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Abstract 

In this paper, we establish some fixed point and common fixed-point theorems in bS -metric 

spaces using implicit relation. The results presented in this paper extend and generalize several 

results from the existing literature. 

1. Introduction 

In 1906, Maurice Fréchet [4] introduced the concept of metric spaces. 

Later, in the year 1922, Stefan Banach [2] proved a very famous theorem 

called “Banach Fixed Point Theorem”. In 2006, Z. Mustafa and B. Sims [5] 

introduced G-metric spaces. In 2012, Sedghi, Shobe and Aliouche [11] 

introduced S-metric spaces and they claimed that S-metric spaces are the 

generalization of G-metric spaces. But, later Dung, Hieu and Radojevic [3] 

have given examples that S-metric spaces are not the generalization of G-

metric spaces or vice versa. Therefore, the collection of G-metric spaces and 

S-metric spaces are different. In 1989, I. A. Bakhtin [1] introduced b-metric 

spaces as a generalization of metric spaces. In 2016, N. Souayah, N. Mlaiki 

[12] introduced bS -metric spaces as the generalizations of b-metric spaces 

and S-metric spaces. But, very recently Tas and Ozur [6] studied some 

relations between bS -metric spaces and some other metric spaces. S. Sedghi 

and N. V. Dung [9] introduced an implicit relation to investigate some fixed-



D. VENKATESH and V. NAGA RAJU 

Advances and Applications in Mathematical Sciences, Volume 22, Issue 4, February 2023 

884 

point theorems on S-metric spaces. In 2015, Prudhvi [7] proved some fixed-

point theorems on S-metric spaces, which extends the results of Sedgi and 

Dung [9].   

Inspired by G. S. Saluja [8], Prudhvi [7], S. Sedghi, N. V. Dung [9] and 

some others, we establish some fixed point and common fixed-point theorems 

in bS -metric spaces satisfying an implicit relation. 

2. Preliminaries 

Definition 2.1[11]. Let  be a nonempty set. An S-metric on  is a 

function  )→ ,0: 3S  that satisfies the following conditions, for each 

,,,,  aw   

(S1) ( ) 0,,  wS  for all  w,,  with .w  

(S2) ( ) 0,, = wS  if .w==  

(S3) ( ) ( ) ( ) ( ) .,,,,,,,, awwSaSaSwS ++   

The pair ( )S,  is called S-metric space. 

Example 2.1[3]. Let ,R=  the set of all real numbers and let 

( ) .,,2,, −+−+= wwwwS  Then ( )S,  is an S-metric 

space. 

Definition 2.2[1]. Let  be a nonempty set. A b-metric on  is a function 

 )→ ,0: 2d  if there exists a real number 1s  such that the following 

conditions holds for all ,   

(i) ( ) .0, ==d  

(ii) ( ) ( )= ,, dd  

(iii) ( ) ( ) ( ) + ,,, wdwdsd   

The pair ( )d,  is called a b-metric space. 

Definition 2.3[12]. Let  be a nonempty set and let 1s  be a given 

number. 
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A function  )→ ,0: 3
bS  is said to be bS -metric if and only if for all 

,,,,  aw  the following conditions hold: 

(i) ( ) 0,, = wSb  if .w==  

(ii) ( )  ( ) ( ) ( ),,,,,,,,, awwSaSaSswS bbbb ++   

The pair ( )bS,  is called an bS -metric space. 

Remark 2.1. We note that every S-metric space is an bS -metric space 

with ,1=s  but the converse statement is not true. 

Example 2.2[6]. Let ,R=  the set of all real numbers and let 

( ) ( ) ,
16

1
,, 2wwwSb −+−+−=  for all .,,  w   

Then ( )bS,  is an bS -metric space with ,4=s  but it is not an S-metric 

space. Indeed, for 8,6,4 === w  and ,5=a  we get 

( ) ( ) ( ) ( ).5,8,85,6,65,4,448,6,4 bbbb SSSS ++=  

Thus, bS -metric spaces are more general than S-metric spaces. 

