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Abstract 

A pendant dominating set is defined by Nayaka et al., so that a dominating set that has a 

pendant vertex is a pendant dominating set. In this paper, we mainly concentrate on the 

pendant domination number ep
  and the upper pendant domination number  Gpe  for some 

special graphs and for operation of graphs. 

1. Introduction 

A graph  EVG ,  is a finite non-empty set of objects called vertices 

together with a set of unordered pairs of distinct vertices of G, called edges. 

The vertex set and the edge set of G are denoted by  GV  and  GE  

respectively. If  vue ,  is an edge, we write ,uve   we say that e joins the 

vertices and; and are adjacent vertices; u and v are incident with e. If two 

vertices are not joined then we say that they are non-adjacent. If two distinct 

edges are incident with a common vertex, then they are said to be adjacent to 

each other. We denote the number of vertices and edges in G by V  (or n) 
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and E  (or m); these two basic parameters are called the order and size of 

G. 

In a graph G the degree of a vertex v is defined to be the number of edges 

incident with is called the degree of a vertex and is denoted by  ,deg v  and 

degree of self-loops is counted twice. The minimum degree  G  of a graph G 

is       .:degmin  VvvG  The maximum degree of a graph G is 

      .:degmax  VvvG  A vertex having no incident edge is called an 

isolated vertex. In other words, isolated vertices are those with zero degree. A 

vertex of degree one is called a pendant vertex or an end vertex. An edge 

incident on pendant vertex is called pendant edge. 

A graph which has neither loops nor multiple edges i.e., each edge 

connects two distinct vertices and no two edges connect the same pair of 

vertices is called a simple graph. A wheel nW ,1  on  -1n vertices is a graph 

having    nnn vvvvWV ,,,, 110,1    as vertex set, then ji vv  is an edge if 

and only if 1 ji  or .1n  A graph in which all vertices are of equal 

degree is called a regular graph. If the degree of each vertex is r, then the 

graph is called a regular graph of degree r (or) r-regular graph. A 3-regular 

graph is called as cubic graph. A simple graph G is said to be complete if 

every vertex in G is connected with every other vertex i.e., if G contains 

exactly one edge between each pair of distinct vertices. The complement G  of 

a graph G also has  GV  as its vertex set, but two vertices are adjacent in G  

if and only if they are not adjacent in G. 

A graph G is said to be bipartite if the vertex set V of the graph G can be 

partitioned into two nonempty subsets 1V  and 2V  such that no two vertices 

in the same set are adjacent in G. A bipartite graph G with vertex partition 

1V  and 2V  is said to be complete bipartite graph, if every vertex in 1V  is 

adjacent to every vertex in .2V  A complete bipartite graph with vertex 

partition 1V  and 2V  having mV 1  and nV 2  is denoted by ., nmK  

The nK ,1  graph is called a star. Clearly nmK ,  has mn edges. A subgraph of 

G is a graph having all of its vertices and edges in G. If 1G  is a subgraph of 
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G, then G is a super graph of .1G  In other words, if G and H are two graphs 

with vertex sets    GVHV ,  and edge sets  HE  and  GE  respectively, 

such that    GVHV   and    GEHE   then we call H as a subgraph of G 

or G as a supergraph of H. A spanning subgraph is a subgraph containing all 

the vertices of G. In other words, if    GVHV   and    GEHE   then H 

is a proper subgraph of G and if    ,GVHV   then we say that H is a 

spanning subgraph of G. A spanning subgraph need not contain all the edges 

in G. For any set S of vertices of G, the vertex induced subgraph S  or 

simply an induced subgraph is the maximal subgraph of G with vertex set S. 

Thus two vertices of S are adjacent in S  if and only if they are adjacent in 

G. A graph G is connected if every pair of vertices on G are joined by a path. 

A maximal connected subgraph of G is called a connected component or 

simply a component of G. Otherwise, G is called a disconnected graph. All 

definitions and terminologies are available in [5]. 

