

# SOME FIXED-POINT RESULTS IN S<sub>b</sub>-METRIC SPACES

D. VENKATESH and V. NAGA RAJU

<sup>1,2</sup>Department of Mathematics Osmania University, Hyderabad Telangana-500007, India E-mail: viswanag2007@gmail.com

## Abstract

In this paper, we establish some fixed point and common fixed-point theorems in  $S_b$ -metric spaces using implicit relation. The results presented in this paper extend and generalize several results from the existing literature.

## 1. Introduction

In 1906, Maurice Fréchet [4] introduced the concept of metric spaces. Later, in the year 1922, Stefan Banach [2] proved a very famous theorem called "Banach Fixed Point Theorem". In 2006, Z. Mustafa and B. Sims [5] introduced G-metric spaces. In 2012, Sedghi, Shobe and Aliouche [11] introduced S-metric spaces and they claimed that S-metric spaces are the generalization of G-metric spaces. But, later Dung, Hieu and Radojevic [3] have given examples that S-metric spaces are not the generalization of G-metric spaces. Therefore, the collection of G-metric spaces and S-metric spaces are different. In 1989, I. A. Bakhtin [1] introduced b-metric spaces as a generalization of metric spaces. In 2016, N. Souayah, N. Mlaiki [12] introduced  $S_b$ -metric spaces as the generalizations of b-metric spaces and S-metric spaces. But, very recently Tas and Ozur [6] studied some relations between  $S_b$ -metric spaces and some other metric spaces. S. Sedghi and N. V. Dung [9] introduced an implicit relation to investigate some fixed-

<sup>2020</sup> Mathematics Subject Classification: 47H10, 54H25.

Keywords: Fixed point, Common fixed point, implicit relation,  $S_b$  -metric space.

<sup>\*</sup>Corresponding author; E-mail: venkat409151@gmail.com

Received September 15, 2022; Revised December 18, 2022; Accepted December 19, 2022

point theorems on S-metric spaces. In 2015, Prudhvi [7] proved some fixedpoint theorems on S-metric spaces, which extends the results of Sedgi and Dung [9].

Inspired by G. S. Saluja [8], Prudhvi [7], S. Sedghi, N. V. Dung [9] and some others, we establish some fixed point and common fixed-point theorems in  $S_b$ -metric spaces satisfying an implicit relation.

#### 2. Preliminaries

**Definition 2.1**[11]. Let  $\Omega$  be a nonempty set. An S-metric on  $\Omega$  is a function  $S: \Omega^3 \to [0, \infty)$  that satisfies the following conditions, for each  $\zeta, \vartheta, w, a \in \Omega$ ,

- (S1)  $S(\varsigma, \vartheta, w) > 0$  for all  $\varsigma, \vartheta, w \in \Omega$  with  $\varsigma \neq \vartheta \neq w$ .
- (S2)  $S(\varsigma, \vartheta, w) = 0$  if  $\varsigma = \vartheta = w$ .
- (S3)  $S(\varsigma, \vartheta, w) \leq [S(\varsigma, \varsigma, a) + S(\vartheta, \vartheta, a) + S(w, w, a)].$

The pair  $(\Omega, S)$  is called S-metric space.

**Example 2.1**[3]. Let  $\Omega = R$ , the set of all real numbers and let  $S(\zeta, \vartheta, w) = |\vartheta + w - 2\zeta| + |\vartheta - w| \quad \forall \zeta, \vartheta, w \in \Omega$ . Then  $(\Omega, S)$  is an S-metric space.

**Definition 2.2**[1]. Let  $\Omega$  be a nonempty set. A *b*-metric on  $\Omega$  is a function  $d: \Omega^2 \to [0, \infty)$  if there exists a real number  $s \ge 1$  such that the following conditions holds for all  $\varsigma, \vartheta \in \Omega$ 

- (i)  $d(\varsigma, \vartheta) = 0 \Leftrightarrow \varsigma = \vartheta$ .
- (ii)  $d(\varsigma, \vartheta) = d(\vartheta, \varsigma)$
- (iii)  $d(\varsigma, \vartheta) \le s[d(\varsigma, w) + d(w, \vartheta)]$

The pair  $(\Omega, d)$  is called a *b*-metric space.

**Definition 2.3**[12]. Let  $\Omega$  be a nonempty set and let  $s \ge 1$  be a given number.

A function  $S_b: \Omega^3 \to [0, \infty)$  is said to be  $S_b$ -metric if and only if for all  $\forall \zeta, \vartheta, w, a \in \Omega$ , the following conditions hold:

- (i)  $S_b(\varsigma, \vartheta, w) = 0$  if  $\varsigma = \vartheta = w$ .
- (ii)  $S_b(\varsigma, \vartheta, w) \le s[S_b(\varsigma, \varsigma, a) + S_b(\vartheta, \vartheta, a) + S_b(w, w, a)],$

The pair  $(\Omega, S_b)$  is called an  $S_b$ -metric space.

**Remark 2.1.** We note that every S-metric space is an  $S_b$ -metric space with s = 1, but the converse statement is not true.

**Example 2.2**[6]. Let  $\Omega = R$ , the set of all real numbers and let  $S_b(\varsigma, \vartheta, w) = \frac{1}{16} (|\varsigma - \vartheta| + |\vartheta - w| + |\varsigma - w|)^2$ , for all  $\varsigma, \vartheta, w \in \Omega$ .

Then  $(\Omega, S_b)$  is an  $S_b$ -metric space with s = 4, but it is not an S-metric space. Indeed, for  $\zeta = 4$ ,  $\vartheta = 6$ , w = 8 and a = 5, we get

$$S_b(4, 6, 8) = 4 > S_b(4, 4, 5) + S_b(6, 6, 5) + S_b(8, 8, 5).$$

Thus,  $S_b$ -metric spaces are more general than S-metric spaces.

**Definition 2.4**[6]. A  $S_b$ -metric  $S_b$  is said to be symmetric if

$$S_b(\zeta, \zeta, \vartheta) = S_b(\vartheta, \vartheta, \zeta) \ \forall \zeta, \vartheta \in \Omega.$$

**Lemma 2.1**[10]. In  $S_b$ -metric space, we have

- (i)  $S_b(\zeta, \zeta, \vartheta) \leq sS_b(\vartheta, \vartheta, \zeta)$  and  $S_b(\vartheta, \vartheta, \zeta) \leq sS_b(\zeta, \zeta, \vartheta)$
- (ii)  $S_b(\varsigma, \varsigma, w) \le 2sS_b(\varsigma, \varsigma, \vartheta) + s^2S_b(\vartheta, \vartheta, w).$

**Definition 2.5**[12]. If  $(\Omega, S_b)$  is an  $S_b$ -metric space and a sequence  $\{\varsigma_n\}$  in  $\Omega$ . Then

(i)  $\{\zeta_n\}$  is called a  $S_b$ -Cauchy sequence, if to each  $\epsilon > 0, \exists n_0 \in N$  such that  $S_b(\zeta_n, \zeta_n, \zeta_m) \leq \epsilon, \forall n, m > n_0$ .

