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Abstract

In this paper, we establish some fixed point and common fixed-point theorems in S -metric

spaces using implicit relation. The results presented in this paper extend and generalize several
results from the existing literature.

1. Introduction

In 1906, Maurice Fréchet [4] introduced the concept of metric spaces.
Later, in the year 1922, Stefan Banach [2] proved a very famous theorem
called “Banach Fixed Point Theorem”. In 2006, Z. Mustafa and B. Sims [5]
introduced G-metric spaces. In 2012, Sedghi, Shobe and Aliouche [11]
introduced S-metric spaces and they claimed that S-metric spaces are the
generalization of G-metric spaces. But, later Dung, Hieu and Radojevic [3]
have given examples that S-metric spaces are not the generalization of G-
metric spaces or vice versa. Therefore, the collection of G-metric spaces and
S-metric spaces are different. In 1989, I. A. Bakhtin [1] introduced b-metric
spaces as a generalization of metric spaces. In 2016, N. Souayah, N. Mlaiki

[12] introduced Sp-metric spaces as the generalizations of b-metric spaces

and S-metric spaces. But, very recently Tas and Ozur [6] studied some

relations between Sp -metric spaces and some other metric spaces. S. Sedghi

and N. V. Dung [9] introduced an implicit relation to investigate some fixed-
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point theorems on S-metric spaces. In 2015, Prudhvi [7] proved some fixed-
point theorems on S-metric spaces, which extends the results of Sedgi and
Dung [9].

Inspired by G. S. Saluja [8], Prudhvi [7], S. Sedghi, N. V. Dung [9] and
some others, we establish some fixed point and common fixed-point theorems

in Sy -metric spaces satisfying an implicit relation.
2. Preliminaries

Definition 2.1[11]. Let Q be a nonempty set. An S-metric on Q is a
function S : Q% - [0, ©) that satisfies the following conditions, for each

G, 9w, ac)
(S1) S(c, 3, w)>0forall g, 3, w e Q with ¢ # 3 # w.
(S2) S(c, 3, w)=0if ¢ =9 = w.
(S3) S(g, 9, w) <[S(g, ¢, @)+ S(8, 9, a) + S(w, w, a)].
The pair (Q, S) is called S-metric space.

Example 2.1[3]. Let Q = R, the set of all real numbers and let
S 3w =|9+w-2|+|9-w| Vg 3 weQ Then (Q, S) is an S-metric
space.

Definition 2.2[1]. Let Q be a nonempty set. A b-metric on Q is a function
d: 0% > [0, ) if there exists a real number s >1 such that the following

conditions holds for all ¢, 9 € Q
(1) dg 9)=0<¢c=239
(i) d(c, 8) =d(8, ¢)
(iii) d(c, 9) < s[d(c, w) + d(w, 9)]
The pair (Q, d) is called a b-metric space.

Definition 2.3[12]. Let Q be a nonempty set and let s >1 be a given

number.
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A function S, : Q% — [0, ) is said to be Sp-metric if and only if for all
V¢ 9, w, a e Q, the following conditions hold:

1) Sp(c, J,w)=0if g =9 = w.
(i) Sp(c, 9, w) < s[Sp(c, ¢, a)+Sp(S, 9, a) + Sp(w, w, a)),
The pair (Q, Sp) is called an Sj, -metric space.

Remark 2.1. We note that every S-metric space is an Sy -metric space

with s =1, but the converse statement is not true.
Example 2.2[6]. Let Q = R, the set of all real numbers and let
Spe, 9, w) = %(|g—8|+|8—w|+|g—w|)2, forall ¢, 9, w e Q.
Then (Q, Sp) is an S -metric space with s = 4, but it is not an S-metric
space. Indeed, for ¢ =4, 3 =6, w = 8 and a = 5, we get
Sp(4, 6, 8) =4 > Sy(4, 4, 5) + Sp(6, 6, 5) + Sp(8, 8, 5).
Thus, Sp-metric spaces are more general than S-metric spaces.
Definition 2.4[6]. A Sy -metric Sy is said to be symmetric if
Sp(s 6 8) = Sp(8, 9, ¢) Vg, S e
Lemma 2.1[10]. In Sy -metric space, we have
@ Sy(s, o 8) < 55(3, 9, <) and Sy(9, 9, ) < 585 ¢ 9)
(i) Sp(c, ¢, w) < 2sSp(c, ¢, 9) + s2S,(9, 9, w).