2. Determination of  Gpe  and  Gpe  

By a graph G we mean a finite, simple, non-trivial and connected. The set 

D of vertices of a graph G is said to be a dominating set if every vertex in 

DV   is adjacent to a vertex in D. A dominating set D is said to be a 

minimal dominating set if no proper subset of D is a dominating set. The 

minimum cardinality of a minimal dominating set of a graph G is called the 

domination number of G and is denoted by  .G  The upper domination 

number  G  is the maximum cardinality of a minimal dominating set of G 

[6]. A set S of vertices of a graph G such that S  has a pendant vertex is 

called a pendant set of G. A pendant set that is also a dominating set is a 

pendant dominating set [7]. 

A pendant dominating set was firstly defined by Nayaka et. al., their 

papers published on pendant domination number  Gpe  [7] and upper 

pendant domination number  Gpe  [9] has inspired me to develop further 

results. Hence in this section we determine the values of pendant domination 

number  Gpe  and upper pendant domination number  Gpe  for some 

special graphs and for some operation of graphs. 



M. PAVITHRA and B. SHARADA 

Advances and Applications in Mathematical Sciences, Volume 18, Issue 10, August 2019 

1030 

A dominating set S of a graph G is said to be a pendant dominating set 

setPD   of G if S  has at least one pendant vertex. A pendant dominating 

set S is said to be a minimal pendant dominating set setMPD   if no 

proper subset of S is a pendant dominating set. The pendant domination 

number  Gpe  and the upper pendant domination number  Gpe  are 

defined to be 

   SSGpe :min  is a GMPD ofset  

   .ofsetais:max GMPDSSGpe   

Definition 2.1 [12]. A Bull graph is a simple graph with 5 vertices and 5 

edges, in the form of a triangle with two disjoint pendant edges. 

The following Figure 1 is a Bull graph. 

 

Figure 1. Bull graph. 

Theorem 2.2. For a bull graph   2,  GG pe  and   .3 Gpe  

Proof. Let G be a bull graph having vertex set  ,,,,, 43210 aaaaaV   

let us choose a vertex set such that the vertices in the set must form a 

dominating set, which must also consist pendant vertices such that it results 

to a pendant dominating set. Keeping in mind the above conditions we choose 

a vertex set  21, aaS   such that  430 ,, aaaSV   are adjacent to 

vertices in S. Hence S is a minimal pendant dominating set with minimum 

cardinality. 

Therefore,   .2 Gpe  

Now let us consider another set S, such that it consists two pendant 

vertices and a vertex that is adjacent to any one of the chosen pendant vertex. 

Hence we obtain a dominating set  143 ,, aaaS   which satisfies the 
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required condition. Where  20 , aaSV   are adjacent to vertices in S. 

Hence S is a minimal pendant dominating set with maximum cardinality, i.e., 

  .3 Gpe  

Definition 2.3 [3]. A friendship graph nF  is a simple graph which is 

constructed by joining n-copies of cycle graph 3C  with a common vertex. 

The following Figure 2 is a friendship graph. 

 

Figure 2. Friendship graph. 

Theorem 2.4. Let G be a friendship graph. Then   2 npe F  and 

  .1 nFnpe  

Proof. Let nF  be a friendship graph consisting of n-copies of cycle graphs 

3C  having a common vertex, which consists of  -12 n vertices and 

-3n edges. Since the common vertex is adjacent to all the other vertices in the 

graph it forms a dominating set. Now by considering common vertex and a 

vertex among any one of the n-copies of cycles 3C  results to a minimal 

pendant dominating set with minimum cardinality. Therefore,   .2 npe F  

To check the maximum cardinality we exclude common vertex and 

consider any two vertices among n-copies of cycle graph 3C  and then a vertex 

from each of the remaining  -1n copies of cycle graph 3C  which altogether 

results to a minimal pendant dominating set with maximum cardinality. 

