

MISCELLANEOUS RESULTS ON PENDANT DOMINATION OF GRAPHS

M. PAVITHRA and B. SHARADA

Department of Studies in Mathematics University of Mysore Manasagangotri, Mysuru-570 006, India

Department of Studies in Computer Science University of Mysore Manasagangotri, Mysuru-570 006, India E-mail: sampavi08@gmail.com sharadab21@gmail.com

Abstract

A pendant dominating set is defined by Nayaka et al., so that a dominating set that has a pendant vertex is a pendant dominating set. In this paper, we mainly concentrate on the pendant domination number γ_{p^e} and the upper pendant domination number $\Gamma_{pe}(G)$ for some special graphs and for operation of graphs.

1. Introduction

A graph G = (V, E) is a finite non-empty set of objects called vertices together with a set of unordered pairs of distinct vertices of G, called edges. The vertex set and the edge set of G are denoted by V(G) and E(G)respectively. If $e = \{u, v\}$ is an edge, we write e = uv, we say that e joins the vertices and; and are adjacent vertices; u and v are incident with e. If two vertices are not joined then we say that they are non-adjacent. If two distinct edges are incident with a common vertex, then they are said to be adjacent to each other. We denote the number of vertices and edges in G by |V| (or n)

²⁰¹⁰ Mathematics Subject Classification: 05C50.

Keywords: dominating set, pendant dominating set, pendant domination number, upper pendant domination number.

Received July 25, 2019; Accepted September 22, 2019

and |E| (or *m*); these two basic parameters are called the order and size of *G*.

In a graph G the degree of a vertex v is defined to be the number of edges incident with is called the degree of a vertex and is denoted by deg (v), and degree of self-loops is counted twice. The minimum degree $\delta(G)$ of a graph G is $\delta(G) = \min \{ \deg(v) : v \in V(\delta) \}$. The maximum degree of a graph G is $\Delta(G) = \max \{ \deg(v) : v \in V(\delta) \}$. A vertex having no incident edge is called an isolated vertex. In other words, isolated vertices are those with zero degree. A vertex of degree one is called a pendant vertex or an end vertex. An edge incident on pendant vertex is called pendant edge.

A graph which has neither loops nor multiple edges i.e., each edge connects two distinct vertices and no two edges connect the same pair of vertices is called a simple graph. A wheel $W_{1,n}$ on (n + 1)-vertices is a graph having $V(W_{1,n}) = \{v_0, v_1, \ldots, v_{n-1}, v_n\}$ as vertex set, then $v_i v_j$ is an edge if and only if |i - j| = 1 or n - 1. A graph in which all vertices are of equal degree is called a regular graph. If the degree of each vertex is r, then the graph is called a regular graph of degree r (or) r-regular graph. A 3-regular graph is called as cubic graph. A simple graph G is said to be complete if every vertex in G is connected with every other vertex i.e., if G contains exactly one edge between each pair of distinct vertices. The complement \overline{G} of a graph G also has V(G) as its vertex set, but two vertices are adjacent in \overline{G} if and only if they are not adjacent in G.

A graph G is said to be bipartite if the vertex set V of the graph G can be partitioned into two nonempty subsets V_1 and V_2 such that no two vertices in the same set are adjacent in G. A bipartite graph G with vertex partition V_1 and V_2 is said to be complete bipartite graph, if every vertex in V_1 is adjacent to every vertex in V_2 . A complete bipartite graph with vertex partition V_1 and V_2 having $|V_1| = m$ and $|V_2| = n$ is denoted by $K_{m,n}$. The $K_{1,n}$ graph is called a star. Clearly $K_{m,n}$ has mn edges. A subgraph of G is a graph having all of its vertices and edges in G. If G_1 is a subgraph of

G, then G is a super graph of G_1 . In other words, if G and H are two graphs with vertex sets V(H), V(G) and edge sets E(H) and E(G) respectively, such that $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$ then we call H as a subgraph of G or G as a supergraph of H. A spanning subgraph is a subgraph containing all the vertices of G. In other words, if $V(H) \subset V(G)$ and $E(H) \subset E(G)$ then H is a proper subgraph of G and if V(H) = V(G), then we say that H is a spanning subgraph of G. A spanning subgraph need not contain all the edges in G. For any set S of vertices of G, the vertex induced subgraph $\langle S \rangle$ or simply an induced subgraph is the maximal subgraph of G with vertex set S. Thus two vertices of S are adjacent in $\langle S \rangle$ if and only if they are adjacent in G. A graph G is connected if every pair of vertices on G are joined by a path. A maximal connected subgraph of G is called a connected graph. All definitions and terminologies are available in [5].

