SOME FIXED-POINT RESULTS IN S_{b}-METRIC SPACES

D. VENKATESH and V. NAGA RAJU

1,2Department of Mathematics
Osmania University, Hyderabad
Telangana-500007, India
E-mail: viswanag2007@gmail.com

Abstract

In this paper, we establish some fixed point and common fixed-point theorems in S_{b}-metric spaces using implicit relation. The results presented in this paper extend and generalize several results from the existing literature.

1. Introduction

In 1906, Maurice Fréchet [4] introduced the concept of metric spaces. Later, in the year 1922, Stefan Banach [2] proved a very famous theorem called "Banach Fixed Point Theorem". In 2006, Z. Mustafa and B. Sims [5] introduced G-metric spaces. In 2012, Sedghi, Shobe and Aliouche [11] introduced S-metric spaces and they claimed that S-metric spaces are the generalization of G-metric spaces. But, later Dung, Hieu and Radojevic [3] have given examples that S-metric spaces are not the generalization of G metric spaces or vice versa. Therefore, the collection of G-metric spaces and S-metric spaces are different. In 1989, I. A. Bakhtin [1] introduced b-metric spaces as a generalization of metric spaces. In 2016, N. Souayah, N. Mlaiki [12] introduced S_{b}-metric spaces as the generalizations of b-metric spaces and S-metric spaces. But, very recently Tas and Ozur [6] studied some relations between S_{b}-metric spaces and some other metric spaces. S. Sedghi and N. V. Dung [9] introduced an implicit relation to investigate some fixed-

[^0]Received September 15, 2022; Revised December 18, 2022; Accepted December 19, 2022
point theorems on S-metric spaces. In 2015, Prudhvi [7] proved some fixedpoint theorems on S-metric spaces, which extends the results of Sedgi and Dung [9].

Inspired by G. S. Saluja [8], Prudhvi [7], S. Sedghi, N. V. Dung [9] and some others, we establish some fixed point and common fixed-point theorems in S_{b}-metric spaces satisfying an implicit relation.

2. Preliminaries

Definition 2.1[11]. Let Ω be a nonempty set. An S-metric on Ω is a function $S: \Omega^{3} \rightarrow[0, \infty)$ that satisfies the following conditions, for each $\varsigma, \vartheta, w, a \in \Omega$,
(S1) $S(\varsigma, \vartheta, w)>0$ for all $\varsigma, \vartheta, w \in \Omega$ with $\varsigma \neq \vartheta \neq w$.
(S2) $S(\varsigma, \vartheta, w)=0$ if $\varsigma=\vartheta=w$.
(S3) $S(\varsigma, \vartheta, w) \leq[S(\varsigma, \varsigma, a)+S(\vartheta, \vartheta, a)+S(w, w, a)]$.
The pair (Ω, S) is called S-metric space.
Example 2.1[3]. Let $\Omega=R$, the set of all real numbers and let $S(\varsigma, \vartheta, w)=|\vartheta+w-2 \varsigma|+|\vartheta-w| \quad \forall \varsigma, \vartheta, w \in \Omega$. Then (Ω, S) is an S-metric space.

Definition 2.2[1]. Let Ω be a nonempty set. A b-metric on Ω is a function $d: \Omega^{2} \rightarrow[0, \infty)$ if there exists a real number $s \geq 1$ such that the following conditions holds for all $\varsigma, \vartheta \in \Omega$
(i) $d(\varsigma, \vartheta)=0 \Leftrightarrow \varsigma=\vartheta$.
(ii) $d(\varsigma, \vartheta)=d(\vartheta, \varsigma)$
(iii) $d(\varsigma, \vartheta) \leq s[d(\varsigma, w)+d(w, \vartheta)]$

The pair (Ω, d) is called a b-metric space.
Definition 2.3[12]. Let Ω be a nonempty set and let $s \geq 1$ be a given number.

A function $S_{b}: \Omega^{3} \rightarrow[0, \infty)$ is said to be S_{b}-metric if and only if for all $\forall \varsigma, \vartheta, w, a \in \Omega$, the following conditions hold:
(i) $S_{b}(\varsigma, \vartheta, w)=0$ if $\varsigma=\vartheta=w$.
(ii) $S_{b}(\varsigma, \vartheta, w) \leq s\left[S_{b}(\varsigma, \varsigma, a)+S_{b}(\vartheta, \vartheta, a)+S_{b}(w, w, a)\right]$,

The pair $\left(\Omega, S_{b}\right)$ is called an S_{b}-metric space.
Remark 2.1. We note that every S-metric space is an S_{b}-metric space with $s=1$, but the converse statement is not true.