Hence     .102  nnFnpe  
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Definition 2.5 [12]. A butterfly graph is same as friendship graph .2F  

Corollary 2.6. Let G be a butterfly graph. Then   2 Gpe  and 

  .1 nGpe  

Definition 2.7 [1]. A diamond graph is a planar undirected graph with 4 

vertices and 5 edges.  The following Figure 3 is a diamond graph. 

 

Figure 3. Diamond graph. 

Theorem 2.8. Let G be a diamond graph. Then    .2 GG pepe   

Proof. Let G be a diamond graph whose order is 4 and size 5. By 

considering any two adjacent vertices a minimal pendant dominating set is 

obtained. Hence we notice that the minimal pendant dominating set with 

minimum and maximum cardinality is equal to two. Thus  

   .2 GG pepe   

Definition 2.9 [5]. A Petersen graph is a connected bridgeless graph. 

The following Figure 4 is a Petersen graph. 

 

Figure 4. Petersen graph. 



MISCELLANEOUS RESULTS ON PENDANT … 

Advances and Applications in Mathematical Sciences, Volume 18, Issue 10, August 2019 

1033 

Theorem 2.10. Let G be a Petersen graph. Then    .4 GG pepe    

Proof. Let G be a Petersen graph consisting of  1091 ,,, vvv   vertices. 

Consider a set S consisting any two adjacent vertices, then choose vertices 

such that they are non-adjacent to the chosen vertices and also they are non-

adjacent with each other. Hence we obtain a set  9821 ,,, vvvvS   as a 

dominating set consisting pendant vertices, where the vertices of SV   are 

adjacent to the vertices in S. Hence S is a minimal pendant dominating set 

with minimum cardinality. Therefore,   .4 Gpe  The proof for upper 

pendant domination number follows similarly as that of the pendant 

domination number. Therefore   .4 Gpe  

Definition 2.11 [1]. A fish graph is a graph on 6 vertices, whose name 

derives from its resemblance to a schematic illustration of a fish. 

The following Figure 5 is a Fish graph. 

 

Figure 5. Fish graph. 

Theorem 2.12. Let G be a fish graph. Then   2 Gpe  and   .4 Gpe  

Proof. A fish graph is a graph whose order is 6 and size 7. The graph 

consists two cycles 3C  and 4C  having a vertex in common. To obtain a 

dominating set the common vertex and a vertex adjacent to it from 4C  can be 

considered which results to a minimal pendant dominating set with minimum 

cardinality. i.e.,   .2 Gpe  To obtain the upper pendant domination, we 

exclude the common vertex and consider other two adjacent vertices from 3C  

and two non-adjacent vertices from 4C  which results to a pendant 

dominating set with maximum cardinality i.e.,   .4 Gpe  

Definition 2.13 [12]. The helm graph nH  is the graph obtained from a 

n-wheel graph by adjoining a pendant edge at each node of the cycle. The 

helm graph has  12 n  vertices and 3n edges. 
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The following Figure 6 is a Helm graph. 

 

Figure 6. Helm graph. 

Theorem 2.14. Let nH  be a helm graph, then   .1 nHnpe  

Proof. Let nH  be a helm graph having bipartition XY, with 

 nxxxX ,,, 21   and    .,,, 21 xyyyY n   Let us consider all the 

vertices of a cycle nC  which results a dominating set  nyyyS ,,, 21   

and by considering any one leaf among ix  where, ni 1  results to a 

minimal pendant dominating set with maximum cardinality i.e., 

  .1 nxSS i  

Hence,   .1 nHnpe  

Note. [8] For any helm graph ,nH  then   .nHnpe   

Definition 2.15 [2]. A cubic symmetric graph is a symmetric cubic i.e., 

regular of order three having even number of vertices. 

The following Figure 7 is a cubic symmetric graph. 
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Figure 7. Cubic symmetric graph. 