(ii)  $\{\zeta_n\} \to \zeta \Leftrightarrow$  to each  $\epsilon > 0, \exists n_0 \in N$  such that  $S_b(\zeta_n, \zeta_n, \zeta) < \epsilon$  and  $S_b(\zeta, \zeta, \zeta_n) < \epsilon \forall n \ge n_0$ , and we write as  $\lim_{n\to\infty} \zeta_n = \zeta$ .

**Definition 2.6**[12]. We say that  $(\Omega, S_b)$  is complete if every  $S_b$ -Cauchy sequence is  $S_b$ -Convergent in  $\Omega$ .

Tas and Ozgur [6] proved the following theorems in  $S_b$ -metric spaces.

**Theorem 2.1**[6]. If  $(\Omega, S_b)$  is a complete  $S_b$ -metric space with  $s \ge 1$  and T is a self map on  $\Omega$  satisfying

$$S_b(T\varsigma, T\varsigma, T\vartheta) \leq cS_b(\varsigma, \varsigma, \vartheta), \, \forall \, \varsigma, \, \vartheta \in \Omega, \, where \, \, 0 < c < \frac{1}{s^2}.$$

Then T has a unique fixed point  $\varsigma$  in  $\Omega$ .

**Example 2.3**[10]. Let  $(\Omega, S)$  be a S-metric space and  $S_*(\varsigma, \vartheta, w) = [S(\varsigma, \vartheta, w)]^q$ , where q > 1 is a real number.

Note that  $S_*$  is a  $S_b$ -metric with  $s = 2^{2(q-1)}$ . Obvisously,  $S_*$  satisfies conditions

- (i)  $0 < S_*(\varsigma, \vartheta, w)$ , for all  $\varsigma, \vartheta, w \in \Omega$  with  $\varsigma \neq \vartheta \neq w$ .
- (ii)  $S_*(\varsigma, \vartheta, w) = 0$  if  $\varsigma = \vartheta = w$ .

If  $1 < q < \infty$ , then the convexity of the function  $f(\varsigma) = \varsigma^q$ ,  $(\varsigma > 0)$  implies that  $(a+b)^q \le 2^{q-1}(a^q + b^q)$ .

Thus, for each  $\zeta$ ,  $\vartheta$ , w,  $a \in \Omega$ , we obtain,

$$\begin{split} S_*(\varsigma, \, \vartheta, \, w) &= S(\varsigma, \, \vartheta, \, w)^q \\ &\leq ([S(\varsigma, \, \varsigma, \, a) + S(\vartheta, \, \vartheta, \, a)] + S(w, \, w, \, a))^q \\ &\leq 2^{q-1}([S(\varsigma, \, \varsigma, \, a) + S(\vartheta, \, \vartheta, \, a)]^q + S(w, \, w, \, a)^q) \\ &\leq 2^{2-1}([2^{q-1}(S(\varsigma, \, \varsigma, \, a)^q + S(\vartheta, \, \vartheta, \, a)^q)] + 2^{q-1}S(w, \, w, \, a)^q) \\ &\leq 2^{2(q-1)}(S(\varsigma, \, \varsigma, \, a)^q + S(\vartheta, \, \vartheta, \, a)^q + S(w, \, w, \, a)^q) \\ &\leq 2^{2(q-1)}(S_*(\varsigma, \, \varsigma, \, a) + S_*(\vartheta, \, \vartheta, \, a) + S_*(w, \, w, \, a)). \end{split}$$

So,  $S_*$  is a  $S_b$ -metric with  $s = 2^{2(q-1)}$ .

Now, we introduce an implicit relation to prove some fixed point and common fixed-point theorems in  $S_b$ -metric spaces.

**Definition 2.7 (Implicit Relation).** Let  $\Psi$  be the family of all real valued continuous functions  $\psi: R_+^5 \to R_+$  non-decreasing in the first argument for five variables. For some  $q \in \left[0, \frac{1}{s^2}\right]$ , where  $s \ge 1$ , we consider the following conditions.

- (R1) For  $\zeta$ ,  $\vartheta \in R_+$ , if  $\zeta \leq \psi(\vartheta, s\zeta, s\vartheta, s\zeta, \zeta + s\vartheta)$  then  $\zeta \leq q\vartheta$ .
- (R2) For  $\zeta$ ,  $\vartheta \in R_+$ , if  $\zeta \leq \psi(0, 0, \zeta, 0, 0)$  then  $\zeta = 0$ .

(R3) For 
$$\zeta \in R_+$$
, if  $\zeta \le \psi\left(\zeta, 0, 0, 0, \frac{\zeta}{2}\right)$  then  $\zeta = 0$ 

## 3. Main Results

In this section, we shall prove some fixed point and common fixed-point theorems satisfying an implicit relation in  $S_b$ -metric spaces.

**Theorem 3.1.** Let T be a self map on a complete  $S_b$ -metric space  $(\Omega, S_b)$ with  $s \ge 1$  and

 $S_{b}(T\varsigma, T\vartheta, Tw) \leq \psi(S_{b}(\varsigma, \vartheta, w), S_{b}(\vartheta, \vartheta, T\varsigma), S_{b}(w, w, Tw), S_{b}(\varsigma, \varsigma, T\vartheta),$   $\frac{1}{2s}[S_{b}(\vartheta, \vartheta, T\vartheta) + S_{b}(w, w, T\varsigma)]$ (1)

for all  $\varsigma$ ,  $\vartheta$ ,  $w \in \Omega$  and  $\psi \in \Psi$ . If  $\psi$  satisfies the conditions (R1), (R2) and (R3), then T has a unique fixed point in  $\Omega$ .