Example 2.2[6]. Let $\Omega=R$, the set of all real numbers and let $S_{b}(\varsigma, \vartheta, w)=\frac{1}{16}(|\varsigma-\vartheta|+|\vartheta-w|+|\varsigma-w|)^{2}$, for all $\varsigma, \vartheta, w \in \Omega$.

Then $\left(\Omega, S_{b}\right)$ is an S_{b}-metric space with $s=4$, but it is not an S-metric space. Indeed, for $\varsigma=4, \vartheta=6, w=8$ and $a=5$, we get

$$
S_{b}(4,6,8)=4>S_{b}(4,4,5)+S_{b}(6,6,5)+S_{b}(8,8,5)
$$

Thus, S_{b}-metric spaces are more general than S-metric spaces.
Definition 2.4[6]. A S_{b}-metric S_{b} is said to be symmetric if

$$
S_{b}(\varsigma, \varsigma, \vartheta)=S_{b}(\vartheta, \vartheta, \varsigma) \forall \varsigma, \vartheta \in \Omega
$$

Lemma 2.1[10]. In S_{b}-metric space, we have
(i) $S_{b}(\varsigma, \varsigma, \vartheta) \leq s S_{b}(\vartheta, \vartheta, \varsigma)$ and $S_{b}(\vartheta, \vartheta, \varsigma) \leq s S_{b}(\varsigma, \varsigma, \vartheta)$
(ii) $S_{b}(\varsigma, \varsigma, w) \leq 2 s S_{b}(\varsigma, \varsigma, \vartheta)+s^{2} S_{b}(\vartheta, \vartheta, w)$.

Definition 2.5[12]. If $\left(\Omega, S_{b}\right)$ is an S_{b}-metric space and a sequence $\left\{s_{n}\right\}$ in Ω. Then
(i) $\left\{s_{n}\right\}$ is called a S_{b}-Cauchy sequence, if to each $\epsilon>0, \exists n_{0} \in N$ such that $S_{b}\left(\varsigma_{n}, \varsigma_{n}, \varsigma_{m}\right) \leq \epsilon, \forall n, m>n_{0}$.
(ii) $\left\{\varsigma_{n}\right\} \rightarrow \varsigma \Leftrightarrow$ to each $\epsilon>0, \exists n_{0} \in N$ such that $S_{b}\left(\varsigma_{n}, \varsigma_{n}, \varsigma\right)<\epsilon$ and $S_{b}\left(\varsigma, \varsigma, \varsigma_{n}\right)<\epsilon \forall n \geq n_{0}$, and we write as $\lim _{n \rightarrow \infty} \varsigma_{n}=\varsigma$.

Definition 2.6[12]. We say that $\left(\Omega, S_{b}\right)$ is complete if every S_{b}-Cauchy sequence is S_{b}-Convergent in Ω.

Tas and Ozgur [6] proved the following theorems in S_{b}-metric spaces.
Theorem 2.1[6]. If $\left(\Omega, S_{b}\right)$ is a complete S_{b}-metric space with $s \geq 1$ and T is a self map on Ω satisfying

$$
S_{b}(T \varsigma, T \varsigma, T \vartheta) \leq c S_{b}(\varsigma, \varsigma, \vartheta), \forall \varsigma, \vartheta \in \Omega, \text { where } 0<c<\frac{1}{s^{2}}
$$

Then T has a unique fixed point ς in Ω.
Example 2.3[10]. Let (Ω, S) be a S-metric space and $S_{*}(\varsigma, \vartheta, w)$ $=[S(\varsigma, \vartheta, w)]^{q}$, where $q>1$ is a real number.

Note that S_{*} is a S_{b}-metric with $s=2^{2(q-1)}$. Obvisously, S_{*} satisfies conditions
(i) $0<S_{*}(\varsigma, \vartheta, w)$, for all $\varsigma, \vartheta, w \in \Omega$ with $\varsigma \neq \vartheta \neq w$.
(ii) $S_{*}(\varsigma, \vartheta, w)=0$ if $\varsigma=\vartheta=w$.

If $1<q<\infty$, then the convexity of the function $f(\varsigma)=\varsigma^{q}$, $(\varsigma>0)$ implies that $(a+b)^{q} \leq 2^{q-1}\left(a^{q}+b^{q}\right)$.

