t + s : \inf \{\mu(kTf, g, h, t) \ge \alpha, \mu(sDf, g, h, t) \ge \alpha\}$
 $= \inf \{t + s : \inf \{\mu(kf, T^{*}g, h, \frac{t}{|k|}) \ge \alpha, \mu(sf, D^{*}g, h, \frac{t}{|s|}) \ge \alpha\}\}$

$$= \inf\{t + s : \inf\{\mu(f, kT^*g, h, t) \ge \alpha, \mu(f, sD^*g, h, t) \ge \alpha\}\}$$

$$= \inf\{t + s : \inf\{\mu(f(kT^* + sD^*)g, h, t) \ge \alpha\}\}$$

Repeating as in theorem (3.2), the above equality is proved.

(iv)
$$\inf\{t : \mu(f, (TD)^*g, h, t) \ge \alpha\} = \inf\{t : \mu(fTD, g, h, t^2) \ge \alpha\}$$

= $\inf\{t : \mu(Df, T^*g, h, t) \ge \alpha\}$
= $\inf\{t : \mu(f, (D^*T^*)g, h, t) \ge \alpha\}$

4. Normal Fuzzy Operator in 2-Fuzzy 2-Inner Product Space

Definition 4.1. Let (X, μ) be the 2-fuzzy 2-inner product space. An operator N is said to be normal fuzzy operator if it commutes with its adjoint (i.e.) $\inf\{t : \mu(NN^*f, g, h, t) \ge \alpha\} = \inf\{t : \mu(N^*Nf, g, h, t) \ge \alpha\}$ for every $f, g, h \in F(X)$.

Theorem 4.2. If N is a normal fuzzy operator and self-adjoint fuzzy operator on F(X) then

$$\inf \{t: \mu(N^*Nf, f, h, t) \ge \alpha\} = \inf \{t^2: \mu(Nf, Nf, h, t^2) \ge \alpha\}$$

Proof. If *N* is a normal fuzzy operator then,

$$\inf\{t: \mu(N^*Nf, g, h, t) \ge \alpha\} = \inf\{t: \mu(NN^*f, g, h, t^2) \ge \alpha\}$$

$$(3)$$

Taking g = f, (3) becomes

$$\inf \{t : \mu(N^*Nf, f, h, t) \ge \alpha\} = \inf \{t : \mu(NN^*f, f, h, t^2) \ge \alpha\}$$
$$= \inf \{t : \mu(Nf, Nf, h, t^2) \ge \alpha\}$$

Definition 4.3. Let (X, μ) be the 2-fuzzy 2-inner product space. An operator T is said to be unitary fuzzy operator if

$$\inf \{t : \mu(T^*Tf, f, h, t) \ge \alpha\} = \inf \{t : \mu(TT^*f, f, h, t) \ge \alpha\}$$
$$= \inf \{t : \mu(f, g, h, t) \ge \alpha\}$$

Theorem 4.4. If T is a fuzzy operator on a 2-fuzzy 2-Hilbert space (X, μ) then the following conditions are equivalent to one another

(i) $\inf \{t : \mu(T^*Tf, g, h, t) \ge \alpha\} = \inf \{t : \mu(f, g, h, t) \ge \alpha\}$

(ii) $\inf \{t : \mu(Tf, Tg, h, t) \ge \alpha\} = \inf \{t : \mu(f, g, h, t) \ge \alpha\}$ for every $f, g, h \in F(X)$

(iii) $\inf\{t^2 : \mu(Tf, Tg, h, t^2) \ge \alpha\} = \inf\{t^2 : \mu(f, g, h, t^2) \ge \alpha\}$ for every $f \in F(X)$.