Definition 2.5[12]. If (Q, S) is an S} -metric space and a sequence {c,}
in Q. Then

(i) {c,} is called a S-Cauchy sequence, if to each € >0, 3ny € N such
that Sy(G,s Cns Sm) < 6 VR, m > ng.

() {c,} = ¢ < toeach € >0,3Iny € N such that Sy(c,, g,, g) < € and

Sp(c, ¢, ¢n) < € VR > ng, and we write as lim, ,, ¢, = ¢
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Definition 2.6[12]. We say that (Q, Sp) is complete if every S;-Cauchy

sequence is Sy -Convergent in Q.
Tas and Ozgur [6] proved the following theorems in Sp-metric spaces.

Theorem 2.1[6]. If (Q, Sp) is a complete Sy -metric space with s >1 and
T is a self map on Q satisfying

Sp(Te, Tg, T9) < ¢Sy(c, 6, 9), Vg, 3 € Q, where 0 < ¢ < lz
s

Then T has a unique fixed point ¢ in Q.
Example 2.3[10]. Let (©Q, S) be a S-metric space and S,(c, 9, w)

= [S(c, 9, w)]?, where g > 1 is a real number.

Note that S, is a Sp-metric with s = 92(a-1), Obvisously, S, satisfies

conditions

(i) 0 < S,(c, 9, w), forall ¢, 9, w € Q with ¢ # 9 # w.

(1) Si(c, J,w)=0if c=9 =w.

If 1 < g < o, then the convexity of the function f(c) = ¢?, (g > 0) implies
that (a +b)? < 297 (a9 + b9).

Thus, for each ¢, 9, w, a € Q, we obtain,
S.(s, 9, w) = S(g, 9, w)f
< (S g @)+ S(8, 9, a)] + S(w, w, a))?
< 297([S(c, ¢, @) + S(9, 9, Q) + S(w, w, a)?)
< 227120748, ¢, @) + S(9, 9, @)?)] + 297 S(w, w, a))
< 224(S(c, ¢, a)? +S(9, 9, @)? + Sw, w, a)?).

< 22(‘1_1)(8*(@, G, a) + S*(S, 9, a) + S*(w> w, a))
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So, S, is a Sp-metric with s = 92(g-1)

Now, we introduce an implicit relation to prove some fixed point and

common fixed-point theorems in Sy -metric spaces.

Definition 2.7 (Implicit Relation). Let ¥ be the family of all real

valued continuous functions o : Rf:’ — R, non-decreasing in the first
argument for five variables. For some q € {O, s%} where s > 1, we consider
the following conditions.

(R1) For ¢, 8 € R, if ¢ < (9, sg, 89, sc, g+ s9) then ¢ < ¢9.

(R2) For ¢, 3 € R,, if ¢ < (0, O, g, 0, 0) then ¢ = 0.

(R3) For ¢ € R,, if ¢ < w(g, 0, 0, 0, %j then ¢ = 0.

3. Main Results

In this section, we shall prove some fixed point and common fixed-point

theorems satisfying an implicit relation in Sp-metric spaces.
Theorem 3.1. Let T be a self map on a complete Sy,-metric space (Q, Sp)

with s >1 and

Sb(Tg’ T8, Tw) < 1P(Sb(€, 39, w)’ Sb(S’ 9, T(;), Sb(w’ w, Tw)’ Sb(g’ G m)’
1
2_8 [Sb(g’ 87 m) + Sb(w’ w, TC_',)]) (1)

for all ¢, 8, w e Q and y € Y. If v satisfies the conditions (R1), (R2) and
(R3), then T has a unique fixed point in Q.