Definition 2.4[6]. A bS -metric bS  is said to be symmetric if 

( ) ( ) .,,,,, = bb SS  

Lemma 2.1[10]. In bS -metric space, we have 

(i) ( ) ( ) ,,,, bb sSS  and ( ) ( ) ,,,, bb sSS   

(ii) ( ) ( ) ( ).,,,,2,, 2 wSssSwS bbb +   

Definition 2.5[12]. If ( )bS,  is an bS -metric space and a sequence  n  

in . Then 

(i)  n  is called a bS -Cauchy sequence, if to each Nn  0,0  such 

that ( ) .,,,, 0nmnS mnnb    

(ii)   →n  to each Nn  0,0  such that ( )  ,, nnbS  and 

( ) ,,, 0nnS nb    and we write as .lim =→ nn   
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Definition 2.6[12]. We say that ( )bS,  is complete if every bS -Cauchy 

sequence is bS -Convergent in . 

Tas and Ozgur [6] proved the following theorems in bS -metric spaces. 

Theorem 2.1[6]. If ( )bS,  is a complete bS -metric space with 1s  and 

T is a self map on  satisfying  

( ) ( ) ,,,,,,,  bb cSTTTS  where .
1

0
2s

c   

Then T has a unique fixed point  in . 

Example 2.3[10]. Let ( )S,  be a S-metric space and ( )wS ,,   

( )  ,,, qwS =  where 1q  is a real number. 

Note that S  is a bS -metric with 
( ).2 12 −= qs  Obvisously, S  satisfies 

conditions 

(i) ( ),,,0 wS    for all  w,,  with .w   

(ii) ( ) 0,, = wS  if .w==   

If ,1  q  then the convexity of the function ( ) ( )0, = qf  implies 

that ( ) ( ).2 1 qqqq baba ++ −  

Thus, for each ,,,,  aw  we obtain, 

( ) ( )qwSwS ,,,, =  

( ) ( )  ( )( )qawwSaSaS ,,,,,, ++  

( ( ) ( )  ( ) )qqq awwSaSaS ,,,,,,2 1 ++ −  

( ( ( ) ( ) ) ( ) )qqqqq awwSaSaS ,,2,,,,22 1112 −−− ++  

( )( ( ) ( ) ( ) ).,,,,,,2 12 qqqq awwSaSaS ++ −  

( )( ( ) ( ) ( )).,,,,,,2 12 awwSaSaSq


− ++  
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So, S  is a bS -metric with ( ).2 12 −= qs   

Now, we introduce an implicit relation to prove some fixed point and 

common fixed-point theorems in bS -metric spaces.  

Definition 2.7 (Implicit Relation). Let  be the family of all real 

valued continuous functions ++ → RR5:  non-decreasing in the first 

argument for five variables. For some ,
1

,0
2 








s
q  where ,1s  we consider 

the following conditions. 

(R1) For ,, + R  if ( )+ ssss ,,,,  then . q  

(R2) For ,, + R  if ( )0,0,,0,0    then .0=  

(R3) For ,+ R  if 






 


2
,0,0,0,  then .0=  

3. Main Results 

In this section, we shall prove some fixed point and common fixed-point 

theorems satisfying an implicit relation in bS -metric spaces. 

Theorem 3.1. Let T be a self map on a complete bS -metric space ( )bS,  

with 1s  and  

( ) ( ( ) ( ) ( ) ( ),,,,,,,,,,,,,,  TSTwwwSTSwSTwTTS bbbbb   

 ( ) ( ))+ TwwSTS
s bb ,,,,

2

1
 (1) 

for all  w,,  and .  If  satisfies the conditions (R1), (R2) and 

(R3), then T has a unique fixed point in . 

Proof. Let 0  be arbitrary and define a sequence  n  in  such 

that ,1 nn T= +  for any .Nn   If for some ., 1 nnNn = +  Then, 

.nn T=  Hence, T has a fixed point. Now, we may assume that ,1 nn  +  

for all .Nn   It follows from inequality (1) and Lemma 2.1, we consider 
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( ) ( )111 ,,,, −++ = nnnbnnnb TTTSS  

