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Abstract

A Square Difference Geometric Mean (SDGM) 3-Equitable labeling of a graph G = (V, E)
is a surjective mapping f : V(G) — {0, 1, 2} such that the induced mapping g : E(G) — {0, 1, 2}

is defined by H| (f@)? - (fL)? |~‘, Vuv e E(G) with the condition |vr(i)-vr(j)|<1 and

| eg(i) —eg(j)| <1 for all 0 <i, j <2. A graph is called a Square Difference Geometric Mean

(SDGM) 3-Equitable graph if there exists a SDGM 3-Equitable labeling. In this paper we define
the SDGM 3-Equitable labeling and we investigate the SDGM 3-Equitable labeling of certain
graphs such as Path graph, Cycle graph, Star graph, Bistar graph and Comb graph.

1. Introduction

Here we are considering non trivial, simple, finite and undirected graphs.
An assignment of integers to the vertices or edges, or both subject to certain
conditions is called graph labeling [5]. The concept of cordial and 3-equitable
labeling was introduced by Cahit [2]. Ponraj, Sivakumar and Sundaram

introduced the concept of mean cordial labeling [7]. Geometric mean cordial
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labeling was introduced by K. Chitra Lakshmi, K. Nagarajan [3]. Meghpara
Meera et al., points out that the name “Geometric Mean Cordial Labeling”
should be “Geometric Mean 3-Equitable Labeling” as K. Chitra Lakshmi, K.
Nagarajan are using ef(0), ef(1), ef(2) [6].

Motivated by these definitions, in this paper we define the new notion
called Square Difference Geometric Mean (SDGM) 3-Equitable labeling. We
investigate the SDGM 3-Equitable labeling of certain graphs such as Path
graph, Cycle graph, Star graph, Bistar graph and Comb graph. Terms and
definitions not defined here are used in the sense of Harary [4].

2. Preliminaries

Definition 2.1 [8]. The bistar graph B[n, n] is the graph obtained by

joining the center (apex) vertices of two copies of K1 ) by an edge.

Definition 2.2 [1]. Let P, be a path graph with n vertices and n -1
edges. The comb graph is defined as P, U K;. The comb is a graph formed by
joining a pendant edge to each vertices of the path. The comb graph has 2n

vertices and 2n —1 edges.
3. Main Results

Definition 3.1. A Square Difference Geometric Mean (SDGM) 3-
Equitable labeling of a graph G =(V, E) is a surjective mapping

f: V(G) - {0, 1, 2} such that the induced mapping g : E(G) — {0, 1, 2} is

defined by M (f@)* - (f)? ||, Yuv € E(G) with the condition

|vp(@) —vp(j)| <1 and |egz(i) —eg(j)| <1 for all 0<4i, j<2 A graph is

called a Square Difference Geometric Mean (SDGM) 3-Equitable graph if
there exists a SDGM 3-Equitable labeling.

Remarks 3.1. If we consider f:V(G)— {0,1} the definition 3.1

coincides with that of cordial labeling. Hence we consider

f:V(G) > 10,1, 2).
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Theorem 3.1. Any Path graph P, is a SDGM 3-Equitable graph.
Proof. Let G = (V, E) be a Path Graph P,.
Let V(G) = {v;/1 <i < n}.
Let E(G) = {vu; /1 <i <n-1}.
Let |V(G)| =1 and | E(G)| =k Then I =n and k =n—1.

The Path Graph P, is shown below in Figure 1
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Figure 1. Path Graph P,.
Define f : V(G) — {0, 1, 2}. as follows:

0, i=0,1(mod6)
f;)=11, i=25mod6) foralll<i<n
2, 1 =3, 4(mod6)

Case (i). n = 0(mod 3)

Letn=3tt>1

Here I =n=3t and k=n-1=3t-1.

Then v(0) = vy(1) = vp(2) =t and e4(0) = ¢ — 1, ex(1) = e4(2) = ¢.
Case (ii). n = 1(mod 3)

Letn=3t+1,¢t>0

Here I=n=3t+1and k=n-1=3t.