Proof. Let ¢y € Q be arbitrary and define a sequence {g,} in Q such
that ¢,,; =7¢,, for any ne N. If for some ne N,g,.1 =¢, Then,
¢, = T1t,,. Hence, T has a fixed point. Now, we may assume that ¢, 1 # G,,

for all n € N. It follows from inequality (1) and Lemma 2.1, we consider
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Sp(Gn+1> Snrts Sn) = Sp(Ten, Top, Top_1)

< W(Sb(gn’ Sn> gnfl)’ Sb(gn’ Sn> Tgn)f Sb(gnfl’ Sn-1> Tgnfl)’
1

Sb(gm Cns Tgn)’ 9s [Sb(gn’ Cno an) + Sb(@n—l’ Snl> TQn—l)])

= I/J(Sb(‘;n’ Cno anl)’ Sb(@n’ Cns §n+1)’ Sb(‘;nfla Gn—-1> Qn)’

1

Sp(Sn> Gns Sne1) 5 [S6(Sns S Gne1)Sp(Sn15 Gnts )

< Y(Sp(Sns Sns Sn1): $S5(Sni1s Snats S 895(Gns s Sn1);
1
SSb(ngl’ Sn+1s gn)’ 2_8 [SSb(gn+1’ Cn+l> gn)

+288b(@n71’ Gn—1> gn) + SSb(§n+1’ Cn+l> Qn)])

< W(Sb(gn’ Cn> ‘;nfl)’ SSb(€n+1, Gn+1> Qn)’ SSb(CJn’ Cn» gnfl)’
1 2
SSb(gn-H’ Sn+l1s gn)’ 2_8 [23Sb(gn+1’ Cn+l> gn) +2s Sb(gna Cn» gn—l)])

< P(Sp(Sn» Sns Gn-1) 8(Sn+1> Snats> Sn ) (S S St

SSb(ngl’ Sn+1> Qn)’ [Sb(§n+1’ Cn+1» Gn) + SSb(Qn’ Sn> ‘Snfl)]) )

2

Since ¥ € ¥ satisfies the condition (R1), there exists q € {0, L) such
s

that

Sp(Gnt1s Snt1s Sn) < @Sp(Sns Sns Sn-1) < @"Sp(c1» <15 So) 3)

For n, m ¢ N with n < m, using Lemma 2.1 and equation (3), we have
2
Sb(gn’ Gn> Qm) < 2SSb(Qn’ Sn> <-:vn+1) +s Sb(€n+1a Cn+1s gm)
2 2
< 2SSb(Qn’ Cn> gn+1) +s [2Sb(gn+1’ Cn+ls gn+2) +s Sb(gn+2’ Cn+2> gm)]

< 2aq"[1 + s%q + (s%q)* +..1Sp(c0, S0» S1)
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2sq"
< ( q2 jsb(fso, S0s 61)
1-s5q

Since ¢ 6‘:0, LZ} and s >1. Taking the limit as n —> o, we get
s

Sp(Sns Sns Sm) — 0. This proves that the sequence {c,} is a cauchy sequence
in the complete Sp-metric space (€, Sp). Then, there exists p € Q such that
lim, ,, ¢, = p. Now we prove that p is a fixed point of 7. Again by using

inequality (1), we obtain

Sp(Gn» Sn» IP) = Sp(T6y,, Toy, TP)

< w(Sb(Qna Cno p)a Sb(gna Cno Tgn)’ Sb(P, [oF Tp),
1
Sp(Sns ns> Ton): 55 [S6(Gns Sns Ton) + S, s T6))
= W(Sb(gn’ Gn» P), Sb(gna Gn» gn+1)’ Sb(p’ o3 Tp),

1
Sp(Sns Sn> Sn1 ) 55 [S6(Gns Sns Sne1) + SplPs Py Grat)))

Letting n — oo, we get

Sp(p, p, Tp) < W(Sp(p, P, ) Sp(p, P, ) Sp(p, p, TP),
1
Sb(p7 P, p)7 2_8 [Sb(p’ P, p) + Sb(p7 P, p)])

that is, Sb(p’ o3 Tp) = 1/)(0’ 0, Sb(p’ P Tp), 0, O)