Thus, for each $\varsigma, \vartheta, w, a \in \Omega$, we obtain,

$$
\begin{aligned}
S_{*}(\varsigma, \vartheta, w) & =S(\varsigma, \vartheta, w)^{q} \\
& \leq([S(\varsigma, \varsigma, a)+S(\vartheta, \vartheta, a)]+S(w, w, a))^{q} \\
& \leq 2^{q-1}\left([S(\varsigma, \varsigma, a)+S(\vartheta, \vartheta, a)]^{q}+S(w, w, a)^{q}\right) \\
& \leq 2^{2-1}\left(\left[2^{q-1}\left(S(\varsigma, \varsigma, a)^{q}+S(\vartheta, \vartheta, a)^{q}\right)\right]+2^{q-1} S(w, w, a)^{q}\right) \\
& \leq 2^{2(q-1)}\left(S(\varsigma, \varsigma, a)^{q}+S(\vartheta, \vartheta, a)^{q}+S(w, w, a)^{q}\right) \\
& \leq 2^{2(q-1)}\left(S_{*}(\varsigma, \varsigma, a)+S_{*}(\vartheta, \vartheta, a)+S_{*}(w, w, a)\right)
\end{aligned}
$$

So, S_{*} is a S_{b}-metric with $s=2^{2(q-1)}$.
Now, we introduce an implicit relation to prove some fixed point and common fixed-point theorems in S_{b}-metric spaces.

Definition 2.7 (Implicit Relation). Let Ψ be the family of all real valued continuous functions $\psi: R_{+}^{5} \rightarrow R_{+}$non-decreasing in the first argument for five variables. For some $q \in\left[0, \frac{1}{s^{2}}\right]$, where $s \geq 1$, we consider the following conditions.
(R1) For $\varsigma, \vartheta \in R_{+}$, if $\varsigma \leq \psi(\vartheta, s \varsigma, s \vartheta, s \varsigma, \varsigma+s \vartheta)$ then $\varsigma \leq q \vartheta$.
(R2) For $\varsigma, \vartheta \in R_{+}$, if $\varsigma \leq \psi(0,0, \varsigma, 0,0)$ then $\varsigma=0$.
(R3) For $\varsigma \in R_{+}$, if $\varsigma \leq \psi\left(\varsigma, 0,0,0, \frac{\varsigma}{2}\right)$ then $\varsigma=0$.

3. Main Results

In this section, we shall prove some fixed point and common fixed-point theorems satisfying an implicit relation in S_{b}-metric spaces.

Theorem 3.1. Let T be a self map on a complete S_{b}-metric space $\left(\Omega, S_{b}\right)$ with $s \geq 1$ and

$$
S_{b}(T \varsigma, T \vartheta, T w) \leq \psi\left(S_{b}(\varsigma, \vartheta, w), S_{b}(\vartheta, \vartheta, T \varsigma), S_{b}(w, w, T w), S_{b}(\varsigma, \varsigma, T \vartheta)\right.
$$

$$
\begin{equation*}
\left.\frac{1}{2 s}\left[S_{b}(\vartheta, \vartheta, T \vartheta)+S_{b}(w, w, T \varsigma)\right]\right) \tag{1}
\end{equation*}
$$

for all $\varsigma, \vartheta, w \in \Omega$ and $\psi \in \Psi$. If ψ satisfies the conditions ($R 1$), ($R 2$) and (R3), then T has a unique fixed point in Ω.

Proof. Let $\varsigma_{0} \in \Omega$ be arbitrary and define a sequence $\left\{\varsigma_{n}\right\}$ in Ω such that $\varsigma_{n+1}=T \varsigma_{n}$, for any $n \in N$. If for some $n \in N, \varsigma_{n+1}=\varsigma_{n}$. Then, $\varsigma_{n}=T \varsigma_{n}$. Hence, T has a fixed point. Now, we may assume that $\varsigma_{n+1} \neq \varsigma_{n}$, for all $n \in N$. It follows from inequality (1) and Lemma 2.1, we consider