2. Determination of $\gamma_{pe}(G)$ and $\Gamma_{pe}(G)$

By a graph G we mean a finite, simple, non-trivial and connected. The set D of vertices of a graph G is said to be a dominating set if every vertex in V-D is adjacent to a vertex in D. A dominating set D is said to be a minimal dominating set if no proper subset of D is a dominating set. The minimum cardinality of a minimal dominating set of a graph G is called the domination number of G and is denoted by $\gamma(G)$. The upper domination number $\Gamma(G)$ is the maximum cardinality of a minimal dominating set of G is called the domination set S of vertices of a graph G such that $\langle S \rangle$ has a pendant vertex is called a pendant set of G. A pendant set that is also a dominating set is a pendant dominating set [7].

A pendant dominating set was firstly defined by Nayaka et. al., their papers published on pendant domination number $\gamma_{pe}(G)$ [7] and upper pendant domination number $\Gamma_{pe}(G)$ [9] has inspired me to develop further results. Hence in this section we determine the values of pendant domination number $\gamma_{pe}(G)$ and upper pendant domination number $\Gamma_{pe}(G)$ for some special graphs and for some operation of graphs.

A dominating set S of a graph G is said to be a pendant dominating set $\langle PD - set \rangle$ of G if $\langle S \rangle$ has at least one pendant vertex. A pendant dominating set S is said to be a minimal pendant dominating set $\langle MPD - set \rangle$ if no proper subset of S is a pendant dominating set. The pendant domination number $\gamma_{pe}(G)$ and the upper pendant domination number $\gamma_{pe}(G)$ are defined to be

$$\gamma_{pe}(G) = \min \{ |S| : S \text{ is a } MPD - \text{set of } G \}$$

$$\Gamma_{pe}(G) = \max \{ |S| : S \text{ is a } MPD - \text{set of } G \}.$$

Definition 2.1 [12]. A Bull graph is a simple graph with 5 vertices and 5 edges, in the form of a triangle with two disjoint pendant edges.

The following Figure 1 is a Bull graph.

Figure 1. Bull graph.

Theorem 2.2. For a bull graph G, $\gamma_{pe}(G) = 2$ and $\Gamma_{pe}(G) = 3$.

Proof. Let G be a bull graph having vertex set $V = \{a_0, a_1, a_2, a_3, a_4\}$, let us choose a vertex set such that the vertices in the set must form a dominating set, which must also consist pendant vertices such that it results to a pendant dominating set. Keeping in mind the above conditions we choose a vertex set $S = \{a_1, a_2\}$ such that $V - S = \{a_0, a_3, a_4\}$ are adjacent to vertices in S. Hence S is a minimal pendant dominating set with minimum cardinality.

Therefore, $\gamma_{pe}(G) = 2$.

Now let us consider another set S, such that it consists two pendant vertices and a vertex that is adjacent to any one of the chosen pendant vertex. Hence we obtain a dominating set $S = \{a_3, a_4, a_1\}$ which satisfies the

required condition. Where $V - S = \{a_0, a_2\}$ are adjacent to vertices in S. Hence S is a minimal pendant dominating set with maximum cardinality, i.e., $\Gamma_{pe}(G) = 3.$

Definition 2.3 [3]. A friendship graph F_n is a simple graph which is constructed by joining *n*-copies of cycle graph C_3 with a common vertex.

The following Figure 2 is a friendship graph.

Figure 2. Friendship graph.

Theorem 2.4. Let G be a friendship graph. Then $\gamma_{pe}(F_n) = 2$ and $\Gamma_{pe}(F_n) = n + 1$.