**Proof.** Let  $\zeta_0 \in \Omega$  be arbitrary and define a sequence  $\{\zeta_n\}$  in  $\Omega$  such that  $\zeta_{n+1} = T\zeta_n$ , for any  $n \in N$ . If for some  $n \in N$ ,  $\zeta_{n+1} = \zeta_n$ . Then,  $\zeta_n = T\zeta_n$ . Hence, *T* has a fixed point. Now, we may assume that  $\zeta_{n+1} \neq \zeta_n$ , for all  $n \in N$ . It follows from inequality (1) and Lemma 2.1, we consider

$$\begin{split} S_{b}(\varsigma_{n+1}, \varsigma_{n+1}, \varsigma_{n}) &= S_{b}(T\varsigma_{n}, T\varsigma_{n}, T\varsigma_{n-1}) \\ &\leq \psi(S_{b}(\varsigma_{n}, \varsigma_{n}, \varsigma_{n-1}), S_{b}(\varsigma_{n}, \varsigma_{n}, T\varsigma_{n}), S_{b}(\varsigma_{n-1}, \varsigma_{n-1}, T\varsigma_{n-1}), \\ S_{b}(\varsigma_{n}, \varsigma_{n}, T\varsigma_{n}), \frac{1}{2s} \left[ S_{b}(\varsigma_{n}, \varsigma_{n}, T\varsigma_{n}) + S_{b}(\varsigma_{n-1}, \varsigma_{n-1}, T\varsigma_{n-1}) \right] \right) \\ &= \psi(S_{b}(\varsigma_{n}, \varsigma_{n}, \varsigma_{n-1}), S_{b}(\varsigma_{n}, \varsigma_{n}, \varsigma_{n+1}), S_{b}(\varsigma_{n-1}, \varsigma_{n-1}, \varsigma_{n}), \\ S_{b}(\varsigma_{n}, \varsigma_{n}, \varsigma_{n+1}), \frac{1}{2s} \left[ S_{b}(\varsigma_{n}, \varsigma_{n}, \varsigma_{n+1}) S_{b}(\varsigma_{n-1}, \varsigma_{n-1}, \varsigma_{n}) \right] \right) \\ &\leq \psi(S_{b}(\varsigma_{n}, \varsigma_{n}, \varsigma_{n-1}), sS_{b}(\varsigma_{n+1}, \varsigma_{n+1}, \varsigma_{n}), sS_{b}(\varsigma_{n}, \varsigma_{n}, \varsigma_{n-1}), \\ sS_{b}(\varsigma_{n+1}, \varsigma_{n+1}, \varsigma_{n}), \frac{1}{2s} \left[ sS_{b}(\varsigma_{n+1}, \varsigma_{n+1}, \varsigma_{n}) \right] \\ &\leq \psi(S_{b}(\varsigma_{n}, \varsigma_{n}, \varsigma_{n-1}), sS_{b}(\varsigma_{n+1}, \varsigma_{n+1}, \varsigma_{n}), sS_{b}(\varsigma_{n}, \varsigma_{n}, \varsigma_{n-1}), \\ sS_{b}(\varsigma_{n+1}, \varsigma_{n}, \varsigma_{n-1}), sS_{b}(\varsigma_{n+1}, \varsigma_{n+1}, \varsigma_{n}) + 2s^{2}S_{b}(\varsigma_{n}, \varsigma_{n}, \varsigma_{n-1}) \right] \\ &\leq \psi(S_{b}(\varsigma_{n}, \varsigma_{n}, \varsigma_{n-1}), sS_{b}(\varsigma_{n+1}, \varsigma_{n+1}, \varsigma_{n}) + 2s^{2}S_{b}(\varsigma_{n}, \varsigma_{n}, \varsigma_{n-1}) \right] \\ &\leq \psi(S_{b}(\varsigma_{n}, \varsigma_{n}, \varsigma_{n-1}), sS_{b}(\varsigma_{n+1}, \varsigma_{n+1}, \varsigma_{n}) + sS_{b}(\varsigma_{n}, \varsigma_{n}, \varsigma_{n-1}) \right] \end{pmatrix} \\ &\leq \psi(S_{b}(\varsigma_{n}, \varsigma_{n}, \varsigma_{n-1}), sS_{b}(\varsigma_{n+1}, \varsigma_{n+1}, \varsigma_{n}) + sS_{b}(\varsigma_{n}, \varsigma_{n}, \varsigma_{n-1}) \right] \end{pmatrix}$$

Since  $\psi \in \Psi$  satisfies the condition (R1), there exists  $q \in \left[0, \frac{1}{s^2}\right)$  such that

$$S_b(\varsigma_{n+1}, \varsigma_{n+1}, \varsigma_n) \le q S_b(\varsigma_n, \varsigma_n, \varsigma_{n-1}) \le q^n S_b(\varsigma_1, \varsigma_1, \varsigma_0)$$
(3)

For  $n, m \in N$  with n < m, using Lemma 2.1 and equation (3), we have

$$\begin{split} S_b(\varsigma_n, \,\varsigma_n, \,\varsigma_m) &\leq 2sS_b(\varsigma_n, \,\varsigma_n, \,\varsigma_{n+1}) + s^2S_b(\varsigma_{n+1}, \,\varsigma_{n+1}, \,\varsigma_m) \\ &\leq 2sS_b(\varsigma_n, \,\varsigma_n, \,\varsigma_{n+1}) + s^2[2S_b(\varsigma_{n+1}, \,\varsigma_{n+1}, \,\varsigma_{n+2}) + s^2S_b(\varsigma_{n+2}, \,\varsigma_{n+2}, \,\varsigma_m)] \\ &\leq 2aq^n[1 + s^2q + (s^2q)^2 + \ldots]S_b(\varsigma_0, \,\varsigma_0, \,\varsigma_1) \end{split}$$

$$\leq \left(\frac{2sq^n}{1-s^2q}\right) S_b(\varsigma_0, \, \varsigma_0, \, \varsigma_1)$$

Since  $q \in \left[0, \frac{1}{s^2}\right]$  and  $s \ge 1$ . Taking the limit as  $n \to \infty$ , we get

 $S_b(\zeta_n, \zeta_n, \zeta_n, \zeta_m) \to 0$ . This proves that the sequence  $\{\zeta_n\}$  is a cauchy sequence in the complete  $S_b$ -metric space  $(\Omega, S_b)$ . Then, there exists  $\rho \in \Omega$  such that  $\lim_{n\to\infty} \zeta_n = \rho$ . Now we prove that  $\rho$  is a fixed point of *T*. Again by using inequality (1), we obtain

$$S_{b}(\varsigma_{n}, \varsigma_{n}, T\rho) = S_{b}(T\varsigma_{n}, T\varsigma_{n}, T\rho)$$

$$\leq \psi(S_{b}(\varsigma_{n}, \varsigma_{n}, \rho), S_{b}(\varsigma_{n}, \varsigma_{n}, T\varsigma_{n}), S_{b}(\rho, \rho, T\rho),$$

$$S_{b}(\varsigma_{n}, \varsigma_{n}, T\varsigma_{n}), \frac{1}{2s} [S_{b}(\varsigma_{n}, \varsigma_{n}, T\varsigma_{n}) + S_{b}(\rho, \rho, T\varsigma_{n})])$$

$$= \psi(S_{b}(\varsigma_{n}, \varsigma_{n}, \rho), S_{b}(\varsigma_{n}, \varsigma_{n}, \varsigma_{n+1}), S_{b}(\rho, \rho, T\rho),$$

$$S_{b}(\varsigma_{n}, \varsigma_{n}, \varsigma_{n+1}), \frac{1}{2s} [S_{b}(\varsigma_{n}, \varsigma_{n}, \varsigma_{n+1}) + S_{b}(\rho, \rho, \varsigma_{n+1})])$$

Letting  $n \to \infty$ , we get

$$\begin{split} S_{b}(\rho, \rho, T\rho) &\leq \psi(S_{b}(\rho, \rho, \rho), S_{b}(\rho, \rho, \rho), S_{b}(\rho, \rho, T\rho), \\ S_{b}(\rho, \rho, \rho), \frac{1}{2s} [S_{b}(\rho, \rho, \rho) + S_{b}(\rho, \rho, \rho)]) \\ \text{that is, } S_{b}(\rho, \rho, T\rho) &\leq \psi(0, 0, S_{b}(\rho, \rho, T\rho), 0, 0) \end{split}$$

Since  $\psi \in \Psi$  satisfies the condition (R2), then we get

$$S_b(\rho, \rho, T\rho) \le qS_b(\rho, \rho, T\rho)$$
  
that is,  $(1-q)S_b(\rho, \rho, T\rho) \le 0$ .