$$
\begin{gather*}
\text { D. VENKATESH and V. NAGA RAJU } \\
S_{b}\left(\varsigma_{n+1}, \varsigma_{n+1}, \varsigma_{n}\right)=S_{b}\left(T \varsigma_{n}, T \varsigma_{n}, T \varsigma_{n-1}\right) \\
\leq \psi\left(S_{b}\left(\varsigma_{n}, \varsigma_{n}, \varsigma_{n-1}\right), S_{b}\left(\varsigma_{n}, \varsigma_{n}, T \varsigma_{n}\right), S_{b}\left(\varsigma_{n-1}, \varsigma_{n-1}, T \varsigma_{n-1}\right),\right. \\
\left.S_{b}\left(\varsigma_{n}, \varsigma_{n}, T_{S_{n}}\right), \frac{1}{2 s}\left[S_{b}\left(\varsigma_{n}, \varsigma_{n}, T \varsigma_{n}\right)+S_{b}\left(\varsigma_{n-1}, \varsigma_{n 1}, T \varsigma_{n-1}\right)\right]\right) \\
=\psi\left(S_{b}\left(\varsigma_{n}, \varsigma_{n}, \varsigma_{n-1}\right), S_{b}\left(\varsigma_{n}, \varsigma_{n}, \varsigma_{n+1}\right), S_{b}\left(\varsigma_{n-1}, \varsigma_{n-1}, \varsigma_{n}\right),\right. \\
\left.S_{b}\left(\varsigma_{n}, \varsigma_{n}, \varsigma_{n+1}\right), \frac{1}{2 s}\left[S_{b}\left(\varsigma_{n}, \varsigma_{n}, \varsigma_{n+1}\right) S_{b}\left(\varsigma_{n-1}, \varsigma_{n-1}, \varsigma_{n}\right)\right]\right) \\
\leq \psi\left(S_{b}\left(\varsigma_{n}, \varsigma_{n}, \varsigma_{n-1}\right), s S_{b}\left(\varsigma_{n+1}, \varsigma_{n+1}, \varsigma_{n}\right), s S_{b}\left(\varsigma_{n}, \varsigma_{n}, \varsigma_{n-1}\right),\right. \\
s S_{b}\left(\varsigma_{n+1}, \varsigma_{n+1}, \varsigma_{n}\right), \frac{1}{2 s}\left[s S_{b}\left(\varsigma_{n+1}, \varsigma_{n+1}, \varsigma_{n}\right)\right. \\
\left.\left.+2 s S_{b}\left(\varsigma_{n-1}, \varsigma_{n-1}, \varsigma_{n}\right)+s S_{b}\left(\varsigma_{n+1}, \varsigma_{n+1}, \varsigma_{n}\right)\right]\right) \\
\leq \psi\left(S_{b}\left(\varsigma_{n}, \varsigma_{n}, \varsigma_{n-1}\right), s S_{b}\left(\varsigma_{n+1}, \varsigma_{n+1}, \varsigma_{n}\right), s S_{b}\left(\varsigma_{n}, \varsigma_{n}, \varsigma_{n-1}\right),\right. \\
\left.s S_{b}\left(\varsigma_{n+1}, \varsigma_{n+1}, \varsigma_{n}\right), \frac{1}{2 s}\left[2 s S_{b}\left(\varsigma_{n+1}, \varsigma_{n+1}, \varsigma_{n}\right)+2 s^{2} S_{b}\left(\varsigma_{n}, \varsigma_{n}, \varsigma_{n-1}\right)\right]\right) \\
\leq \psi\left(S_{b}\left(\varsigma_{n}, \varsigma_{n}, \varsigma_{n-1}\right), s S_{b}\left(\varsigma_{n+1}, \varsigma_{n+1}, \varsigma_{n}\right), s S_{b}\left(\varsigma_{n}, \varsigma_{n}, \varsigma_{n-1}\right),\right. \\
\left.s S_{b}\left(\varsigma_{n+1}, \varsigma_{n+1}, \varsigma_{n}\right),\left[S_{b}\left(\varsigma_{n+1}, \varsigma_{n+1}, \varsigma_{n}\right)+s S_{b}\left(\varsigma_{n}, \varsigma_{n}, \varsigma_{n-1}\right)\right]\right) \tag{2}
\end{gather*}
$$

Since $\psi \in \Psi$ satisfies the condition (R1), there exists $q \in\left[0, \frac{1}{s^{2}}\right)$ such that

$$
\begin{equation*}
S_{b}\left(\varsigma_{n+1}, \varsigma_{n+1}, \varsigma_{n}\right) \leq q S_{b}\left(\varsigma_{n}, \varsigma_{n}, \varsigma_{n-1}\right) \leq q^{n} S_{b}\left(\varsigma_{1}, \varsigma_{1}, \varsigma_{0}\right) \tag{3}
\end{equation*}
$$