Proof. $(i) \Rightarrow (ii)$

Given $\inf\{t: \mu(T^*Tf, g, h, t) \ge \alpha\} = \inf\{t: \mu(f, g, h, t) \ge \alpha\}$

Consider $\inf\{t : \mu(Tf, Tg, h, t) \ge \alpha\} = \inf\{t : \mu(f, T^*Tg, h, t) \ge \alpha\}$

$$= \inf\{t : \mu(f, g, h, t) \ge \alpha\}$$

(ii)⇒(iii)

Given $\inf \{t: \mu(Tf, Tg, h, t) \ge \alpha\} = \inf \{t: \mu(f, g, h, t) \ge \alpha\}$ (4)

By taking g = f, (4) becomes

$$\inf \{t^2 : \mu(Tf, Tf, h, t^2) \ge \alpha\} = \inf \{t^2 : \mu(f, f, h, t^2) \ge \alpha\}$$

 $(iii) \Rightarrow (iv)$

Given $\inf \{t^2 : \mu(Tf, Tf, h, t^2) \ge \alpha\} = \inf \{t^2 : \mu(f, f, h, t^2) \ge \alpha\}$

Consider

$$\inf \{t: \mu(T^*Tf, g, h, t) \ge \alpha\} = \inf \{t: \mu(Tf, Tg, h, t) \ge \alpha\}$$
$$= \inf \{t: \mu(f, g, h, t) \ge \alpha\}$$

References

- T. Bag and S. K. Samantha, Finite Dimensional Fuzzy Normed Linear Space, Annals of Fuzzy Mathematics and Informatics 11(3) (2003), 687-705.
- [2] S. C. Cheng and J. N. Mordeson, Fuzzy Linear Operators and Fuzzy Normed Linear Space, Bull. Cal. Math. Soc. 86 (1994), 429-436.
- [3] C. Dimminie, S. Gahler and A. White, 2-Inner Product Spaces, Demonstration Math. 6 (1973), 525-536; Available online at https://doi.org/10.1515/dema-1977-0115.
- [4] A. M. El-Abyad and H. M. El-Hamouly, Fuzzy Inner Product Spaces, Fuzzy Sets and Systems 44(2) (1991), 309-326, Available online at https://doi.org/10.1016/0165-0114(91)90014-h.
- C. Felbin, Finite Dimensional Fuzzy Normed Linear Spaces, Fuzzy Sets and Systems 48 (1992), 239-248, Available online at https://doi.org/10.1016/0165-0114 (92)90338-5.
- [6] A. K. Katsaras, Fuzzy Topological Vector Space, Fuzzy Sets and Systems 12(2) (1984), 143-154, Available online at https://doi.org/10.1016/0165-0114 (81)90082-8.

1314 THANGARAJ BEAULA and R. ABIRAMI

- [7] J. K. Kohli and R. Kumar, On Fuzzy Inner Product Spaces and Fuzzy Co-inner Product Spaces, Fuzzy Sets and Systems 53(2) (1993), 227-232, Available online at https://doi.org/10.1016/0165-0114(93)90177-j.
- [8] J. K. Kohli and R. Kumar, Linear Mapping, Fuzzy Linear Spaces, Fuzzy Inner Product and Fuzzy Co-inner Product Spaces, Bull. Calcutta. Math. Soc 87(3) (1995), 237-246.
- S. V. Krishna and K. K. M. Sharma, Seperation of Fuzzy Normed Linear Spaces, Fuzzy Sets and Systems 63(2) (1994), 207-217, Available online at https://doi.org/10.1016/0165-0114(94)90351-4.
- [10] R.M. Somasundaram and Thangaraj Beaula, Some Aspects of 2-Fuzzy 2-Normed Linear Spaces, Malaysian Math. Sci. Soc. 32(2) (2009), 211-222.
- [11] Srinivasan Vijayabalaji and Natesan Thillaigovindan, Fuzzy n-Inner Product Space, Bull. Korean Math. Soc. 43(3) (2007), 447-459, Available online athttps://doi.org/10.4134/bkms.2007.44.3.447.
- [12] Thangaraj Beaula and R. A. S. Gifta, On Complete 2-Fuzzy Dual Normed Linear Spaces, Journal of Advanced Studies in Topology 4(2) (2013), 34-42, Available online at https://doi.org/10.20454/ jast. 2013.589.
- [13] L. A. Zadeh, Fuzzy Sets, Information and Control 98 (1965), 338-353, Available online at https://doi.org/10.21236/ad0608981.