Since  $0 \le q \le \frac{1}{s^2}$ . Therefore we get  $S_b(\rho, \rho, T\rho) = 0$ . Hence  $T\rho = \rho$ .

Thus,  $\rho$  is a fixed point of *T*. Now, we show that fixed point of *T* is unique.

For this, let  $\rho^*$  be another fixed point of *T*. It follows from inequality (1) and Lemma 2.1, we get

$$S_{b}(\rho, \rho, \rho^{*}) = S_{b}(T\rho, T\rho, \rho^{*})$$

$$\leq \psi(S_{b}(\rho, \rho, \rho^{*}), S_{b}(\rho, \rho, T\rho), S_{b}(\rho^{*}, \rho^{*}, T\rho^{*}),$$

$$S_{b}(\rho, \rho, T\rho), \frac{1}{2s}[S_{b}(\rho, \rho, T\rho) + S_{b}(\rho^{*}, \rho^{*}, T\rho)])$$

$$= \psi(S_{b}(\rho, \rho, \rho^{*}), S_{b}(\rho, \rho, \rho), S_{b}(\rho^{*}, \rho^{*}, \rho^{*}),$$

$$S_{b}(\rho, \rho, \rho), \frac{1}{2s}[S_{b}(\rho, \rho, \rho) + S_{b}(\rho^{*}, \rho^{*}, \rho)])$$

$$\leq \psi(S_{b}(\rho, \rho, \rho^{*}), 0, 0, 0, \frac{1}{2}S_{b}(\rho, \rho, \rho^{*}))$$

Since  $\psi \in \Psi$  satisfies the condition (R3), then we get

$$S_b(\rho, \rho, \rho^*) \le q S_b(\rho, \rho, \rho^*)$$
  
that is,  $(1-q)S_b(\rho, \rho, \rho^*) \le 0.$ 

Since  $0 \le q \le \frac{1}{s^2}$ . Therefore we get  $S_b(\rho, \rho, \rho^*) = 0$ . Hence  $\rho = \rho^*$ . Thus the fixed point of *T* is unique.

**Theorem 3.2.** Let  $T_1$  and  $T_2$  be two selfmaps on a complete  $S_b$ -metric space  $(\Omega, S_b)$  with  $s \ge 1$  and

$$S_{b}(T_{1}\varsigma, T_{1}\vartheta, T_{2}w) \leq \psi(S_{b}(\varsigma, \vartheta, w), S_{b}(\vartheta, \vartheta, T_{1}\varsigma), S_{b}(w, w, T_{2}w),$$

$$S_{b}(\varsigma, \varsigma, T_{1}\vartheta), \frac{1}{2s}[S_{b}(\vartheta, \vartheta, T_{1}\vartheta) + S_{b}(w, w, T_{1}\varsigma)])$$
(4)

for all  $\varsigma$ ,  $\vartheta$ ,  $w \in \Omega$  and  $\psi \in \Psi$ . If  $\psi$  satisfies the conditions (R1), (R2) and (R3), then  $T_1$  and  $T_2$  have a unique fixed point in  $\Omega$ .

**Proof.** Let  $\zeta_0 \in X$  be arbitrary and a sequence  $\{\zeta_n\}$  in X defined by  $\zeta_{2n+1} = T_1 \zeta_{2n}$  and  $\zeta_{2n+2} = T_2 \zeta_{2n+1}$ , for n = 0, 1, 2, 3, ...

It follows from inequality (4) and Lemma 2.1, we have

$$S_{b}(\varsigma_{2n+1}, \varsigma_{2n+1}, \varsigma_{2n}) = S_{b}(T_{1}\varsigma_{2n}, T_{1}\varsigma_{2n}, T_{2}\varsigma_{2n-1})$$

$$\leq \psi(S_{b}(\varsigma_{2n}, \varsigma_{2n}, \varsigma_{2n-1}), S_{b}(\varsigma_{2n}, \varsigma_{2n}, T_{1}\varsigma_{2n}), S_{b}(\varsigma_{2n-1}, \varsigma_{2n-1}, T_{2}\varsigma_{2n-1}),$$

$$S_{b}(\varsigma_{2n}, \varsigma_{2n}, T_{1}\varsigma_{2n}), \frac{1}{2s} [S_{b}(\varsigma_{2n}, \varsigma_{2n}, T_{1}\varsigma_{2n}) + S_{b}(\varsigma_{2n-1}, \varsigma_{2n-1}, T_{1}\varsigma_{2n})])$$

$$= \psi(S_{b}(\varsigma_{2n}, \varsigma_{2n}, \varsigma_{2n-1}), S_{b}(\varsigma_{2n}, \varsigma_{2n}, \varsigma_{2n+1}), S_{b}(\varsigma_{2n-1}, \varsigma_{2n-1}, \varsigma_{2n}),$$

$$S_{b}(\varsigma_{2n}, \varsigma_{2n}, \varsigma_{2n-1}), S_{b}(\varsigma_{2n}, \varsigma_{2n}, \varsigma_{2n+1}) + S_{b}(\varsigma_{2n-1}, \varsigma_{2n-1}, \varsigma_{2n+1})])$$

$$\leq \psi(S_{b}(\varsigma_{2n}, \varsigma_{2n}, \varsigma_{2n-1}), sS_{b}(\varsigma_{2n+1}, \varsigma_{2n+1}, \varsigma_{2n}), sS_{b}(\varsigma_{2n}, \varsigma_{2n}, \varsigma_{2n-1}),$$

$$sS_{b}(\varsigma_{2n+1}, \varsigma_{2n-1}, \varsigma_{2n}), \frac{1}{2s} [sS_{b}(\varsigma_{2n+1}, \varsigma_{2n+1}, \varsigma_{2n})]$$

$$\leq \psi(S_{b}(\varsigma_{2n}, \varsigma_{2n}, \varsigma_{2n-1}, \varsigma_{2n-1}), sS_{b}(\varsigma_{2n+1}, \varsigma_{2n+1}, \varsigma_{2n}),$$

$$S_{b}(\varsigma_{2n}, \varsigma_{2n}, \varsigma_{2n-1}), sS_{b}(\varsigma_{2n+1}, \varsigma_{2n+1}, \varsigma_{2n}),$$

$$S_{b}(\varsigma_{2n}, \varsigma_{2n}, \varsigma_{2n-1}), sS_{b}(\varsigma_{2n+1}, \varsigma_{2n+1}, \varsigma_{2n}),$$

$$\frac{1}{2s} [2sS_{b}(\varsigma_{2n+1}, \varsigma_{2n+1}, \varsigma_{2n}) + 2s^{2}S_{b}(\varsigma_{2n}, \varsigma_{2n}, \varsigma_{2n-1})]]$$
(5)