Subcase (i). ¢ is odd

vr(0) = vp(1) = t, vr(2) =t +1 and eg(0) = ex(1) = e4(2) = ¢.
Subcase (ii). ¢ is even

vr(0) =t +1, v(1) = vp(2) = ¢ and e4(0) = e,4(1) = eg(2) = ¢.
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Case (iii). n = 2(mod 3)
Let n=3t+2,t>0
Here I=n=38t+2and k=n-1=3t+1.
Subcase (i). t is odd
vr(0) = ¢, vp(1) = vp(2) =t +1 and ez(0) = eg(1) = ¢, eg(2) =t +1.
Subcase (ii). ¢ is even
vr(0) = vr(1) =t +1, vp(2) =t and eg(0) = ez(2) = ¢, ex(1) = ¢ +1.
In all the above three cases, we see that |v/(i)-vs(j)| <1 and
| eg(i) —eg(j)| <1 forall 0<i,j<2.
Hence Path graph P, is a SDGM 3-Equitable graph.

INustration 3.1. SDGM 3-Equitable Labeling of Path graph P, is

shown in Figure 2

0 1 2 2 3001 2 2 1

b (=)
[ T
y—

Figure 2. Path Graph P 4.
Here vr(0) = vr(1) = 5, v/(2) = 4 and eg(0) = e,4(2) = 4, ez(1) = 5.
Therefore | vs(i) —vf(j)| <1 and | eg(i) —eg(j) | <1 forall 0 <i, j < 2.

Theorem 3.2. The Cycle graph C,, is a SDGM 3-Equitable graph except
for n = 3(mod 6).

Proof. Let G = (V, E) be a Cycle Graph C,,.

Let V(G) = {v;/1 <i < n}.

Let E(G) = {vjv;;1/1<i <n-1;U{v,u}

Let | V(G)| =1 and | E(G)| = k. Then l = n and k = n.
The Cycle Graph C,, is shown below in Figure 3
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Figure 3. Cycle Graph C,,.
Define f : V(G) — {0, 1, 2} as follows:
Case (i). n = 2(mod 6)
Letn=6t+2,t>0

0, i=1,4(mod6)
f;j)=41, i=23(mod6)foralll1 <i<n-2
2, i=0,5(mod86)

flop1) =1

f(vn,) =0

Here I=n=6t+2 and k =n = 6t + 2.

Then  vp(0)=vr(1) =2t +1,vp(2) =2t and eg(0) = eg(1) = 2 +1,
eg(2) = 2t.

Case (ii). n # 2(mod 6)

0, i=0,1(mod6)
flv;)=141, i=25(mod6)forall1<i<n
2, i=3, 4(mod6)

Subcase (i). n = 0(mod 6)
Let n==6t1¢t>0
Here ] = n =6t and k = n = 6t.
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Then vf(0) = vr(1) = vr(2) = 2t and e,4(0) = eg(1) = e4(2) = 2¢.
Subcase (ii). n = 1(mod 6)
Letn=6t+1,t >0
Here I=n=6t+1and k =n =6t +1.
Then vf(0) =2t +1,vr(1) = vf(2) = 2t and e,4(0) =2t +1, eg(1) = eg(2) = 2t.
Subcase (iii). n = 4(mod 6)
Letn=6t+4,t>0

Here [=n=6t+4 and £k = n = 6t + 4.

Then vf(0)=vr(1) =2t +1,vf(2) =2t +2 and ez(0) = eg(1) = 2t +1,
eg(2) = 2 +2.

Subcase (iv). n = 5(mod 6)
Let n=6t+5,t>0

Here [ =n=6t+5 and k£ = n = 6t + 5.

Then vp(0) =2t +1, vp(1) =vr(2) =2t +2 and  e4(0) = 2t + 1, ez(1)
= ey(2) = 2 + 2,

In all the above cases, we see that |v/(i)-vs(j)|<1 and
| eg(i) —eg(j)| <1 forall 0<i, j<2

Hence Cycle graph C,, is a SDGM 3-Equitable graph.

IMustration 3.2. SDGM 3-Equitable Labeling of Cycle graph Cig is

shown in Figure 4
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Figure 4. Cycle Graph Cig.
Here vf(0) = vf(1) = 5, v7(2) = 6 and eg(0) = eg(1) = 5, e4(2) = 6.
Therefore | vp(i) —vp(j) | <1 and | eg(i) —eg(j) | <1 forall 0 <i, j<2.