For $n, m \in N$ with $n<m$, using Lemma 2.1 and equation (3), we have

$$
\begin{gathered}
S_{b}\left(\varsigma_{n}, \varsigma_{n}, \varsigma_{m}\right) \leq 2 s S_{b}\left(\varsigma_{n}, \varsigma_{n}, \varsigma_{n+1}\right)+s^{2} S_{b}\left(\varsigma_{n+1}, \varsigma_{n+1}, \varsigma_{m}\right) \\
\leq 2 s S_{b}\left(\varsigma_{n}, \varsigma_{n}, \varsigma_{n+1}\right)+s^{2}\left[2 S_{b}\left(\varsigma_{n+1}, \varsigma_{n+1}, \varsigma_{n+2}\right)+s^{2} S_{b}\left(\varsigma_{n+2}, \varsigma_{n+2}, \varsigma_{m}\right)\right] \\
\leq 2 a q^{n}\left[1+s^{2} q+\left(s^{2} q\right)^{2}+\ldots\right] S_{b}\left(\varsigma_{0}, \varsigma_{0}, \varsigma_{1}\right)
\end{gathered}
$$

$$
\leq\left(\frac{2 s q^{n}}{1-s^{2} q}\right) S_{b}\left(\varsigma_{0}, \varsigma_{0}, \varsigma_{1}\right)
$$

Since $q \in\left[0, \frac{1}{s^{2}}\right]$ and $s \geq 1$. Taking the limit as $n \rightarrow \infty$, we get $S_{b}\left(\varsigma_{n}, \varsigma_{n}, \varsigma_{m}\right) \rightarrow 0$. This proves that the sequence $\left\{\varsigma_{n}\right\}$ is a cauchy sequence in the complete S_{b}-metric space $\left(\Omega, S_{b}\right)$. Then, there exists $\rho \in \Omega$ such that $\lim _{n \rightarrow \infty} \varsigma_{n}=\rho$. Now we prove that ρ is a fixed point of T. Again by using inequality (1), we obtain

$$
\begin{gathered}
S_{b}\left(\varsigma_{n}, \varsigma_{n}, T \rho\right)=S_{b}\left(T \varsigma_{n}, T \varsigma_{n}, T \rho\right) \\
\leq \psi\left(S_{b}\left(\varsigma_{n}, \varsigma_{n}, \rho\right), S_{b}\left(\varsigma_{n}, \varsigma_{n}, T \varsigma_{n}\right), S_{b}(\rho, \rho, T \rho),\right. \\
\left.S_{b}\left(\varsigma_{n}, \varsigma_{n}, T \varsigma_{n}\right), \frac{1}{2 s}\left[S_{b}\left(\varsigma_{n}, \varsigma_{n}, T \varsigma_{n}\right)+S_{b}\left(\rho, \rho, T \varsigma_{n}\right)\right]\right) \\
=\psi\left(S_{b}\left(\varsigma_{n}, \varsigma_{n}, \rho\right), S_{b}\left(\varsigma_{n}, \varsigma_{n}, \varsigma_{n+1}\right), S_{b}(\rho, \rho, T \rho),\right. \\
\left.S_{b}\left(\varsigma_{n}, \varsigma_{n}, \varsigma_{n+1}\right), \frac{1}{2 s}\left[S_{b}\left(\varsigma_{n}, \varsigma_{n}, \varsigma_{n+1}\right)+S_{b}\left(\rho, \rho, \varsigma_{n+1}\right)\right]\right)
\end{gathered}
$$

Letting $n \rightarrow \infty$, we get

$$
\begin{aligned}
& S_{b}(\rho, \rho, T \rho) \leq \psi\left(S_{b}(\rho, \rho, \rho), S_{b}(\rho, \rho, \rho), S_{b}(\rho, \rho, T \rho)\right. \\
& \left.\qquad S_{b}(\rho, \rho, \rho), \frac{1}{2 s}\left[S_{b}(\rho, \rho, \rho)+S_{b}(\rho, \rho, \rho)\right]\right) \\
& \text { that is, } S_{b}(\rho, \rho, T \rho) \leq \psi\left(0,0, S_{b}(\rho, \rho, T \rho), 0,0\right)
\end{aligned}
$$

Since $\psi \in \Psi$ satisfies the condition (R2), then we get

$$
\begin{gathered}
\quad S_{b}(\rho, \rho, T \rho) \leq q S_{b}(\rho, \rho, T \rho) \\
\text { that is, }(1-q) S_{b}(\rho, \rho, T \rho) \leq 0 .
\end{gathered}
$$

Since $0 \leq q \leq \frac{1}{s^{2}}$. Therefore we get $S_{b}(\rho, \rho, T \rho)=0$. Hence $T \rho=\rho$.
Thus, ρ is a fixed point of T. Now, we show that fixed point of T is unique.