Since y € ¥ satisfies the condition (R2), then we get

Sp(p, p, TP) < qSp(p, p, TP)

that is, (1 -q)Sy(p, p, Tp) < 0.
Since 0 < g < % Therefore we get Sy(p, p, Tp) = 0. Hence Tp = p.
s

Thus, p is a fixed point of 7. Now, we show that fixed point of 7' is unique.
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For this, let p* be another fixed point of T It follows from inequality (1)

and Lemma 2.1, we get
Sp(p, P, P") = Sp(Tp, Tp, p)

< P(Sp(ps ps ) Sp(ps ps Tp), Sp(p™, p*, TP"),
1 * *
So(p, P Tp), 5 [Sb(ps p, Tp) + Sp(p”, 07, TP))

= V’(Sb(P, P> p*)’ Sb(p’ Ps p)’ Sb(p*a p*’ p*)a

]- * *

* 1 *
< w(Sb(p’ P, P )’ 0,0, 0, § Sb(p’ P, P ))

Since Y € ¥ satisfies the condition (R3), then we get

Sp(p, p, P7) < aSp(p, p, P7)

that is, (1 — ¢)Sp(p, p, p*) < 0.

Since 0 < g < % Therefore we get Sy(p, p, p*) = 0. Hence p = p*. Thus
S

the fixed point of 7'is unique.

Theorem 3.2. Let T} and Ty be two selfmaps on a complete Sy-metric
space (Q, Sp) with s >1 and

Sp(Tis, T8, Tow) < Y(Sp(s, 9, w), Sp(8, 9, Tig), Sp(w, w, Tow),
1
Sb(@? S TLS)’ % [Sb(‘g’ 9, TIS) + Sb(w’ w, Tlg)]) 4)

for all ¢, 8, w e Q and y e Y. If v satisfies the conditions (R1), (R2) and
(R3), then T and Ty have a unique fixed point in Q.

Proof. Let ¢y € X be arbitrary and a sequence {g,} in X defined by

Gon+1 = T1Gon and Gopy9 = ToGopyq, for n=0,1, 2,3, ....
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It follows from inequality (4) and Lemma 2.1, we have
Sp(S2n+1> S2ni1s S2n) = So(Ti2ns Tic2n, Toc2n-1)
< Y(Sp(S2ns S2ns S2n-1) Sb(S2ns G20 11620 ) Sp(S2n-15 S2n-15 ToG2n-1);

1
Sp(2n» Sons TiGon ) %5 [Sp (621 S2n> TiS2n) + Sp(G2n-1> Son-1> Ticon))

= w(sb(g2na C2ns S2n-1 )’ Sb(@Zn» C2ns S2n+1 )’ Sb(g2n—1’ C2n-1> €2n)’
1
Sp(Gans> Sons S2n+1): %5 [St(S21 G210 G2n1) + Sb(S2n-1 S2n-15 S2n41)])

< w(Sb(QQn» G2n» g2n—1)’ SSb(€2n+1s C2n+1> G2n)’ SSb(QZna G2n» g2n—1)’

1
885 (G2n+1> S2n+1s S2n ) %5 [$Sy(S2n+1> S2n+1s S2n)

+258,(G2n-1, G2n—1> S2n) + 5Sb(S2n41> S2n+1> S2n)))
< Y(Sp(G2ns S2n> Son-1)> 5Sp(S2n11s S2n+1> Son )

Sb((;Zn’ Gon» €2n71), SSb(§2n+17 S2n+1> an)7

1
%5 [25 (G2 415 Soni1s S2n) + 25°Sp(S2ns Sons S2n1)) (5)

2

Since ¥ € ¥ satisfies the condition (R1), there exists g € {0, LJ such
s

that

2
Sp(Con+1s S2n+1> G2n) < @Sp(S2ns S2n» S2n-1) < "Sp(c1, <15 So) (6)

For n,me N with n <m, by using Lemma 2.1 and equation (6), we

have
2
Sb(gn’ Cn> Qm) < ZSSb(Qna Cn> Qn+1) +s Sb(gn+1’ Sn+1s gm)