Proof. Let F_n be a friendship graph consisting of n-copies of cycle graphs C_3 having a common vertex, which consists of (2n + 1)-vertices and 3n-edges. Since the common vertex is adjacent to all the other vertices in the graph it forms a dominating set. Now by considering common vertex and a vertex among any one of the *n*-copies of cycles C_3 results to a minimal pendant dominating set with minimum cardinality. Therefore, $\gamma_{pe}(F_n) = 2$.

To check the maximum cardinality we exclude common vertex and consider any two vertices among *n*-copies of cycle graph C_3 and then a vertex from each of the remaining (n-1)-copies of cycle graph C_3 which altogether results to a minimal pendant dominating set with maximum cardinality.

Hence $\Gamma_{pe}(F_n) = 2 + (n - 0) = n + 1.$

Definition 2.5 [12]. A butterfly graph is same as friendship graph F_2 .

Corollary 2.6. Let G be a butterfly graph. Then $\gamma_{pe}(G) = 2$ and $\Gamma_{pe}(G) = n + 1$.

Definition 2.7 [1]. A diamond graph is a planar undirected graph with 4 vertices and 5 edges. The following Figure 3 is a diamond graph.

Figure 3. Diamond graph.

Theorem 2.8. Let G be a diamond graph. Then $\gamma_{pe}(G) = 2 = \Gamma_{pe}(G)$.

Proof. Let G be a diamond graph whose order is 4 and size 5. By considering any two adjacent vertices a minimal pendant dominating set is obtained. Hence we notice that the minimal pendant dominating set with minimum and maximum cardinality is equal to two. Thus

$$\gamma_{pe}(G) = 2 = \Gamma_{pe}(G).$$

Definition 2.9 [5]. A Petersen graph is a connected bridgeless graph.

The following Figure 4 is a Petersen graph.

Figure 4. Petersen graph.

Theorem 2.10. Let G be a Petersen graph. Then $\gamma_{pe}(G) = 4 = \Gamma_{pe}(G)$.

Proof. Let G be a Petersen graph consisting of $\{v_1, \ldots, v_9, v_{10}\}$ vertices. Consider a set S consisting any two adjacent vertices, then choose vertices such that they are non-adjacent to the chosen vertices and also they are non-adjacent with each other. Hence we obtain a set $S = \{v_1, v_2, v_8, v_9\}$ as a dominating set consisting pendant vertices, where the vertices of V - S are adjacent to the vertices in S. Hence S is a minimal pendant dominating set with minimum cardinality. Therefore, $\gamma_{pe}(G) = 4$. The proof for upper pendant domination number follows similarly as that of the pendant domination number. Therefore $\Gamma_{pe}(G) = 4$.

Definition 2.11 [1]. A fish graph is a graph on 6 vertices, whose name derives from its resemblance to a schematic illustration of a fish.

The following Figure 5 is a Fish graph.

Figure 5. Fish graph.

Theorem 2.12. Let G be a fish graph. Then $\gamma_{pe}(G) = 2$ and $\Gamma_{pe}(G) = 4$.

Proof. A fish graph is a graph whose order is 6 and size 7. The graph consists two cycles C_3 and C_4 having a vertex in common. To obtain a dominating set the common vertex and a vertex adjacent to it from C_4 can be considered which results to a minimal pendant dominating set with minimum cardinality. i.e., $\gamma_{pe}(G) = 2$. To obtain the upper pendant domination, we exclude the common vertex and consider other two adjacent vertices from C_3 and two non-adjacent vertices from C_4 which results to a pendant dominating set with maximum cardinality i.e., $\Gamma_{pe}(G) = 4$.

Definition 2.13 [12]. The helm graph H_n is the graph obtained from a *n*-wheel graph by adjoining a pendant edge at each node of the cycle. The helm graph has (2n + 1) vertices and 3n edges.

The following Figure 6 is a Helm graph.

Figure 6. Helm graph.

Theorem 2.14. Let H_n be a helm graph, then $\Gamma_{pe}(H_n) = n + 1$.