Since  $\psi \in \Psi$  satisfies the condition (R1), there exists  $q \in \left[0, \frac{1}{s^2}\right)$  such that

$$S_b(\varsigma_{2n+1}, \varsigma_{2n+1}, \varsigma_{2n}) \le q S_b(\varsigma_{2n}, \varsigma_{2n}, \varsigma_{2n-1}) \le q^{2n} S_b(\varsigma_1, \varsigma_1, \varsigma_0)$$
(6)

For  $n, m \in N$  with n < m, by using Lemma 2.1 and equation (6), we have

$$\begin{split} S_b(\varsigma_n, \,\varsigma_n, \,\varsigma_m) &\leq 2sS_b(\varsigma_n, \,\varsigma_n, \,\varsigma_{n+1}) + s^2S_b(\varsigma_{n+1}, \,\varsigma_{n+1}, \,\varsigma_m) \\ &\leq 2sS_b(\varsigma_n, \,\varsigma_n, \,\varsigma_{n+1}) + s^2[2S_b(\varsigma_{n+1}, \,\varsigma_{n+1}, \,\varsigma_{n+2}) + s^2S_b(\varsigma_{n+2}, \,\varsigma_{n+2}, \,\varsigma_m)] \\ &\leq 2sq^n[1 + s^2q + (s^2q)^2 + \ldots]S_b(\varsigma_0, \,\varsigma_0, \,\varsigma_1) \end{split}$$

$$\leq \left(\frac{2sq^n}{1-s^2q}\right)S_b(\varsigma_0, \varsigma_0, \varsigma_1).$$

Since  $q \in \left[0, \frac{1}{s^2}\right]$  and  $s \ge 1$ . Taking the limit as  $n \to \infty$ , we get

 $S_b(\varsigma_n, \varsigma_n, \varsigma_m) \to 0$ . This proves that the sequence  $\{\varsigma_n\}$  is a cauchy sequence in the complete  $S_b$ -metric space  $(\Omega, S_b)$ . Then, there exists  $\sigma \in \Omega$  such that  $\lim_{n\to\infty} \zeta_n = \sigma$ . Now we prove that  $\sigma$  is a common fixed point of  $T_1$  and  $T_2$ .

For this Consider,

~ /

$$S_{b}(\varsigma_{2n+1}, \varsigma_{2n+1}, T_{1}\sigma) = S_{b}(T_{1}\varsigma_{2n}, T_{1}\varsigma_{2n}, T_{1}\sigma)$$

$$\leq \psi(S_{b}(\varsigma_{2n}, \varsigma_{2n}, \sigma), S_{b}(\varsigma_{2n}, \varsigma_{2n}, T_{1}\varsigma_{2n}), S_{b}(\sigma, \sigma, T_{1}\sigma),$$

$$S_{b}(\varsigma_{2n}, \varsigma_{2n}, T_{1}\varsigma_{2n}), \frac{1}{2s}[S_{b}(\varsigma_{2n}, \varsigma_{2n}, T_{1}\varsigma_{2n}) + S_{b}(\sigma, \sigma, T_{1}\varsigma_{2n})])$$

$$\leq \psi(S_{b}(\varsigma_{2n}, \varsigma_{2n}, \sigma), S_{b}(\varsigma_{2n}, \varsigma_{2n}, \varsigma_{2n+1}), S_{b}(\sigma, \sigma, T_{1}\sigma),$$

$$S_{b}(\varsigma_{2n}, \varsigma_{2n}, \varsigma_{2n+1}), \frac{1}{2s}[S_{b}(\varsigma_{2n}, \varsigma_{2n}, \varsigma_{2n+1}) + S_{b}(\sigma, \sigma, \varsigma_{2n+1})])$$
(7)

Letting  $n \to \infty$ , we get

$$\begin{split} S_b(\sigma, \sigma, T_1 \sigma) &\leq \psi(S_b(\sigma, \sigma, \sigma), S_b(\sigma, \sigma, \sigma), S_b(\sigma, \sigma, T_1 \sigma), \\ S_b(\sigma, \sigma, \sigma), \frac{1}{2s} [S_b(\sigma, \sigma, \sigma) + S_b(\sigma, \sigma, \sigma)]) \\ \text{that is, } S_b(\sigma, \sigma, T_1 \sigma) &\leq \psi(0, 0, S_b(\sigma, \sigma, T_1 \sigma), 0, 0) \end{split}$$

Since  $\psi \in \Psi$  satisfies the condition (R2), then we get

$$\begin{split} S_b(\sigma,\,\sigma,\,T_1\sigma) &\leq q S_b(\sigma,\,\sigma,\,T_1\sigma) \\ \text{that is, } (1-q) S_b(\sigma,\,\sigma,\,T_1\sigma) &\leq 0. \end{split}$$

Since  $0 \le q \le \frac{1}{s^2}$ . Therefore we get  $S_b(\sigma, \sigma, T_1\sigma) = 0$ . Hence  $T_1\sigma = \sigma$ .

Similarly, we can show that  $T_2\sigma = \sigma$ . This shows that  $\sigma$  is a common

fixed point of  $T_1$  and  $T_2$ . Now we prove that  $T_1$  and  $T_2$  have a unique common fixed point. For this, let  $\sigma^*$  be another common fixed point of  $T_1$  and  $T_2$ . It follows from equation (4) and Lemma 2.1, we have

$$\begin{split} S_b(\sigma, \sigma, \sigma^*) &= S_b(T_1\sigma, T_1\sigma, T_2\sigma^*) \\ &\leq \psi(S_b(\sigma, \sigma, \sigma^*), S_b(\sigma, \sigma, T_1\sigma), S_b(\sigma^*, \sigma^*, T_2\sigma^*), \\ S_b(\sigma, \sigma, T_1\sigma), \frac{1}{2s} [S_b(\sigma, \sigma, T_1\sigma) + S_b(\sigma^*, \sigma^*, T_2\sigma)]) \\ &= \psi(S_b(\sigma, \sigma, \sigma^*), S_b(\sigma, \sigma, \sigma), S_b(\sigma^*, \sigma^*, \sigma^*) \\ S_b(\sigma, \sigma, \sigma), \frac{1}{2s} [S_b(\sigma, \sigma, \sigma) + S_b(\sigma^*, \sigma^*, \sigma)]) \\ &= \psi \Big(S_b(\sigma, \sigma, \sigma^*), 0, 0, 0, \frac{1}{2} S_b(\sigma, \sigma, \sigma^*)\Big). \end{split}$$