For this, let ρ^{*} be another fixed point of T. It follows from inequality (1) and Lemma 2.1, we get

$$
\begin{gathered}
S_{b}\left(\rho, \rho, \rho^{*}\right)=S_{b}\left(T \rho, T \rho, \rho^{*}\right) \\
\leq \psi\left(S_{b}\left(\rho, \rho, \rho^{*}\right), S_{b}(\rho, \rho, T \rho), S_{b}\left(\rho^{*}, \rho^{*}, T \rho^{*}\right),\right. \\
\left.S_{b}(\rho, \rho, T \rho), \frac{1}{2 s}\left[S_{b}(\rho, \rho, T \rho)+S_{b}\left(\rho^{*}, \rho^{*}, T \rho\right)\right]\right) \\
=\psi\left(S_{b}\left(\rho, \rho, \rho^{*}\right), S_{b}(\rho, \rho, \rho), S_{b}\left(\rho^{*}, \rho^{*}, \rho^{*}\right)\right. \\
\left.S_{b}(\rho, \rho, \rho), \frac{1}{2 s}\left[S_{b}(\rho, \rho, \rho)+S_{b}\left(\rho^{*}, \rho^{*}, \rho\right)\right]\right) \\
\leq \psi\left(S_{b}\left(\rho, \rho, \rho^{*}\right), 0,0,0, \frac{1}{2} S_{b}\left(\rho, \rho, \rho^{*}\right)\right)
\end{gathered}
$$

Since $\psi \in \Psi$ satisfies the condition (R3), then we get

$$
S_{b}\left(\rho, \rho, \rho^{*}\right) \leq q S_{b}\left(\rho, \rho, \rho^{*}\right)
$$

$$
\text { that is, }(1-q) S_{b}\left(\rho, \rho, \rho^{*}\right) \leq 0 \text {. }
$$

Since $0 \leq q \leq \frac{1}{s^{2}}$. Therefore we get $S_{b}\left(\rho, \rho, \rho^{*}\right)=0$. Hence $\rho=\rho^{*}$. Thus the fixed point of T is unique.

Theorem 3.2. Let T_{1} and T_{2} be two selfmaps on a complete S_{b}-metric space $\left(\Omega, S_{b}\right)$ with $s \geq 1$ and

$$
\begin{gather*}
S_{b}\left(T_{1} \varsigma, T_{1} \vartheta, T_{2} w\right) \leq \psi\left(S_{b}(\varsigma, \vartheta, w), S_{b}\left(\vartheta, \vartheta, T_{1} \varsigma\right), S_{b}\left(w, w, T_{2} w\right),\right. \\
\left.S_{b}\left(\varsigma, \varsigma, T_{1} \vartheta\right), \frac{1}{2 s}\left[S_{b}\left(\vartheta, \vartheta, T_{1} \vartheta\right)+S_{b}\left(w, w, T_{1} \varsigma\right)\right]\right) \tag{4}
\end{gather*}
$$

for all $\varsigma, \vartheta, w \in \Omega$ and $\psi \in \Psi$. If ψ satisfies the conditions ($R 1$), ($R 2$) and (R3), then T_{1} and T_{2} have a unique fixed point in Ω.

Proof. Let $\varsigma_{0} \in X$ be arbitrary and a sequence $\left\{\varsigma_{n}\right\}$ in X defined by $\varsigma_{2 n+1}=T_{1} \varsigma_{2 n}$ and $\varsigma_{2 n+2}=T_{2} \varsigma_{2 n+1}$, for $n=0,1,2,3, \ldots$.