Proof. Let H_n be a helm graph having bipartition XY, with $X = \{x_1, x_2, ..., x_n\}$ and $Y = \{y_1, y_2, ..., y_n\} \cup \{x\}$. Let us consider all the vertices of a cycle C_n which results a dominating set $S = \{y_1, y_2, ..., y_n\}$ and by considering any one leaf among x_i where, $1 \le i \le n$ results to a minimal pendant dominating set with maximum cardinality i.e., $S' = |S| \cup = \{x_i\} = n + 1$.

Hence, $\Gamma_{pe}(H_n) = n + 1$.

Note. [8] For any helm graph H_n , then $\gamma_{pe}(H_n) = n$.

Definition 2.15 [2]. A cubic symmetric graph is a symmetric cubic i.e., regular of order three having even number of vertices.

The following Figure 7 is a cubic symmetric graph.

Figure 7. Cubic symmetric graph.

Theorem 2.16. Let G be a cubic symmetric graph, then $\gamma_{pe}(G) = \frac{(n-2)}{2}$ and $\Gamma_{pe}(G) = \frac{n}{2}$.

Proof. Let G be a cubic symmetric graph of order 8 and size 12. Let $\{v_1, v_2, ..., v_8\}$ be the vertex set of G. We now choose the dominating set $S = \{v_2, v_5, v_8\}$, which consists at least a pendant vertex. Such that all the vertices of $V - S = \{v_1, v_3, v_4, v_6, v_7\}$ are adjacent to vertices of S. Therefore S is a minimal pendant dominating set with minimum cardinality. Hence, $\gamma_{pe}(G) = \frac{(n-2)}{2}$.

To obtain the upper pendant domination we shall choose two pairs of adjacent vertices such that these pairs are non-adjacent with each other. Hence we consider a dominating set consisting pendant vertices, $S = \{v_1, v_2, v_4, v_7\}$. The vertices of $V - S = \{v_3, v_5, v_6, v_8\}$ are adjacent with the vertices of S. Therefore, $\Gamma_{pe}(G) = \frac{n}{2}$.

Definition 2.17 [12]. The crown graph S_n for $n \ge 3$ is the graph with vertex set $V = \{x_1, x_2, ..., x_n, y_1, y_2, ..., y_n\}$ and an edge from V i.e., $\{x_i y_j : 1 \le i, j \le n; i \ne j\}$. Therefore S_n coincides with the complete

bipartite graph S_n with horizontal edges removed. The Crown graph S_4 is shown in Figure 8.

Figure 8. Crown graph S_n .

Theorem 2.18. Let S_n be a crown graph, then $\Gamma_{pe}(S_n) = \Gamma(S_n) + 1 = 3$.

Proof. Let S_n be a crown graph with the vertex set $V = \{x_1, x_2, ..., x_n, y_1, y_2, ..., y_n\}$. It is clear that $S = \{x_1, y_1\}$ is a minimal dominating set. Now by choosing either vertex x_i or y_i for i > 1, forms a set $S' = \{x_1, y_1\} \cup \{x_i\}$ or $\{y_i\}$ that results to a upper pendant dominating set of S_n . Therefore, $\Gamma_{pe}(S_n) = \Gamma(S_n) + 1 = 3$.

Note. [8] Let G be a crown graph with 2n vertices. Then $\gamma_{pe}(G) = \gamma(G) + 1$.

Observation 2.19.

1. For a complete bipartite trees $K_{1,n}$ we have $\gamma_{pe}(K_{1,n}) = \Gamma_{pe}(K_{1,n}) = 2.$

2. For a claw graph $K_{1,3}$, we obtain $\gamma_{pe}(K_{1,3}) = \Gamma_{pe}(K_{1,3}) = 2$.

Theorem 2.20. Let G be a graph of order n and size m. If $v_i \in V(G)$ such that $d(v_i) = n - 1$ then, $\gamma_{pe}(G) = 2$.