Note. For n = 3(mod 6), the cycle graph C, is not a SDGM 3-Equitable
graph.
Theorem 3.3. The Star graph K , is a SDGM 3-Equitable graph for all

nz1l
Proof. Let G = (V, E) be a Star Graph Kj ,,.
Let V(G) = {v, v;/1 <i < n}.
Let E(G) = {vv;/1 <i < n}.
Let | V(G)| = and | E(G)| = k. Then [ =n+1 and & = n.

The Star Graph Kj , is shown below in Figure 5

Figure 5. Star Graph K ,.
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Define f : V(G) — {0, 1, 2} as follows.
flu)=0

0, i=0(mod3)
f;)=41, i=2(mod3) foralll<i<n
2, i =1(mod 3)

Case (i). n = 0(mod 3)

Let n =3ttt >0

Here I=n+1=3t+1 and £ =n = 3t.

Then vf(0) = ¢ +1, vr(1) = v/(2) = ¢ and e4(0) = eg(1) = e4(2) = ¢.
Case (ii). n = 1(mod 3)

Let n=3t+1,t>0

Here I=n+1=3t+2 and k =n =3t + 1.

Then vs(0) = vf(2) =t +1, vf(1) = ¢ and e4(0) = eg(1) = ¢, e4(2) = ¢ + 1.
Case (iii). n = 2(mod 3)

Let n=3t+2,t>0

Here I=n+1=3t+3 and k =n =3¢t + 2.

Then vf(0) = vr(1) = vf(2) =t +1 and ez(0) = ¢, e4(1) = eg(2) =t + 1.

In all the above three cases, we see that |v(i)-vs(j)|<1 and
| eg(i) —eg(j)| <1 forall 0<i, j<2.

Hence Star graph K , is a SDGM 3-Equitable graph.

Illustration 3.3. SDGM 3-Equitable Labeling of Star graph Kj i4 is

shown in Figure 6

Advances and Applications in Mathematical Sciences, Volume 21, Issue 11, September 2022



SQUARE DIFFERENCE GEOMETRIC MEAN 3-EQUITABLE ... 6259

Figure 6. Star Graph K 6.
Here vs(0) = vr(2) = 6, vr(1) = 5 and eg(0) = e, (1) = 5, e4(2) = 5.
Therefore | vp(i) —ve(j)| <1 and | eg(i) —ex(j) [ <1 forall 0 <1, j < 2.

Theorem 3.4. The Bistar graph B(n, n) is a SDGM 3-Equitable graph

forall n > 1.

Proof. Let G = (V, E) be a Bistar Graph B(n, n).

Let V(G) = {u, v, u;, v;/1 <i < n}.

Let E(G) = {uwy;, vu; /1 < i < n}.

Let | V(G)| =1 and | E(G)| = k. Then [ =2n+2 and k = 2n + 1.

The Bistar Graph B(n, n) is shown below in Figure 7

Uy vy

Figure 7. Bistar Graph B[n, n].
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Define f : V(G) — {0, 1, 2} as follows:
Case (i). n = 0(mod 3)

Let n =3t t>1

fw)=f)=0
0, 1<i<t 0, 1<i<t-1
Y d flu:)=1"
flas) {1, frl<i<s flwi) {2, t<i<3t

Here [l =2n+2=6t+2 and k=2n+1 =6t + 1.

Then vp(0) =vs(2) =2t +1,v,(1) =2t and eg(0) = eg(1) = 2¢, eg(2)
=2t +1.

Case (ii). n = 1(mod 3)

Let n=3t+1,¢20

flu) = flv) =0
0 1<i<t 0 1<i<t¢
=47 d =11
fl) {1, e1<i<ar s R4 S@) {2, t+1<i<3t+1

Here I =2n+2=6t+4 and k =2n+1 = 6t + 3.

Then vf(0) =2t +2,vr(1) =vp(2) =2t +1 and e4(0) = ex(1) = eg(2)
=2t +1.

Case (iii). n = 2(mod 3)

Let n=3t+2,t>0

fw) = f)=0
0, 1<i<t 0, 1<ic<t
) = ’ d ) = ’
fla) {1, trl<i<3t+2 flvi) {2, t+1<i<3t+2

Here [ =2n+2=6t+6 and k =2n+1 = 6t + 5.