Since  $\psi \in \Psi$  satisfies the condition (R3), then we get

$$S_b(\sigma, \sigma, \sigma^*) \le q S_b(\sigma, \sigma, \sigma^*)$$
  
that is,  $(1-q)S_b(\sigma, \sigma, \sigma^*)$ 

Since  $1 \le q \le \frac{1}{s^2}$ . Therefore we get  $S_b(\sigma, \sigma, \sigma^*) = 0$ . Hence  $\sigma = \sigma^*$ . This shows that  $\sigma$  is the unique common fixed point of  $T_1$  and  $T_2$ .

**Theorem 3.3.** Let  $T_1$  and  $T_2$  be two continuous selfmaps on a complete Sbmetric space  $(\Omega, S_b)$  with  $s \ge 1$  and

$$S_{b}(T_{1}^{p}\varsigma, T_{1}^{p}\vartheta, T_{2}^{p}w) \leq \psi(S_{b}(\varsigma, \vartheta, w), S_{b}(\vartheta, \vartheta, T_{1}^{p}\varsigma), S_{b}(w, w, T_{2}^{p}w),$$
$$S_{b}(\varsigma, \varsigma, T_{1}^{p}\vartheta), \frac{1}{2s}[S_{b}(\vartheta, \vartheta, T_{1}^{p}\vartheta) + S_{b}(w, w, T_{1}^{p}\varsigma)])$$
(8)

for all  $\zeta$ ,  $\vartheta$ ,  $w \in \Omega$ , where p and q are integers and  $\psi \in \Psi$ . If  $\psi$  satisfies the conditions (R1), (R2) and (R3), then  $T_1$  and  $T_2$  have a unique fixed point in  $\Omega$ .

**Proof.** Since  $T_1^p$  and  $T_2^p$  satisfies the conditions of Theorem 3.2. Let  $\lambda$  be the common fixed point.

Then, we have 
$$T_1^p \lambda = \lambda \Rightarrow T_1(T_1^p \lambda) = T_1 \lambda \Rightarrow T_1^p(T_1 \lambda) = T_1 \lambda$$
.  
If  $T_1 \lambda = \lambda_0$ , then  $T_1^p \lambda_0 = \lambda_0$ . So,  $T_1 \lambda$  is a fixed point of  $T_1^p$ .

Similarly,  $T_2(T_2^q\lambda) = T_2^q(T_2\lambda) = T_2\lambda$ . Now, using equation (8) and Lemma 2.1, we obtain

$$\begin{split} S_{b}(\lambda, \lambda, T_{1}\lambda) &= S_{b}(T_{1}^{p}\lambda, T_{1}^{p}\lambda, T_{1}^{p}(T_{1}\lambda)) \\ &\leq \psi(S_{b}(\lambda, \lambda, T_{1}\lambda), S_{b}(\lambda, \lambda, T_{1}^{p}\lambda), S_{b}(T_{1}\lambda, T_{1}\lambda, T_{1}^{p}(T_{1}\lambda)), \\ S_{b}(\lambda, \lambda, T_{1}^{p}\lambda), \frac{1}{2s} [S_{b}(\lambda, \lambda, T_{1}^{p}\lambda) + S_{b}(T_{1}\lambda, T_{1}\lambda, T_{1}^{p}\lambda)]) \\ &\leq \psi(S_{b}(\lambda, \lambda, T_{1}\lambda), S_{b}(\lambda, \lambda, \lambda), S_{b}(T_{1}\lambda, T_{1}\lambda, T_{1}\lambda), \\ S_{b}(\lambda, \lambda, \lambda), \frac{1}{2s} [S_{b}(\lambda, \lambda, \lambda) + S_{b}(T_{1}\lambda, T_{1}\lambda, \lambda)]) \\ &\leq \psi \Big(S_{b}(\lambda, \lambda, T_{1}\lambda), 0, 0, 0, \frac{1}{2} [S_{b}(\lambda, \lambda, T_{1}\lambda)]\Big). \end{split}$$

Since  $\psi \in \Psi$  satisfies the condition (R3), then we get

$$S_b(\lambda, \lambda, T_1\lambda) \le kS_b(\lambda, \lambda, T_1\lambda)$$
  
that is,  $(1-k)S_b(\lambda, \lambda, T_1\lambda) \le 0$ .

Since  $0 \le k \le \frac{1}{s^2}$  and  $s \ge 1$ . Therefore we get  $S_b(\lambda, \lambda, T_1\lambda) = 0$ . Hence  $T_1\lambda = \lambda$ . Similarly, we can show that  $T_2\lambda = \lambda$ . This shows that  $\lambda$  is a common fixed point of  $T_1$  and  $T_2$ . For uniqueness of  $\lambda$ , Let  $\lambda^* \ne \lambda$  be another common fixed point of  $T_1$  and  $T_2$ . Then clearly  $\lambda^*$  is also a common fixed point of  $T_1^p$  and  $T_2^q$ , which implies  $\lambda = \lambda^*$ . Hence  $T_1$  and  $T_2$  have a unique common fixed point.

**Theorem 3.4.** Let  $\{G_{\alpha}\}$  be a family of continuous selfmaps on a complete  $S_b$ -metric space  $(\Omega, S_b)$  with  $s \ge 1$  and

$$S_{b}(G_{\alpha}\varsigma, G_{\alpha}\vartheta, G_{\beta}w) \leq \psi(S_{b}(\varsigma, \vartheta, w), S_{b}(\vartheta, \vartheta, G_{\alpha}\varsigma), S_{b}(w, w, G_{\beta}w),$$

$$S_{b}(\varsigma, \varsigma, G_{\alpha}\vartheta), \frac{1}{2s} [S_{b}(\vartheta, \vartheta, G_{\alpha}\vartheta) + S_{b}(w, w, G_{\alpha}\varsigma)])$$
(9)

for all  $\varsigma$ ,  $\vartheta$ ,  $w \in \Omega$ , and  $\alpha$ ,  $\beta \in \mathbb{R}^+$  with  $\alpha \neq \beta$ . Then there exists a unique  $\eta \in \Omega$  satisfying  $G_{\alpha}\eta = \eta$ , for all  $\alpha \in \Psi$ .