( ( ) ( ) ( ),,,,,,,,, 1111 −−−−  nnnbnnnbnnnb TSTSS  

( )  ( ) ( ))111 ,,,,
2

1
,,, −− + nnnbnnnbnnnb TSTS

s
TS  

( ( ) ( ) ( ),,,,,,,,, 1111 nnnbnnnbnnnb SSS = −−+−  

( )  ( ) ( ))nnnbnnnbnnnb SS
s

S  −−++ ,,,,
2

1
,,, 1111  

( ( ) ( ) ( ),,,,,,,,, 1111 −++−  nnnbnnnbnnnb sSsSS  

( )  ( )nnnbnnnb sS
s

sS  ++++ ,,
2

1
,,, 1111  

( ) ( ))nnnbnnnb sSsS ++ ++−− ,,,,2 1111  

( ( ) ( ) ( ),,,,,,,,, 1111 −++−  nnnbnnnbnnnb sSsSS  

( )  ( ) ( ))1
2

1111 ,,2,,2
2

1
,,, −++++ + nnnbnnnbnnnb SssS

s
sS  

( ( ) ( ) ( ),,,,,,,,, 1111 −++−  nnnbnnnbnnnb sSsSS  

( )  ( ) ( ))11111 ,,,,,,, −++++ + nnnbnnnbnnnb sSSsS  (2) 

Since   satisfies the condition (R1), there exists 









2

1
,0

s
q  such 

that  

( ) ( ) ( )011111 ,,,,,,  −++ b
n

nnnbnnnb SqqSS   (3) 

For Nmn ,  with ,mn   using Lemma 2.1 and equation (3), we have 

( ) ( ) ( )mnnbnnnbmnnb SssSS + +++ ,,,,2,, 11
2

1  

( )  ( ) ( )mnnbnnnbnnnb SsSssS ++ ++++++ ,,,,2,,2 22
2

211
2

1  

 ( )  ( )100
222 ,,12 +++ b

n Sqsqsaq   
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( )1002
,,

1

2












−
 b

n

S
qs

sq
 

Since 









2

1
,0

s
q  and .1s  Taking the limit as ,→n  we get 

( ) .0,, → mnnbS  This proves that the sequence  n  is a cauchy sequence 

in the complete bS -metric space ( )., bS  Then, there exists   such that 

.lim =→ nn  Now we prove that  is a fixed point of T. Again by using 

inequality (1), we obtain 

( ) ( )= TTTSTS nnbnnb ,,,,  

( ( ) ( ) ( ),,,,,,,,,  TSTSS bnnnbnnb  

( )  ( ) ( ))nbnnnbnnnb TSTS
s

TS + ,,,,
2

1
,,,  

( ( ) ( ) ( ),,,,,,,,, 1 = + TSSS bnnnbnnb  

( )  ( ) ( ))111 ,,,,
2

1
,,, +++ + nbnnnbnnnb SS

s
S  

Letting ,→n  we get 

( ) ( ( ) ( ) ( ),,,,,,,,,,,  TSSSTS bbbb   

( )  ( ) ( ))+ ,,,,
2

1
,,, bbb SS

s
S  

that is, ( ) ( ( ) )0,0,,,,0,0,,  TSTS bb   

Since   satisfies the condition (R2), then we get 

( ) ( ) TqSTS bb ,,,,  

that is, ( ) ( ) .0,,1 − TSq b  

Since .
1

0
2s

q   Therefore we get ( ) .0,, = TSb  Hence .=T   

Thus,  is a fixed point of T. Now, we show that fixed point of T is unique. 
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For this, let   be another fixed point of T. It follows from inequality (1) 

and Lemma 2.1, we get 

( ) ( ) = ,,,, TTSS bb  

( ( ) ( ) ( ),,,,,,,,,   TSTSS bbb  

( )  ( ) ( ))+  TSTS
s

TS bbb ,,,,
2

1
,,,  

( ( ) ( ) ( ),,,,,,,,,  = bbb SSS  

( )  ( ) ( ))+  ,,,,
2

1
,,, bbb SS

s
S  

( ( ) ( ))  ,,
2

1
,0,0,0,,, bb SS  

Since   satisfies the condition (R3), then we get 

( ) ( )  ,,,, bb qSS  

that is, ( ) ( ) .0,,1 − 
bSq  

Since .
1

0
2s

q   Therefore we get ( ) .0,, = 
bS  Hence .=  Thus 

the fixed point of T is unique. 

Theorem 3.2. Let 1T  and 2T  be two selfmaps on a complete bS -metric 

space ( )bS,  with 1s  and 

( ) ( ( ) ( ) ( ),,,,,,,,,,, 21211 wTwwSTSwSwTTTS bbbb    

( )  ( ) ( ))+ 111 ,,,,
2

1
,,, TwwSTS

s
TS bbb  (4) 

for all  w,,  and .  If  satisfies the conditions (R1), (R2) and 

(R3), then 1T  and 2T  have a unique fixed point in . 