Then v(0) =vp(1) =vp(2) =2t +2 and eg(0) = 2t +1, ex(1) = eg(2)
=2t + 2.
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In all the above three cases, we see that |v/(i)-vs(j)| <1 and

| eg(i) —eg(j)| <1forall 0<i, j<2
Hence Bistar graph B(n, n) is a SDGM 3-Equitable graph.

Illustration 3.4. SDGM 3-Equitable Labeling of Bistar graph B(8, 8) is

shown in Figure 8

Figure 8. Bistar Graph BJ[S, 8].

Here vr(0) = vr(1) = v/(2) = 6 and e4(0) = 5, e4(1) = e4(2) = 6.
Therefore | vs(i) —vf(j)| <1 and | eg(i) —eg(j) | <1 forall 0 <i, j <2.

Theorem 3.5. The Comb graph [P, ® K;]| is a SDGM 3-Equitable graph

for all n.

Proof. Let G = (V, E) be a Comb Graph [P, ® K] ]

Let V(G) = {v;, 4;/1 <i < n}, where v; represents the vertices of the
path and u; represents the pendent vertices corresponding to each vy

respectively.
Let EG) = {vjv;1/1<i<n-1}U{yy/1 <i<n}
Let |V(G)| =1 and | E(G)| = k. Then [ = 2n and k = 2n -1

The Comb Graph [P, ® K] is shown below in Figure 9
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Figure 9. Comb Graph [P, ® K; ]
Define f : V(G) — {0, 1, 2} as follows:
Case (i). n = 0(mod 3)
Let n =3ttt >1
V1<i<n,

1, i=1, 2(mod3)

0, i=1,2(mod3)
2 2, 1 =0(mod3)

f(v;) = { , i=0(mod 3)

o i)

Here ] =2n =6t and £ =2n—-1=6¢ 1.

Then vr(0) = vr(1) = vr(2) = 2t and e4(0) = eg(1) = 2¢, eg(2) = 2t — 1.
Case (ii). n = 1(mod 3)

Letn=3t+1,¢t>0

V1<i<n,

1, =1, 2(mod3)

0, i=1,2(mod3)
2 2, 1= 0(mod3)

f(v;) = { , i=0(mod3)

and ) = |

Here [ =2n =6t +2 and k =2n -1 = 6¢ + 1.

Then v(0)=vp(1) =2t +1,vp(2) =2t and eg4(0) = ez(1) = 2¢, eg(1)
=2t +1.

Case (iii). n = 2(mod 3)

Letn=3t+2,t>20

fon) = fluy) = 2
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Vi<i<n-1,
0, i=1,2(mod3) 1, =1, 2(mod3)
floi) {2, i = O(moag) °nd /) {2, i = 0(mod 3)

Here [ =2n =6t +4 and £k =2n-1= 6t + 3.

Then vp(0) =vp(1) =2t +1,v,(2) =2t +2 and eg(0) = ez(1) = e4(2)
=2t +1.

In all the above three cases, we see that |vs(i)-vf(j)| <1 and
| eg(i) —eg(j)| <1 forall 0<i, j<2.

Hence Comb graph [P, ® K] is a SDGM 3-Equitable graph.

Illustration 3.5. SDGM 3-Equitable Labeling of Comb graph [Py ® K ]
is shown in Figure 10.

0 0 2 9 9 9 ¢ 2 0 9 2

2 1 1 21 1 2 1 1

[y
[y

Figure 10. Comb Graph P, © K;.
Here vf(0) = vr(1) = vp(2) = 8 and eg(0) = eg(1) = 8, e4(2) = 7.

Therefore | vp(i) —vr(j) | <1 and | eg(i) —e4(j)| <1 forall 0 < i, j < 2.

Conclusion

In this paper we introduced the concept of SDGM 3-Equitable labeling
and we investigated the SDGM 3-Equitable labeling of certain graphs such as
Path graph, Cycle graph, Star graph, Bistar graph and Comb graph. The
future work includes SDGM 3-Equitable labeling of cycle and wheel related
graphs.
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