**Proof.** Let  $\zeta_0 \in \Omega$  be arbitrary and a sequence  $\{\zeta_n\}$  in  $\Omega$  defined by  $\zeta_{2n+1} = G_{\alpha}\zeta_{2n}$  and  $\zeta_{2n+2} = G_{\beta}\zeta_{2n+1}$ , for n = 0, 1, 2, 3, ...

It follows from inequality (9) and Lemma 2.1, we have

$$\begin{split} S_{b}(\varsigma_{2n+1}, \varsigma_{2n+1}, \varsigma_{2n}) &= S_{b}(G_{\alpha}\varsigma_{2n}, G_{\alpha}\varsigma_{2n-1}, G_{\beta}\varsigma_{2n-1}) \\ &\leq \psi(S_{b}(\varsigma_{2n}, \varsigma_{2n}, \varsigma_{2n-1}), S_{b}(\varsigma_{2n}, \varsigma_{2n}, G_{\alpha}\varsigma_{2n}), S_{b}(\varsigma_{2n-1}, \varsigma_{2n-1}, G_{\beta}\varsigma_{2n-1}) \\ S_{b}(\varsigma_{2n}, \varsigma_{2n}, G_{\alpha}\varsigma_{2n}), \frac{1}{2s} \left[ S_{b}(\varsigma_{2n}, \varsigma_{2n}, G_{\alpha}\varsigma_{2n}) + S_{b}(\varsigma_{2n-1}, \varsigma_{2n-1}, G_{\alpha}\varsigma_{2n}) \right] \right] \\ &= \psi(S_{b}(\varsigma_{2n}, \varsigma_{2n}, \varsigma_{2n-1}), S_{b}(\varsigma_{2n}, \varsigma_{2n}, \varsigma_{2n+1}), S_{b}(\varsigma_{2n-1}, \varsigma_{2n-1}, \varsigma_{2n}), \\ S_{b}(\varsigma_{2n}, \varsigma_{2n}, \varsigma_{2n+1}), \frac{1}{2s} \left[ S_{b}(\varsigma_{2n}, \varsigma_{2n}, \varsigma_{2n+1}) + S_{b}(\varsigma_{2n-1}, \varsigma_{2n-1}, \varsigma_{2n+1}) \right] \right] \\ &\leq \psi(S_{b}(\varsigma_{2n}, \varsigma_{2n}, \varsigma_{2n-1}), sS_{b}(\varsigma_{2n+1}, \varsigma_{2n+1}, \varsigma_{2n}), sS_{b}(\varsigma_{2n}, \varsigma_{2n}, \varsigma_{2n-1}), \\ &\qquad sS_{b}(\varsigma_{2n+1}, \varsigma_{2n-1}, \varsigma_{2n-1}), sS_{b}(\varsigma_{2n+1}, \varsigma_{2n+1}, \varsigma_{2n}) \\ &+ 2sS_{b}(\varsigma_{2n-1}, \varsigma_{2n-1}, \varsigma_{2n}) + sS_{b}(\varsigma_{2n+1}, \varsigma_{2n+1}, \varsigma_{2n}) \right] \\ &\leq \psi(S_{b}(\varsigma_{2n}, \varsigma_{2n}, \varsigma_{2n-1}), sS_{b}(\varsigma_{2n+1}, \varsigma_{2n+1}, \varsigma_{2n}), sS_{b}(\varsigma_{2n}, \varsigma_{2n}, \varsigma_{2n-1}), \\ sS_{b}(\varsigma_{2n+1}, \varsigma_{2n-1}), sS_{b}(\varsigma_{2n+1}, \varsigma_{2n+1}, \varsigma_{2n}) + 2s^{2}S_{b}(\varsigma_{2n}, \varsigma_{2n}, \varsigma_{2n-1}) \right] (10) \end{aligned}$$

Since  $\psi \in \Psi$  satisfies the condition (R1), there exists  $q \in \left[0, \frac{1}{s^2}\right)$  such

that

$$S_b(\varsigma_{2n+1}, \varsigma_{2n+1}, \varsigma_{2n}) \le q S_b(\varsigma_{2n}, \varsigma_{2n}, \varsigma_{2n-1}) \le q^{2n} S_b(\varsigma_1, \varsigma_1, \varsigma_0)$$
(11)

For  $n, m \in N$  with n < m, by using Lemma 2.1 and equation (11), we have

$$\begin{split} S_{b}(\varsigma_{n},\,\varsigma_{n},\,\varsigma_{m}) &\leq 2sS_{b}(\varsigma_{n},\,\varsigma_{n},\,\varsigma_{n+1}) + s^{2}S_{b}(\varsigma_{n+1},\,\varsigma_{n+1},\,\varsigma_{m}) \\ &\leq 2sS_{b}(\varsigma_{n},\,\varsigma_{n},\,\varsigma_{n+1}) + s^{2}[2S_{b}(\varsigma_{n+1},\,\varsigma_{n+1},\,\varsigma_{n+2}) + s^{2}S_{b}(\varsigma_{n+2},\,\varsigma_{n+2},\,\varsigma_{m})] \\ &\leq 2sq^{n}[1 + s^{2}q + (s^{2}q)^{2} + \ldots]S_{b}(\varsigma_{0},\,\varsigma_{0},\,\varsigma_{1}) \\ &\leq \left(\frac{2sq^{n}}{1 - s^{2}q}\right)S_{b}(\varsigma_{0},\,\varsigma_{0},\,\varsigma_{1}). \end{split}$$

Since  $q \in \left[0, \frac{1}{s^2}\right]$  and  $s \ge 1$ . Taking the limit as  $n \to \infty$ , we get  $S_b(\varsigma_n, \varsigma_n, \varsigma_m) \to 0$ . This proves that the sequence  $\{\varsigma_n\}$  is a cauchy sequence in the complete  $S_b$ -metric space  $(\Omega, S_b)$ . Then, there exists  $\eta \in \Omega$  such that  $\lim_{n\to\infty} \varsigma_n = \eta$ . By the continuity of  $G_\alpha$  and  $G_\beta$ , it is clear that  $G_\alpha \eta = G_\beta \eta = \eta$ . Therefore  $\eta$  is a common fixed point of  $G_\alpha$  and  $G_\beta$ , for all  $\alpha \in \Psi$ . In order to prove the uniqueness, let us take another common fixed point  $\eta^*$  of  $G_\alpha$  and  $G_\beta$ , where  $\eta \neq \eta^*$ . Then using equation (9) and Lemma 2.1, we obtain

$$\begin{split} S_{b}(\eta, \eta, \eta^{*}) &= S_{b}(G_{\alpha}\eta, G_{\alpha}\eta, G_{\beta}\eta^{*}) \\ &\leq \psi(S_{b}(\eta, \eta, \eta^{*}), S_{b}(\eta, \eta, G_{\alpha}\eta), S_{b}(\eta^{*}, \eta^{*}, G_{\beta}\eta^{*}), \\ S_{b}(\eta, \eta, G_{\alpha}\eta), \frac{1}{2s} [S_{b}(\eta, \eta, G_{\alpha}\eta) + S_{b}(\eta^{*}, \eta^{*}, G_{\alpha}\eta)]) \\ &\leq \psi(S_{b}(\eta, \eta, \eta^{*}), S_{b}(\eta, \eta, \eta), S_{b}(\eta^{*}, \eta^{*}, \eta^{*}), \\ S_{b}(\eta, \eta, \eta), \frac{1}{2s} [S_{b}(\eta, \eta, \eta) + S_{b}(\eta^{*}, \eta^{*}, \eta)]) \end{split}$$