2 2
< 23Sb(gn’ Cn> gn+1) +s [ZSb(ngl’ Sn+ls gn+2) +8 Sb(gn+2’ Sn+2> gm)]

9
< 25¢"[1 + s%q + (s%q)” + .. 1Sy (G0 Gos G1)
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2sq"
S [ q2 jsb(GO, 505 G1):
1-s5q

Since ¢ 6‘:0, Lz} and s>1. Taking the limit as n —> o, we get
s

Sp(Sns Sn» Sm) — 0. This proves that the sequence {g,} is a cauchy sequence
in the complete Sp-metric space (€, Sp). Then, there exists o € Q such that

lim,_,, ¢, = c. Now we prove that ¢ is a common fixed point of 77 and T5.
For this Consider,
Sp(S2n+1> Gon+1» 7o) = Sp(Tisgn Tiszn, Tio)

= W(Sb(QZn’ S2n» G)a Sb(@Qna G2n» TlQZn)’ Sb(Ga G, Tlc)’
1
Sb(§2n’ G2n» Tlg2n)’ 9 [Sb(g2n’ Gon» Tl@Zn) + Sb(c’ G, Tl@Zn)])
< W(Sb(QZn’ S2n» G)’ Sb(@Zn’ G2n> S2n+1 )’ Sb(c’ G, Tic)’

1
Sp(S2n» Sons S2n+1): %5 [Sp(621 G20 G2n+1) + Sb(0, O, G2141)]) (7)

Letting n — oo, we get

Sy (o, o, Tic) < Y(Sy(o, o, o), Sy(o, o, c), Sy(o, o, Tic),
1
Sy(o, o, 6), 55 [Sy(o, o, 6) + Sp(o, o, o))

that is, Sp(c, o, T1o) < ¥(0, 0, Sy(o, o, Tic), 0, 0)
Since y € ¥ satisfies the condition (R2), then we get
Sy(o, o, Tic) < ¢S(o, o, Tio)

that is, (1 - q)Sy(o, o, Tio) < 0.
Since 0 < g < % Therefore we get Sy(o, o, T5) = 0. Hence Tic = o.

S

Similarly, we can show that 7,6 = c. This shows that ¢ is a common
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fixed point of 77 and 75. Now we prove that 77 and 7y have a unique

common fixed point. For this, let ¢* be another common fixed point of T, and

T5. 1t follows from equation (4) and Lemma 2.1, we have
Sp(o, 0, 6") = Sp(Tyo, Tio, Tys™)
< Y(Sp(c, o, 6*), Sp(o, o, T10), Sp(c™, o7, Tpo"),
$(0; 0, i), 5 [Sh(0, 0, Tio) + Sy(c", o, o))
= 9(Sy(o, o, 7), Sp(o, 6, 6), Sp(c”, c*, c¥)

1 £ *
Sp(o, o, 6), 55 [Sy(o, o, )+ Sp(c’, 67, o))

= w(Sb(c, 6,6°),0,0,0, %Sb(c, o, 0*)).
Since Y € ¥ satisfies the condition (R3), then we get
Sp(o, 6, 6*) < ¢Sp(o, 6, ")
that is, (1 —q)Sy(o, 5, ")
Since 1 < g < % Therefore we get Sy(c, 6, 6°) = 0. Hence 6 = ¢". This
s

shows that o is the unique common fixed point of 77 and 75.