Proof. Let X0  be arbitrary and a sequence  n  in X defined by 

nn T 2112 = +  and ,12222 ++ = nn T  for .,3,2,1,0 =n   
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It follows from inequality (4) and Lemma 2.1, we have 

( ) ( )122212121212 ,,,, −++ = nnnbnnnb TTTSS  

( ( ) ( ) ( ),,,,,,,,, 122121221221222 −−−−  nnnbnnnbnnnb TSTSS  

( )  ( ) ( ))nnnbnnnbnnnb TSTS
s

TS 21121221222122 ,,,,
2

1
,,, + −−  

( ( ) ( ) ( ),,,,,,,,, 2121212221222 nnnbnnnbnnnb SSS = −−+−  

( )  ( ) ( ))12121212221222 ,,,,
2

1
,,, +−−++ + nnnbnnnbnnnb SS

s
S  

( ( ) ( ) ( ),,,,,,,,, 1222212121222 −++−  nnnbnnnbnnnb sSsSS  

( )  ( )nnnbnnnb sS
s

sS 2121221212 ,,
2

1
,,,  ++++  

( ) ( ))nnnbnnnb sSsS 2121221212 ,,,,2 ++ ++−−  

( ( ) ( ),,,,,, 212121222 nnnbnnnb sSS  ++−  

( ) ( ),,,,,, 212121222 nnnbnnnb sSS  ++−  

 ( ) ( ))1222
2

21212 ,,2,,2
2

1
−++ + nnnbnnnb SssS

s
 (5) 

Since   satisfies the condition (R1), there exists 









2

1
,0

s
q  such 

that  

( ) ( ) ( )011
2

122221212 ,,,,,,  −++ b
n

nnnbnnnb SqqSS  (6) 

For Nmn ,  with ,mn   by using Lemma 2.1 and equation (6), we 

have  

( ) ( ) ( )mnnbnnnbmnnb SssSS + +++ ,,,,2,, 11
2

1  

( )  ( ) ( )mnnbnnnbnnnb SsSssS ++ ++++++ ,,,,2,,2 22
2

211
2

1  

 ( )  ( )100
222 ,,12 +++ b

n Sqsqssq   
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( ).,,
1

2
1002












−
 b

n

S
qs

sq
 

Since 









2

1
,0

s
q  and .1s  Taking the limit as ,→n  we get 

( ) .0,, → mnnbS  This proves that the sequence  n  is a cauchy sequence 

in the complete bS -metric space ( )., bS  Then, there exists   such that 

.lim =→ nn  Now we prove that  is a common fixed point of 1T  and .2T   

For this Consider, 

( ) ( )= ++ 1212111212 ,,,, TTTSTS nnbnnb  

( ( ) ( ) ( ),,,,,,,,, 1212222  TSTSS bnnnbnnb  

( )  ( ) ( ))nbnnnbnnnb TSTS
s

TS 2121222122 ,,,,
2

1
,,, +  

( ( ) ( ) ( ),,,,,,,,, 1122222  + TSSS bnnnbnnb  

( )  ( ) ( ))1212221222 ,,,,
2

1
,,, +++ + nbnnnbnnnb SS

s
S  (7) 

Letting ,→n  we get 

( ) ( ( ) ( ) ( ),,,,,,,,,,, 11  TSSSTS bbbb   

( )  ( ) ( ))+ ,,,,
2

1
,,, bbb SS

s
S  

that is, ( ) ( ( ) )0,0,,,,0,0,, 11  TSTS bb   

Since   satisfies the condition (R2), then we get 

( ) ( ) 11 ,,,, TqSTS bb  

that is, ( ) ( ) .0,,1 1 − TSq b  

Since .
1

0
2s

q   Therefore we get ( ) .0,, 1 = TSb  Hence .1 =T   

Similarly, we can show that .2 =T  This shows that  is a common 
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fixed point of 1T  and .2T  Now we prove that 1T  and 2T  have a unique 