It follows from inequality (4) and Lemma 2.1, we have

$$
\begin{gather*}
S_{b}\left(\varsigma_{2 n+1}, \varsigma_{2 n+1}, \varsigma_{2 n}\right)=S_{b}\left(T_{1} \varsigma_{2 n}, T_{1} \varsigma_{2 n}, T_{2} \varsigma_{2 n-1}\right) \\
\leq \psi\left(S_{b}\left(\varsigma_{2 n}, \varsigma_{2 n}, \varsigma_{2 n-1}\right), S_{b}\left(\varsigma_{2 n}, \varsigma_{2 n}, T_{1} \varsigma_{2 n}\right), S_{b}\left(\varsigma_{2 n-1}, \varsigma_{2 n-1}, T_{2} \varsigma_{2 n-1}\right),\right. \\
\left.S_{b}\left(\varsigma_{2 n}, \varsigma_{2 n}, T_{1} \varsigma_{2 n}\right), \frac{1}{2 s}\left[S_{b}\left(\varsigma_{2 n}, \varsigma_{2 n}, T_{1} \varsigma_{2 n}\right)+S_{b}\left(\varsigma_{2 n-1}, \varsigma_{2 n-1}, T_{1} \varsigma_{2 n}\right)\right]\right) \\
=\psi\left(S_{b}\left(\varsigma_{2 n}, \varsigma_{2 n}, \varsigma_{2 n-1}\right), S_{b}\left(\varsigma_{2 n}, \varsigma_{2 n}, \varsigma_{2 n+1}\right), S_{b}\left(\varsigma_{2 n-1}, \varsigma_{2 n-1}, \varsigma_{2 n}\right),\right. \\
\left.S_{b}\left(\varsigma_{2 n}, \varsigma_{2 n}, \varsigma_{2 n+1}\right), \frac{1}{2 s}\left[S_{b}\left(\varsigma_{2 n}, \varsigma_{2 n}, \varsigma_{2 n+1}\right)+S_{b}\left(\varsigma_{2 n-1}, \varsigma_{2 n-1}, \varsigma_{2 n+1}\right)\right]\right) \\
\leq \psi\left(S_{b}\left(\varsigma_{2 n}, \varsigma_{2 n}, \varsigma_{2 n-1}\right), s S_{b}\left(\varsigma_{2 n+1}, \varsigma_{2 n+1}, \varsigma_{2 n}\right), s S_{b}\left(\varsigma_{2 n}, \varsigma_{2 n}, \varsigma_{2 n-1}\right),\right. \\
s S_{b}\left(\varsigma_{2 n+1}, \varsigma_{2 n+1}, \varsigma_{2 n}\right), \frac{1}{2 s}\left[s S_{b}\left(\varsigma_{2 n+1}, \varsigma_{2 n+1}, \varsigma_{2 n}\right)\right. \\
\left.\left.+2 s S_{b}\left(\varsigma_{2 n-1}, \varsigma_{2 n-1}, \varsigma_{2 n}\right)+s S_{b}\left(\varsigma_{2 n+1}, \varsigma_{2 n+1}, \varsigma_{2 n}\right)\right]\right) \\
\leq \psi\left(S_{b}\left(\varsigma_{2 n}, \varsigma_{2 n}, \varsigma_{2 n-1}\right), s S_{b}\left(\varsigma_{2 n+1}, \varsigma_{2 n+1}, \varsigma_{2 n}\right),\right. \\
\quad S_{b}\left(\varsigma_{2 n}, \varsigma_{2 n}, \varsigma_{2 n-1}\right), s S_{b}\left(\varsigma_{2 n+1}, \varsigma_{2 n+1}, \varsigma_{2 n}\right), \\
\left.\frac{1}{2 s}\left[2 s S_{b}\left(\varsigma_{2 n+1}, \varsigma_{2 n+1}, \varsigma_{2 n}\right)+2 s^{2} S_{b}\left(\varsigma_{2 n}, \varsigma_{2 n}, \varsigma_{2 n-1}\right)\right]\right) \tag{5}
\end{gather*}
$$

Since $\psi \in \Psi$ satisfies the condition $(R 1)$, there exists $q \in\left[0, \frac{1}{s^{2}}\right)$ such that

$$
\begin{equation*}
S_{b}\left(\varsigma_{2 n+1}, \varsigma_{2 n+1}, \varsigma_{2 n}\right) \leq q S_{b}\left(\varsigma_{2 n}, \varsigma_{2 n}, \varsigma_{2 n-1}\right) \leq q^{2 n} S_{b}\left(\varsigma_{1}, \varsigma_{1}, \varsigma_{0}\right) \tag{6}
\end{equation*}
$$

For $n, m \in N$ with $n<m$, by using Lemma 2.1 and equation (6), we have

$$
\begin{gathered}
S_{b}\left(\varsigma_{n}, \varsigma_{n}, \varsigma_{m}\right) \leq 2 s S_{b}\left(\varsigma_{n}, \varsigma_{n}, \varsigma_{n+1}\right)+s^{2} S_{b}\left(\varsigma_{n+1}, \varsigma_{n+1}, \varsigma_{m}\right) \\
\leq 2 s S_{b}\left(\varsigma_{n}, \varsigma_{n}, \varsigma_{n+1}\right)+s^{2}\left[2 S_{b}\left(\varsigma_{n+1}, \varsigma_{n+1}, \varsigma_{n+2}\right)+s^{2} S_{b}\left(\varsigma_{n+2}, \varsigma_{n+2}, \varsigma_{m}\right)\right] \\
\leq 2 s q^{n}\left[1+s^{2} q+\left(s^{2} q\right)^{2}+\ldots\right] S_{b}\left(\varsigma_{0}, \varsigma_{0}, \varsigma_{1}\right)
\end{gathered}
$$

$$
\leq\left(\frac{2 s q^{n}}{1-s^{2} q}\right) S_{b}\left(\varsigma_{0}, \varsigma_{0}, \varsigma_{1}\right)
$$

Since $q \in\left[0, \frac{1}{s^{2}}\right]$ and $s \geq 1$. Taking the limit as $n \rightarrow \infty$, we get $S_{b}\left(\zeta_{n}, \varsigma_{n}, \varsigma_{m}\right) \rightarrow 0$. This proves that the sequence $\left\{\varsigma_{n}\right\}$ is a cauchy sequence in the complete S_{b}-metric space $\left(\Omega, S_{b}\right)$. Then, there exists $\sigma \in \Omega$ such that $\lim _{n \rightarrow \infty} \varsigma_{n}=\sigma$. Now we prove that σ is a common fixed point of T_{1} and T_{2}.