Theorem 3.3. Let T} and Ty be two continuous selfmaps on a complete

Sbmetric space (Q, Sp) with s >1 and

Sy (TPe. TP, THw) < Y(Splc 9, w). Sy(8, 9, TPe). Sylaw, w, Tfw),
1
Shls. o TP9). s [5(9, 8, T9) + Sylaw, w, 7)) ®)

for all ¢, 9, w € Q, where p and q are integers and vy € Y. If ¢ satisfies the
conditions (R1), (R2) and (R3), then T} and Ty have a unique fixed point in
Q.
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Proof. Since T{ and 7Y satisfies the conditions of Theorem 3.2. Let A

be the common fixed point.
Then, we have TPA = A = T,(TFL) = iL = TP(T) = Tih
If Tih = &g, then TPAhg = Ag. So, TiA is a fixed point of T7.
Similarly, To(TgA) = To (To) = Toh. Now, using equation (8) and Lemma
2.1, we obtain
Sp(, &, Tir) = Sp(TP2, TPL, TP (T11))
< Y(Sp (s &, TiR), S, 1, TPA), Sp(Tik, Tik, TP (Ti1),
Syl 1 TPR), 5 [Sy(0 1, TPR) + Sy (T, Tk, L)

< Y(Sp(, &, Tin), Sp(h, 2, 1), Sp(Tid, T, Ti),

1
Sb(}‘ﬂ A, }")’ 9 [Sbo"’ A, }") + Sb(q?l}\" 7?[7\" 7\')])

< zp(sb(x, A ), 0,0, 0, 5 [Sy( 2, le)]).

Since y € ¥ satisfies the condition (R3), then we get
Sbo\" A, Tl)\') = kaO\', A, Tl}\')

that is, (1 - k)Sy(A, A, T1A) < 0.

Since 0 <k < Lz and s >1. Therefore we get Sp(A, A, Tj1) = 0. Hence
s

TiA = L. Similarly, we can show that 7oA =A. This shows that A is a
common fixed point of 7} and 7. For uniqueness of A, Let X" # A be another
common fixed point of 7} and 7T,. Then clearly A" is also a common fixed

point of 77" and 7y, which implies A = 1". Hence 7} and 75 have a unique

common fixed point.
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Theorem 3.4. Let {G,} be a family of continuous selfmaps on a complete

Sy -metric space (Q, Sp) with s >1 and

(G G, ) < PSh(s. 9. 1) Sy(O, 9, o). Sw. w, Ggo),
1
Sb(g’ S G(xS)’ % [Sb(87 9, GOLS) + Sb(w’ w, G(lg)]) 9)

for all ¢, 9, w e Q, and o, P € R* with o # B. Then there exists a unique

n € Q satisfying Gon =, forall o € V.

Proof. Let ¢y € Q be arbitrary and a sequence {g,} in Q defined by

Goni1 = GoGon and Gopio = Gpsgpyy, for n=0,1,2,3, ...
It follows from inequality (9) and Lemma 2.1, we have

Sb(§2n+1’ G2n+1» g2n) = Sb(Ga(;Zn’ Gocg2na GﬁQZn—l)

< w(Sb(g2na Gons G2n-1 )’ Sb(QQna G2ns Gocc.>2n )’ Sb(g2n—1’ G2n-1> GBQQn—l)
1
Sb(§2na Son>» Gocg2n)7 2_8 [Sb(QQn’ C2ns Ga§2n) + Sb(g2n—17 S2n-1> Goc@Qn)])
= W(Sb(%n, G2n> S2n-1 ), Sb(QQn’ G2n» S2n+1 ), Sb(Ganb G2n—-1> §2n)’
1
Sp(G2ns> Sons S2n+1): %5 [Sp(c2n> Sons S2n+1) + Sp(S2n-1> Son-1- S2n+1))
< 1/J(Sb(<;2n, Gon» €2n71)’ SSb(§2n+1’ S2n+1> Gzn), SSb(QZn’ Gon» Ganl)’
1
ssb(@2n+1’ Con+1» an)a 2_8 [SSb(g2n+1’ Con+1» §2n)

+259,(Gon-1> S2n-1> S2n) + 5Sp(San+1> S2ni1s S2n)))

< w(Sb(<;2n, Son» anfl)’ SSb(§2n+1’ S2n+1> €2n)’ SSb(QZn’ G2n» €2n71)’

1 2
8Sy(S2n41> G2n+15 S2n ) %5 (2585 (2141 G2n+1> S2n) + 25°Sp(Gans Sons Son—1)]) (10)
Since ¥ € ¥ satisfies the condition (R1), there exists q € [0, Lz) such
s
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that