common fixed point. For this, let   be another common fixed point of 1T  and 

.2T  It follows from equation (4) and Lemma 2.1, we have 

( ) ( ) = 211 ,,,, TTTSS bb  

( ( ) ( ) ( ),,,,,,,,, 21
  TSTSS bbb  

( )  ( ) ( ))+ 
211 ,,,,

2

1
,,, TSTS

s
TS bbb  

( ( ) ( ) ( ) = ,,,,,,,, bbb SSS  

( )  ( ) ( ))+  ,,,,
2

1
,,, bbb SS

s
S  

( ) ( ) .,,
2

1
,0,0,0,,, 







 = 
bb SS  

Since   satisfies the condition (R3), then we get 

( ) ( )  ,,,, bb qSS  

that is, ( ) ( )− ,,1 bSq   

Since .
1

1
2s

q   Therefore we get ( ) .0,, = 
bS  Hence .=  This 

shows that  is the unique common fixed point of 1T  and .2T  

Theorem 3.3. Let 1T  and 2T  be two continuous selfmaps on a complete 

Sbmetric space ( )bS,  with 1s  and 

( ) ( ( ) ( ) ( ),,,,,,,,,,, 21211 wTwwSTSwSwTTTS p
b

p
bb

ppp
b    

( )  ( ) ( ))+ p
b

p
b

p
b TwwSTS

s
TS 111 ,,,,

2

1
,,,  (8) 

for all ,,,  w  where p and q are integers and .  If  satisfies the 

conditions (R1), (R2) and (R3), then 1T  and 2T  have a unique fixed point in 

. 
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Proof. Since pT1  and pT2  satisfies the conditions of Theorem 3.2. Let  

be the common fixed point.  

Then, we have ( ) ( ) .1111111 === TTTTTTT ppp  

If ,01 =T  then .001 =pT  So, 1T  is a fixed point of .1
pT  

Similarly, ( ) ( ) .22222 == TTTTT qq  Now, using equation (8) and Lemma 

2.1, we obtain 

( ) ( ( ))= 11111 ,,,, TTTTSTS ppp
bb  

( ( ) ( ) ( ( )),,,,,,,,, 111111  TTTTSTSTS p
b

p
bb  

( )  ( ) ( ))+ p
b

p
b

p
b TTTSTS

s
TS 11111 ,,,,

2

1
,,,  

( ( ) ( ) ( ),,,,,,,,, 1111  TTTSSTS bbb  

( )  ( ) ( ))+ ,,,,
2

1
,,, 11 TTSS

s
S bbb  

( )  ( ) .,,
2

1
,0,0,0,,, 11 







  TSTS bb  

Since   satisfies the condition (R3), then we get 

( ) ( ) 11 ,,,, TkSTS bb  

that is, ( ) ( ) .0,,1 1 − TSk b   

Since 
2

1
0

s
k   and .1s  Therefore we get ( ) .0,, 1 = TSb  Hence 

.1 =T  Similarly, we can show that .2 =T  This shows that  is a 

common fixed point of 1T  and .2T  For uniqueness of , Let   be another 

common fixed point of 1T  and .2T  Then clearly   is also a common fixed 

point of pT1  and ,2
qT  which implies .=  Hence 1T  and 2T  have a unique 

common fixed point. 
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Theorem 3.4. Let  G  be a family of continuous selfmaps on a complete 

bS -metric space ( )bS,  with 1s  and 

( ) ( ( ) ( ) ( ),,,,,,,,,,, wGwwSGSwSwGGGS bbbb     

( )  ( ) ( ))+  GwwSGS
s

GS bbb ,,,,
2

1
,,,  (9) 

for all ,,,  w  and + R,  with .  Then there exists a unique 

  satisfying ,=G  for all .   

Proof. Let 0  be arbitrary and a sequence  n  in  defined by 

nn G 212 = +  and ,1222 ++ = nn G  for .,3,2,1,0 =n   

It follows from inequality (9) and Lemma 2.1, we have 

( ) ( )122221212 ,,,, −++ = nnnbnnnb GGGSS  

( ( ) ( ) ( )1212122221222 ,,,,,,,, −−−−  nnnbnnnbnnnb GSGSS  

( )  ( ) ( ))nnnbnnnbnnnb GSGS
s

GS 21212222222 ,,,,
2

1
,,, + −−  

( ( ) ( ) ( ),,,,,,,,, 2121212221222 nnnbnnnbnnnb SSS = −−+−  

( )  ( ) ( ))12121212221222 ,,,,
2

1
,,, +−−++ + nnnbnnnbnnnb SS

s
S  

( ( ) ( ) ( ),,,,,,,,, 1222212121222 −++−  nnnbnnnbnnnb sSsSS  

( )  ( )nnnbnnnb sS
s

sS 2121221212 ,,
2

1
,,,  ++++  

( ) ( ))nnnbnnnb sSsS 2121221212 ,,,,2 ++ ++−−  

( ( ) ( ) ( ),,,,,,,,, 1222212121222 −++−  nnnbnnnbnnnb sSsSS  

( )  ( ) ( ))1222
2

2121221212 ,,2,,2
2

1
,,, −++++ + nnnbnnnbnnnb SssS

s
sS (10) 