Proof. Let G be a graph of order and size m. Assume that $v_i \in V(G)$ such that $d(v_i) = n - 1$. Then the set is a dominating set of G. But $\{v_i\}$ is not

Advances and Applications in Mathematical Sciences, Volume 18, Issue 10, August 2019

1036

pendant dominating set. Thus, $\{v_i, v_j \in V(G); v_iv_j \in E(G)\}, j = 1, 2, ..., i-1, i+1, ..., n$ is a pendant dominating set and the result follows. We can apply Theorem 2.19 on the identity graph of a multigroup. For details about the identity graph of a multigroup, see [10, 11].

3. Results on γ_{pe} and Γ_{pe} for Operation of Graphs

Observation 3.1.

1. The following three operations union, intersection and ring sum of graphs are commutative. Hence we have the following results :

i.
$$\gamma_{pe}(G_1 \cup G_2) = \gamma_{pe}(G_2 \cup G_1); \ \Gamma_{pe}(G_1 \cup G_2) = \Gamma_{pe}(G_2 \cup G_1).$$

ii. $\gamma_{pe}(G_1 \cap G_2) = \gamma_{pe}(G_2 \cap G_1); \ \Gamma_{pe}(G_1 \cap G_2) = \Gamma_{pe}(G_2 \cap G_1).$
iii. $\gamma_{pe}(G_1 \oplus G_2) = \gamma_{pe}(G_2 \oplus G_1); \ \Gamma_{pe}(G_1 \oplus G_2) = \Gamma_{pe}(G_2 \oplus G_1).$

Theorem 3.2. Let G_1 and G_2 be any two graphs, $(G_1 + G_2)$ is the join of the graphs. Then $\gamma_{pe}(G_1 + G_2) = 2 = \Gamma_{pe}(G_1 + G_2)$.

Proof. Let G_1 and G_2 be any two graphs having vertex sets $V_1 = (x_1, x_2, ..., x_n)$ and $V_2 = (y_1, y_2, ..., y_n)$ respectively. Then by definition for join of graphs $(G_1 + G_2)$ we have union of the graphs such that each vertex of V_1 is adjacent to all the other vertices of V_2 . Hence it is obvious that the set S consists exactly two vertices i.e., a vertex chosen from vertex set V_1 and the other from V_2 results to a pendant dominating set. Say $S = \{(x_i, y_i) \mid i = 1, 2, ..., n\}$, Where the vertices of V - S are adjacent to the vertices of S. Hence minimum and maximum cardinality of a minimal pendant dominating set remains identical. Therefore, $\gamma_{pe}(G_1 + G_2) = 2 = \Gamma_{pe}(G_1 + G_2)$.

References

- A. Brandstadt, V. B. Le and J. P. Spinard, Graph classes: A survey, SIAM Philadelphia, (1987), 1-19.
- [2] R. M. Foster, Geometrical Circuits of Electrical Networks, Trans. Amer. Inst. Elec. Engin. 51 (1932), 309-317.

M. PAVITHRA and B. SHARADA

- [3] J. A. Gallian, Dynamic survey: graph labeling, Electronic J. Combinatorics. 3 (2007), 1-58.
- [4] M. R. Garey and R. L. Graham, J. Combinatorial Theory 18 (1975), 84-95.
- [5] F. Harary, Graph Theory, Addison-Wesly Publishing Co., Reading, Mass. Melno Park, Calif., London, 1969.
- [6] T. W. Haynes, S. T. Hedetneimi and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker inc., New York, (1998).
- [7] S. R. Nayaka, Puttaswamy and S. Purushothama, Pendant Domination in Graphs, In communication.
- [8] S. R. Nayaka, Puttaswamy and S. Purushothama, Pendant domination in some generalized graphs, Int. J. Sci. Eng. Scis., 1 (2017), 13-15.
- [9] S. R. Nayaka, Puttaswamy and S. Purushothama, Upper pendant domination in graphs, Global J. Pure App. Maths., 14 (2018), 873-883.
- [10] B. Sharada, M. I. Sowaity and A. M. Naji, The identity graph of a multigroup, AKCE I. J. Graphs Comb., Submitted.
- [11] M. I. Sowaity, B. Sharada and A. M. Naji, Some parameters of the identity graph of multigroup, Proyecciones, Submitted.
- [12] Weisstein, Eric. W. Bull graph, Butterfly graph, Helm graph, Crown graph. Math World.