2
Sp(Gon+1> S2n+1s S2n) < @Sp(S2n» Sons S2n-1) < @7 Sp(1» €15 Go) 11

For n,m e N with n <m, by using Lemma 2.1 and equation (11), we

have
2
Sb(gn’ Cn> gm) < ZSSb(gn, Gn> gn+1) +s Sb(gn+1a Cn+1> gm)
2 2
< 2SSb(€n’ Gns €n+1) +s [zsb(gnﬂ’ Sn+ls Qn+2) +8 Sb(@n+2’ Sn+2> Qm)]

< 25¢"[1 + s%q + (s%q)* + .. 1Sp(c0, <0» S1)

2sq"
S( 1 JSb(go, S0, G1):
1-s5%q

Since ¢ E‘:O, %} and s>1. Taking the limit as n —> o, we get
s

Sp(Sns Sns Sm) — 0. This proves that the sequence {,} is a cauchy sequence
in the complete Sj-metric space (Q, Sp). Then, there exists n € Q such that
lim, ,, G, =n. By the continuity of G, and G, it is clear that

Gn = Ggn = n. Therefore n is a common fixed point of G, and Gg, for all
a € . In order to prove the uniqueness, let us take another common fixed
point 1* of G, and GB’ where n # n*. Then using equation (9) and Lemma

2.1, we obtain
Sp(m, m, 1) = Sp(Gyn, Gy, Ggn')
< Y(Sp(m, o 1Y), Sp(n, m, Go), Sp(n”, m°, Ggn'*),
Sp(1h 1, Gt 5 [Syn, 1, G) + Sy, ', Gen)
< 9(Sp(n, m, M), Sp(n, m, ), Sp(”, n*, "),

1 * *
Sb(na n, n): 2_8 [Sb(na n, T]) + Sb(n >N n)])
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* 1 *
< w(Sb(n, n 1), 0,0,0, 5.8, m,n )j.
Since Y € ¥ satisfies the condition (R3), then we get

Sp(m, m, M) < ¢Sp(m, m, n°)

that iS, (]. - q)Sb(na n, n*) <0.

Since 0 < g < — . Therefore we get Sp(n, n, n*) = 0. Hence n = n". This

1
82
shows that n is the unique common fixed point of G, for all o € V.
Corollary 3.1. Let (Q, Sp) be a complete Sy-metric space. Suppose that
the mapping T :Q — Q satisfies Sy(Tc, T, Tw) < vSp(g, 3, w) for all
G 9, w e Q, where y €0, 1) is a constant. Then T has a unique fixed point in

Q. Moreover, T is continuous at the fixed point.
Proof. We can prove easily by wusing Theorem 3.1. with

Wa, b, ¢, d, e) = ya, for some y €[0,1) and a, b, ¢, d, e € R".

Corollary 3.2. Let (Q, Sp) be a complete Sy-metric space. Suppose that
the mappings T, Ty : Q — Q satisfies Sp(Tig, 19, Ts, w) < 8Sp(c, 9, w) for
all ¢, 9, ® € Q, where § €[0,1) is a constant. Then T, and Ty have a unique

fixed point in Q.

Proof. We can prove easiyy by using Theorem 3.2. with

Wa, b, ¢, d, e) = 3a, for some § €[0,1) and a, b, ¢, d, e € R".
Example 3.1. Let (Q, Sy) be a complete Sj-metric space with s = 4.
Where Q = [0, 1] and Sy(c, 9, w) = (g —w|+| 9 —w|}

Now, we consider the mapping 7 : Q — Q defined by T'(g) = %, for all

¢ €[0, 1] Then Sy(T%, T9, Tw) = (| Tt — Tw| +| T — Tw|)?

-(5-%[-I3-%0)
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N _wl?

1
= 'YSb(Q, 3, w)
where y = 1 < 1. Thus T satisfies all the conditions of corollary 3.1. and

25
clearly 0 € Q is the unique fixed point of 7.

4. Conclusion

From this results, we can study the fixed-circle problem [13] using new

contrations on different generalized metric spaces.
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