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Abstract 

A total coloring of a graph is a coloring to the elements (vertices and edges) of the graph G, 

for which any adjacent vertices or edges and incident elements are colored differently. The total 

chromatic number of G is the minimum number of colors that needed in a total coloring. In this 

paper, we have determined the total chromatic number for      2,, 
nnn PTLPL  and .2

nT  

1. Introduction and Preliminaries 

Let us assume all graphs are finite, simple and undirected graph G with 

the vertex set  GV  and the edge set  GE  respectively. Let 

    CGEGVf :  be a total coloring of G, where C is set of colors and 

satisfies the given conditions 

(a)      GVbabfaf  ,,  are any two adjacent vertices 

(b)      GEeeefef  2121 ,,  are two any adjacent edges and 
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(c)      GEeefaf  ,  is incident with any vertex  GVa   

The minimum number of colors needed in a total coloring of G is called 

the total chromatic number of G, and it is denoted by  .G  

In graph theory the famous conjecture i.e. the total coloring conjecture 

was independently introduced by Behzad [1] and Vizing [5] declared that for 

any simple graph G can be total colored with   .2 G  Rosenfeld [3] and 

Vijayaditya [4] verified the total coloring conjecture, for any graph G with 

.3  Muthuramakrishnan et al. [2] proved that the total chromatic number 

of line graph of star graph and square graph of bistar graph. In a simple 

connected graph G, the square [2] of G is the graph 2G  obtained from joining 

the edges to G, if   2, vud  in G, where  vud ,  is distance between any two 

vertices. The line graph [2] of G, denoted by  ,GL  is the graph whose vertex 

set is the edge set of G. Two vertices of  GL  are adjacent, where the 

corresponding edges are adjacent in G. The Twig graph nT  is obtained from a 

path by adding two pendant edges exactly to each internal vertex of the path. 

The Comb graph is obtained by joining one pendent edge to each vertex of a 

path and it is denoted by .nP  In this work, we investigate the total chromatic 

number for      2,, 
nnn PTLPL  and 2

nT  respectively. 

2. Main Results 

Theorem 2.1. For any    .5,4  
nPLn  

Proof. Let    nkvuPV kkn  1:,  and  

     11:1:, 1  
 nkvvwnkvsPE kkkkkn   

By the construction of line graph, the vertex and edge sets of  nPL  are 

given by, 

Let     nkvuPLV kkn  1:,  and 

      21:11:,, 11  
 nkwwnkswwsPLE kkkkkkn   
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Construct a total coloring        5,4,3,2,1: 
nn PLEPLVf   as 

follows: 

For ,1 nk   

  ,4kSf  (2.1) 

For ,11  nk  

 





even is if,2

odd is if,1

k

k
wf k  (2.2) 

 





even is if,1

odd is if,2

k

k
wsf kk   (2.3) 

  51 kkswf  (2.5) 

We observe the equation (2.1) to (2.5), by the construction,    .5 
nPL  

Since 4  and    .5141  
nPL  Therefore    .5 

nPL  

Thus f is total colored with 5 colors. 

Theorem 2.2. For any    .7,4  nTLn  

Proof. Let    21:,,  nkwvuTV kkkn  and 

     11:,21:,, 111   nkvvnkvwvuTE kkkkkkn   

By construction of line graph, the vertex set and edge set of  nTL  as 

given below: 

Let       11:21:,  nkvnkwuTLV kkkn   and 

    21:,,,, 111   nkvvvwwvwuvuvuTLE kkkkkkkkkkkkn  

Define a total coloring        7,6,5,4,3,2,1: nn TLETLVf   as 

follows: 

For 11  nk  

 





odd is if,1

even is if,2

k

k
vf k  (2.6) 
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For ,21  nk  

    ,6,3  kk wfuf  (2.7) 

    ,7,51  kkkk wvfvuf  (2.8) 

    ,6,4  kkkk vvfwuf  (2.9) 

 





even is if,4

odd is if,3
1

k

k
vvf kk  (2.10) 

 





even is if,2

odd is if,1
1

k

k
vwf kk  (2.11) 

From equation (2.6) to (2.11), by the construction,    .7 nTL  Since 

6  and    .7161  nTL  Therefore    .7 nTL  Thus f is 

total colored with 7 colors. 

Theorem 2.3. Let  2
nP  be the square graph of comb graph, then 

  .8
2
  

nP  

Proof. Let    nkvuPV kkn  1:,
2

 and 

     21:,1:, 1  
 nkvvnkvuPE kkkkn   

 11:,, 111  nkuvvvvu kkkkkk  

Construct a total coloring      8,,2,1:
22  

nn PEPVf  as follows: 

For ,1 nk   

 






















,15,12,9,6if,3

,14,11,8,5if,2

,13,10,7,4if,1

k

k

k

vf k  (2.12) 

    ,8,4  kkk vufuf  (2.13) 

For ,11  nk  

    7,6 11   kkkk uvfuvf  (2.14) 
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 





even is if,5

odd is if,4
1

k

k
vvf kk  (2.15) 

For ,21  nk  

 






















,15,12,9,6if,1

,14,11,8,5if,3

,13,10,7,4if,2

2

k

k

k

vvf kk  (2.16) 

From equation (2.12) to (2.16), by the construction,     .8
2

 
nPL  Since 

7  and   .8171
2

 
nP  Therefore     .8

2
 

nPL  Thus f is 

total colored with 8 colors. 

Theorem 2.4. Let 2
nT  be the square graph of twig graph. Then 

  .112  nT  

Proof. Let      nkvnkwuTV kkkn  1:21:,2   and 

 


  












11:21:

,,,,,,,,,

11

22112

nkvvnkvw

vvvuwvwuvuvuvwvu
TE

kkkk

kkkkkkkkkkkkkkkk

n


 

Construct a total coloring      11,,2,1: 22  nn TETVf  as follows: 

For ,1 nk   

 






















,15,12,9,6if,3

,14,11,8,5if,2

,13,10,7,4if,1

k

k

k

vf k  (2.17) 

For ,11  nk  

 






















,15,12,9,6if,2

,14,11,8,5if,1

,13,10,7,4if,3

1

k

k

k

vvf kk  (2.18) 

For ,21  nk  

    ,8,11  kk wfuf  (2.19) 
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    ,9,8 1  kkkk vwfvuf  (2.20) 

    ,11,1  kkkk wvfwuf  (2.21) 

    7,10 11   kkkk vufvwf  (2.22) 

 






















,15,12,9,6if,4

,14,11,8,5if,6

,13,10,7,4if,5

2

k

k

k

vvf kk  (2.23) 

 






















,15,12,9,6if,6

,14,11,8,5if,5

,13,10,7,4if,4

2

k

k

k

vvf kk  (2.24) 

From equation (2.17) to (2.24), by construction,   .11
22  nT  Since 

10  and   .111101  
nT  Therefore    .112  nTL  Thus f is 

total colored with 11 colors. 
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