Since   satisfies the condition (R1), there exists 









2

1
,0

s
q  such 
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that  

( ) ( ) ( )011
2

122221212 ,,,,,,  −++ b
n

nnnbnnnb SqqSS   (11) 

For Nmn ,  with ,mn   by using Lemma 2.1 and equation (11), we 

have 

( ) ( ) ( )mnnbnnnbmnnb SssSS + +++ ,,,,2,, 11
2

1  

( )  ( ) ( )mnnbnnnbnnnb SsSssS ++ ++++++ ,,,,2,,2 22
2

211
2

1  

 ( )  ( )100
222 ,,12 +++ b

n Sqsqssq   

( ).,,
1

2
1002












−
 b

n

S
qs

sq
 

Since 









2

1
,0

s
q  and .1s  Taking the limit as ,→n  we get 

( ) .0,, → mnnbS  This proves that the sequence  n  is a cauchy sequence 

in the complete bS -metric space ( )., bS  Then, there exists   such that 

.lim =→ nn  By the continuity of G  and ,G  it is clear that 

.==  GG  Therefore  is a common fixed point of G  and ,G  for all 

.  In order to prove the uniqueness, let us take another common fixed 

point   of G  and ,G  where .  Then using equation (9) and Lemma 

2.1, we obtain 

( ) ( )
 = GGGSS bb ,,,,  

( ( ) ( ) ( ),,,,,,,,, 





  GSGSS bbb  

( )  ( ) ( ))+ 


 GSGS
s

GS bbb ,,,,
2

1
,,,  

( ( ) ( ) ( ),,,,,,,,,   bbb SSS  

( )  ( ) ( ))+  ,,,,
2

1
,,, bbb SS

s
S  
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( ) ( ) .,,
2

1
,0,0,0,,, 







  
bb SS  

Since   satisfies the condition (R3), then we get 

( ) ( )  ,,,, bb qSS  

that is, ( ) ( ) .0,,1 − 
bSq  

Since .
1

0
2s

q   Therefore we get ( ) .0,, = 
bS  Hence .=  This 

shows that  is the unique common fixed point of ,G  for all .   

Corollary 3.1. Let ( )bS,  be a complete bS -metric space. Suppose that 

the mapping →:T  satisfies ( ) ( )wSTwTTS bb ,,,,   for all 

,,,  w  where  )1,0  is a constant. Then T has a unique fixed point in 

. Moreover, T is continuous at the fixed point. 

Proof. We can prove easily by using Theorem 3.1. with 

( ) ,,,,, aedcba =  for some  )1,0  and .,,,, + Redcba   

Corollary 3.2. Let ( )bS,  be a complete bS -metric space. Suppose that 

the mappings →:, 21 TT  satisfies ( ) ( )wSwTTTS bb ,,,,, 211   for 

all ,,,   where  )1,0  is a constant. Then 1T  and 2T  have a unique 

fixed point in . 

Proof. We can prove easiy by using Theorem 3.2. with 

( ) ,,,,, aedcba =  for some  )1,0  and .,,,, + Redcba  

Example 3.1. Let ( )bS,  be a complete bS -metric space with .4=s  

Where  1,0=  and ( ) ( ) .,, 2wwwSb −+−=   

Now, we consider the mapping →:T  defined by ( ) ,
5


=T  for all 

 .1,0  Then ( ) ( )2,, TwTTwTTwTTSb −+−=  

2

5555







 −


+−


=
ww
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( )2
25

1
ww −+−=  

( )wSb ,,
25

1
  

( ).,, wSb =  

where .1
25

1
=  Thus T satisfies all the conditions of corollary 3.1. and 

clearly 0  is the unique fixed point of T. 

4. Conclusion 

From this results, we can study the fixed-circle problem [13] using new 

contrations on different generalized metric spaces. 
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