Theorem 2.16. Let G be a cubic symmetric graph, then  
 

2

2


n
Gpe  

and   .
2

n
Gpe   

Proof. Let G be a cubic symmetric graph of order 8 and size 12. Let 

 821 ,,, vvv   be the vertex set of G. We now choose the dominating set 

 ,,, 852 vvvS   which consists at least a pendant vertex. Such that all the 

vertices of  76431 ,,,, vvvvvSV   are adjacent to vertices of S. Therefore 

S is a minimal pendant dominating set with minimum cardinality. Hence, 

 
 

.
2

2


n
Gpe  

To obtain the upper pendant domination we shall choose two pairs of 

adjacent vertices such that these pairs are non-adjacent with each other. 

Hence we consider a dominating set consisting pendant vertices, 

 .,,, 7421 vvvvS   The vertices of  8653 ,,, vvvvSV   are adjacent 

with the vertices of S. Therefore,   .
2

n
Gpe   

Definition 2.17 [12]. The crown graph nS  for 3n  is the graph with 

vertex set  nn yyyxxxV ,,,,,,, 2121   and an edge from V i.e.,  

 .;,1: jinjiyx ji   Therefore nS  coincides with the complete 
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bipartite graph nS  with horizontal edges removed. The Crown graph 4S  is 

shown in Figure 8. 

 

Figure 8. Crown graph .nS  

Theorem 2.18. Let nS  be a crown graph, then     .31  nnpe SS  

Proof. Let nS  be a crown graph with the vertex set 

 .,,,,,,, 2121 nn yyyxxxV   It is clear that  11 , yxS   is a minimal 

dominating set. Now by choosing either vertex ix  or iy  for ,1i  forms a set 

   ixyxS 11 ,  or  iy  that results to a upper pendant dominating set of 

.nS  Therefore,     .31  nnpe SS  

Note. [8] Let G be a crown graph with 2n vertices. Then 

    .1 GGpe  

Observation 2.19.  

1. For a complete bipartite trees nK ,1  we have 

    .2,1,1  npenpe KK  

2. For a claw graph ,3,1K  we obtain     .23,13,1  KK pepe  

Theorem 2.20. Let G be a graph of order n and size m. If  GVvi   such 

that   1 nvd i  then,   .2 Gpe  

Proof. Let G be a graph of order and size m. Assume that  GVvi   such 

that   .1 nvd i  Then the set is a dominating set of G. But  iv  is not 
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pendant dominating set. Thus,      ,,2,1,;,  jGEvvGVvv jiji  

nii ,,1,1   is a pendant dominating set and the result follows. We can 

apply Theorem 2.19 on the identity graph of a multigroup. For details about 

the identity graph of a multigroup, see [10, 11]. 

3. Results on pe  and pe  for Operation of Graphs 

Observation 3.1. 

1. The following three operations union, intersection and ring sum of 

graphs are commutative. Hence we have the following results : 

i.        .; 12211221 GGGGGGGG pepepepe    

ii.        .; 12211221 GGGGGGGG pepepepe    

iii.        .; 12211221 GGGGGGGG pepepepe   

Theorem 3.2. Let 1G  and 2G  be any two graphs,  21 GG   is the join of 

the graphs. Then    .2 2121 GGGG pepe   

Proof. Let 1G  and 2G  be any two graphs having vertex sets 

 nxxxV ,,, 211   and  nyyyV ,,, 212   respectively. Then by 

definition for join of graphs  21 GG   we have union of the graphs such that 

each vertex of 1V  is adjacent to all the other vertices of .2V  Hence it is 

obvious that the set S consists exactly two vertices i.e., a vertex chosen from 

vertex set 1V  and the other from 2V  results to a pendant dominating set. Say 

  ,,,2,1\, niyxS ii   Where the vertices of SV   are adjacent to the 

vertices of S. Hence minimum and maximum cardinality of a minimal 

pendant dominating set remains identical. Therefore, 

   .2 2121 GGGG pepe   
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