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Abstract

A total coloring of a graph is a coloring to the elements (vertices and edges) of the graph G,
for which any adjacent vertices or edges and incident elements are colored differently. The total
chromatic number of G is the minimum number of colors that needed in a total coloring. In this

paper, we have determined the total chromatic number for L(P;), L(T},), (PF)? and T)2.

1. Introduction and Preliminaries

Let us assume all graphs are finite, simple and undirected graph G with
the vertex set V(G) and the edge set E(G) respectively. Let

f: V(G)U E(G) — C be a total coloring of G, where C is set of colors and

satisfies the given conditions

(@) f(a) = f(b), V a, b € V(G) are any two adjacent vertices

(M) f(e) # f(eg), V e, e9 € E(G) are two any adjacent edges and
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(¢) f(a) # f(e), V e € E(G) is incident with any vertex a € V(G)

The minimum number of colors needed in a total coloring of G is called
the total chromatic number of G, and it is denoted by ¥"(G).

In graph theory the famous conjecture i.e. the total coloring conjecture
was independently introduced by Behzad [1] and Vizing [5] declared that for
any simple graph G can be total colored with < A(G) + 2. Rosenfeld [3] and

Vijayaditya [4] verified the total coloring conjecture, for any graph G with
A < 3. Muthuramakrishnan et al. [2] proved that the total chromatic number

of line graph of star graph and square graph of bistar graph. In a simple

connected graph G, the square [2] of G is the graph G? obtained from joining
the edges to G, if d(u, v) = 2 in G, where d(u, v) is distance between any two

vertices. The line graph [2] of G, denoted by L(G), is the graph whose vertex
set is the edge set of G. Two vertices of L(G) are adjacent, where the
corresponding edges are adjacent in G. The Twig graph 7}, is obtained from a

path by adding two pendant edges exactly to each internal vertex of the path.
The Comb graph is obtained by joining one pendent edge to each vertex of a

path and it is denoted by P, . In this work, we investigate the total chromatic

number for L(B;), L(T,), (P} and T2 respectively.
2. Main Results

Theorem 2.1. For any n > 4, y"(L(P;)) = 5.
Proof. Let V(P) = {us,, v, : 1 < k < n} and
EP)={sp, v, :1<k<nfUfw, =vpvpq :1<k<n-1}

By the construction of line graph, the vertex and edge sets of L(P, ) are
given by,

Let V(L(P))) = {up, vy, : 1 < k < n} and

E(L(P)) = {s1,, wp, wpspey :1<k<n-1U{wpwp :1<k<n-2}
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Construct a total coloring f : V(L(P))UE(L(P;)) — {1, 2, 3, 4, 5} as

follows:

For1<k<n,

f(Sg) = 4, (2.1
For1<k<n-1,
1 if & is odd
=7 2.2
flwr) {2, if & is even 2:2)
2, if kisodd
= 2.3
flswon) {1, if k£ is even @3
fwpsgs1) =5 (2.5)

We observe the equation (2.1) to (2.5), by the construction, )("(L(P,;F )) < 5.

Since A =4 and x"(I(P;])) > A+1> 4 +1 > 5. Therefore ¥"(L(P;)) = 5.
Thus f is total colored with 5 colors.

Theorem 2.2. For any n > 4, y"(I(T},)) = 7.

Proof. Let V(T},) = {u},, v, w, : 1 < k < n-—2} and

ET,) = {u}, Vpi1, Wil : 1<k <n—-2U{v), Upyy 1 1<k <n-1}

By construction of line graph, the vertex set and edge set of L(7T},) as

given below:
Let V(L(T,,)) = {up, w, :1<k<n-2}U{vp : 1<k <n-1} and
E(I(T,,)) = {unVr, UrVk+1UkWr, Uplok, WrVk+1, Vplk+1 < 1 S k< n—2)
Define a total coloring f : V(I(T,))U E(L(T},)) - {1, 2, 3,4, 5,6, 7} as
follows:
For1<k<n-1

2, 1if k iseven

2.
1, if k isodd (2.6)

f(Uk)={
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For1<k<n-2

f(ur) =3, fwy,) = 6, (2.7)
fupops1) =5, flopwy) =7, (2.8)
f(ukwk) = 4, f(vkvk) = 6, (29)
3, ifkisodd
floRvps) = {4, if £ is even (2.10)
1, if k isodd
flwrvper) = {2, if & is even @.11)

From equation (2.6) to (2.11), by the construction, x"(I(7},)) < 7. Since
A =6 and y"(I(T,)) 2 A+1>6+1>7. Therefore %"(I(T},)) = 7. Thus fis

total colored with 7 colors.
Theorem 2.3. Let (P,:')z be the square graph of comb graph, then
((P7 ) = 8.
Proof. Let V(P )? = {uy, vy : 1 < k < n} and
EP) = {uvp, : 1 <k <nfU{vpvps,: 1<k <n-2}
Ultrvps1, UpURs1,s VRl 1 1<k <n -1}
Construct a total coloring f : V(Y2 U E(P Y > {1, 2, ..., 8} as follows:

For 1<k <n,

1, if k=4,710,13, ...

fop) =12, if k=58 11,14, ... (2.12)
3, if k=69, 12,15, ...
fup) = 4, fupyr,) = 8, (2.13)

For1<k<n-1,

fpur) = 6, flopup) =7 (2.14)
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4, if k isodd
5, if k iseven

fopv+1) = {

For1<k<n-2,

2, if k=4,7,10,13, ...
fpvpso) =13, if k=5,8 11,14, ...
1, if k=69 12 15, ...

6343

(2.15)

(2.16)

From equation (2.12) to (2.16), by the construction, y"(L(P; )2) < 8. Since

A=7and ¥ (PF) >A+1>7+1=8. Therefore y"(L(P})*) = 8. Thus f is

total colored with 8 colors.

Theorem 2.4. Let Tn2 be the square graph of twig graph. Then

((T7) = 11.

Proof. Let V(T2) = {uy,, wp :1<k<n-2}U{v, : 1<k <n} and

B(T?) - {

Wipvp 1<k <n-2U{vpupq :1<k<n-1}

{uk’ Uk+1> WEVk+1> URVks UpUk12; UpWhs UpWh, URUks UpUk 12,

Construct a total coloring f : V(T2)U E(T?) — {1, 2, ..., 11} as follows:

For 1<k <n,
1, if k=4,710,13, ...
flop) =42, if k=5,8,11,14, ...
3, if k=6,912 15, ...
For1<k<n-1,

3, if k=4,710,13, ...
fopvpsr) =41, if k=5, 8,11, 14, ...
2, if k=69 12 15, ...

For1<k<n-2,

fy) =11, f(w) = 8,

(2.17)

(2.18)

(2.19)
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flupvy) = 8, f(wrpvg41) = 9,
flupwy,) =1, f(upwy,) = 11,

f(wrvp41) = 10, f(upvpr) =7

5,

o]

f(UpvR42) =

>

4,

4,

(o)

f(UpvR42) =

>

6,

if k=4,7,10,13, ...
if k=5,8 11,14, ...
if k=6,9,12,15, ...

if k=4,7,10,13, ...
if k=25,8 11,14, ...
if k=6,9,12,15, ...

(2.20)
(2.21)

(2.22)

(2.23)

(2.24)

From equation (2.17) to (2.24), by construction, )("(T,?)2 <11. Since

A =10 and ¥"(T;}) > A+1>10 +1 = 11. Therefore 3"(L(T?)) = 11. Thus fis

total colored with 11 colors.
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