897

$$\leq \psi \bigg( S_b(\eta, \eta, \eta^*), 0, 0, 0, \frac{1}{2} S_b(\eta, \eta, \eta^*) \bigg).$$

Since  $\psi \in \Psi$  satisfies the condition (R3), then we get

$$\begin{split} S_b(\eta,\,\eta,\,\eta^*) &\leq q S_b(\eta,\,\eta,\,\eta^*) \\ \text{that is, } (1-q) S_b(\eta,\,\eta,\,\eta^*) &\leq 0. \end{split}$$

Since  $0 \le q \le \frac{1}{s^2}$ . Therefore we get  $S_b(\eta, \eta, \eta^*) = 0$ . Hence  $\eta = \eta^*$ . This shows that  $\eta$  is the unique common fixed point of  $G_{\alpha}$ , for all  $\alpha \in \Psi$ .

**Corollary 3.1.** Let  $(\Omega, S_b)$  be a complete  $S_b$ -metric space. Suppose that the mapping  $T: \Omega \to \Omega$  satisfies  $S_b(T\zeta, T\vartheta, Tw) \leq \gamma S_b(\zeta, \vartheta, w)$  for all  $\zeta, \vartheta, w \in \Omega$ , where  $\gamma \in [0, 1)$  is a constant. Then T has a unique fixed point in  $\Omega$ . Moreover, T is continuous at the fixed point.

**Proof.** We can prove easily by using Theorem 3.1. with  $\psi(a, b, c, d, e) = \gamma a$ , for some  $\gamma \in [0, 1)$  and  $a, b, c, d, e \in \mathbb{R}^+$ .

**Corollary 3.2.** Let  $(\Omega, S_b)$  be a complete  $S_b$ -metric space. Suppose that the mappings  $T_1, T_2 : \Omega \to \Omega$  satisfies  $S_b(T_1\varsigma, T_1\vartheta, T_2, w) \leq \delta S_b(\varsigma, \vartheta, w)$  for all  $\varsigma, \vartheta, \omega \in \Omega$ , where  $\delta \in [0, 1)$  is a constant. Then  $T_1$  and  $T_2$  have a unique fixed point in  $\Omega$ .

**Proof.** We can prove easily by using Theorem 3.2. with  $\psi(a, b, c, d, e) = \delta a$ , for some  $\delta \in [0, 1)$  and  $a, b, c, d, e \in \mathbb{R}^+$ .

**Example 3.1.** Let  $(\Omega, S_b)$  be a complete  $S_b$ -metric space with s = 4. Where  $\Omega = [0, 1]$  and  $S_b(\varsigma, \vartheta, w) = (|\varsigma - w| + |\vartheta - w|)^2$ .

Now, we consider the mapping  $T: \Omega \to \Omega$  defined by  $T(\zeta) = \frac{\zeta}{5}$ , for all  $\zeta \in [0, 1]$ . Then  $S_b(T\zeta, T\vartheta, Tw) = (|T\zeta - Tw| + |T\vartheta - Tw|)^2$ 

$$= \left( \left| \frac{\varsigma}{5} - \frac{w}{5} \right| + \left| \frac{\vartheta}{5} - \frac{w}{5} \right| \right)^2$$

$$= \frac{1}{25} (|\varsigma - w| + |\vartheta - w|)^2$$
$$\leq \frac{1}{25} S_b(\varsigma, \vartheta, w)$$
$$= \gamma S_b(\varsigma, \vartheta, w).$$

where  $\gamma = \frac{1}{25} < 1$ . Thus *T* satisfies all the conditions of corollary 3.1. and clearly  $0 \in \Omega$  is the unique fixed point of *T*.

## 4. Conclusion

From this results, we can study the fixed-circle problem [13] using new contrations on different generalized metric spaces.

#### 5. Acknowledgements

We are very grateful to experts for their appropriate and constructive suggestions to improve this paper.

#### References

- I. A. Bakhtin, The contraction mapping principle in Quasi-metric spaces, J. Funct. Anal. 30 (1989), 26-37.
- [2] S. Banach, Sur les operations dans les ensembles abstraits et leur applications aux equations integrales, Fund. Math. 3 (1922), 133-181.
- [3] N. V. Dung, N. T. Hieu and S. Radojevic, Fixed-point theorems for *g*-monotone maps on partially ordered *S*-metric space, Filomat 28(9) (2014), 1885-1898.
- [4] M. M. Frechet, Sur quelques points du calcul fonctionnel, Rend. Circ. Mat. Palermo 22(2) (1906), 1-72.
- [5] Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinearb and Convex Anal. 7(2) (2006), 289-297.
- [6] Nihal Tas and Nihal Yilimaz Ozur, New generalized fixed prints results on S<sub>b</sub>-Metric Spaces, Konuralp J. Math. 9(1) (2021), 24-32. https://doi.org/10.48550/arXiv.1703.01868.
- [7] K. Prudhvi, Fixed-point theorems in S-metric spaces, Universal Journal of Computational Mathematics 3(2) (2015), 19-21.
- [8] G. S. Saluja, Some fixed-point theorems under implicit relation on S-metric spaces, Bull. Int. Math. Virtual Inst. 11(2) (2015), 327-340.

- [9] S. Sedghi and N. V. Dung, Fixed-point theorems on S-metric spaces, Mat. Vesnik 66(1) (2014), 113-124.
- [10] S. Sedghi, A. Gholidahneh, T. Dosenovic, J. Esfahani and S. Radenovic, Common fixed point of four maps in  $S_b$ -metric spaces, Journal of Linear and Topological Algebra 5(2) (2016), 93-104.
- [11] S. Sedghi, N. Shobe and A. Aliouche, A generalization of fixed-point theorem in S-metric spaces, Mat. Vesnik 64(3) (2012), 258-266.
- [12] N. Souayah and N. Mlaiki, A fixed-point theorem in S<sub>b</sub>-metric spaces, Journal of Mathematics and Computer Science 16 (2016), 131-139.
- [13] Ufuk Celik and Nihal Ozgur, On the fixed-circle problem, Facta Universitatis (NIS) Ser. Math. Inform. 35(5) (2020) 1273-1290. https://doi.org/10.22190/FUMI2005273C