For this Consider,

$$
\begin{gather*}
S_{b}\left(\varsigma_{2 n+1}, \varsigma_{2 n+1}, T_{1} \sigma\right)=S_{b}\left(T_{1} \varsigma_{2 n}, T_{1} \varsigma_{2 n}, T_{1} \sigma\right) \\
\leq \psi\left(S_{b}\left(\varsigma_{2 n}, \varsigma_{2 n}, \sigma\right), S_{b}\left(\varsigma_{2 n}, \varsigma_{2 n}, T_{1} \varsigma_{2 n}\right), S_{b}\left(\sigma, \sigma, T_{1} \sigma\right)\right. \\
\left.S_{b}\left(\varsigma_{2 n}, \varsigma_{2 n}, T_{1} \varsigma_{2 n}\right), \frac{1}{2 s}\left[S_{b}\left(\varsigma_{2 n}, \varsigma_{2 n}, T_{1} \varsigma_{2 n}\right)+S_{b}\left(\sigma, \sigma, T_{1} \varsigma_{2 n}\right)\right]\right) \\
\leq \psi\left(S_{b}\left(\varsigma_{2 n}, \varsigma_{2 n}, \sigma\right), S_{b}\left(\varsigma_{2 n}, \varsigma_{2 n}, \varsigma_{2 n+1}\right), S_{b}\left(\sigma, \sigma, T_{1} \sigma\right)\right. \\
\left.S_{b}\left(\varsigma_{2 n}, \varsigma_{2 n}, \varsigma_{2 n+1}\right), \frac{1}{2 s}\left[S_{b}\left(\varsigma_{2 n}, \varsigma_{2 n}, \varsigma_{2 n+1}\right)+S_{b}\left(\sigma, \sigma, \varsigma_{2 n+1}\right)\right]\right) \tag{7}
\end{gather*}
$$

Letting $n \rightarrow \infty$, we get

$$
\begin{gathered}
S_{b}\left(\sigma, \sigma, T_{1} \sigma\right) \leq \psi\left(S_{b}(\sigma, \sigma, \sigma), S_{b}(\sigma, \sigma, \sigma), S_{b}\left(\sigma, \sigma, T_{1} \sigma\right)\right. \\
\left.\quad S_{b}(\sigma, \sigma, \sigma), \frac{1}{2 s}\left[S_{b}(\sigma, \sigma, \sigma)+S_{b}(\sigma, \sigma, \sigma)\right]\right) \\
\text { that is, } S_{b}\left(\sigma, \sigma, T_{1} \sigma\right) \leq \psi\left(0,0, S_{b}\left(\sigma, \sigma, T_{1} \sigma\right), 0,0\right)
\end{gathered}
$$

Since $\psi \in \Psi$ satisfies the condition (R2), then we get

$$
\begin{gathered}
\quad S_{b}\left(\sigma, \sigma, T_{1} \sigma\right) \leq q S_{b}\left(\sigma, \sigma, T_{1} \sigma\right) \\
\text { that is, }(1-q) S_{b}\left(\sigma, \sigma, T_{1} \sigma\right) \leq 0
\end{gathered}
$$

Since $0 \leq q \leq \frac{1}{s^{2}}$. Therefore we get $S_{b}\left(\sigma, \sigma, T_{1} \sigma\right)=0$. Hence $T_{1} \sigma=\sigma$.
Similarly, we can show that $T_{2} \sigma=\sigma$. This shows that σ is a common
fixed point of T_{1} and T_{2}. Now we prove that T_{1} and T_{2} have a unique common fixed point. For this, let σ^{*} be another common fixed point of T_{1} and T_{2}. It follows from equation (4) and Lemma 2.1, we have

$$
\begin{gathered}
S_{b}\left(\sigma, \sigma, \sigma^{*}\right)=S_{b}\left(T_{1} \sigma, T_{1} \sigma, T_{2} \sigma^{*}\right) \\
\leq \psi\left(S_{b}\left(\sigma, \sigma, \sigma^{*}\right), S_{b}\left(\sigma, \sigma, T_{1} \sigma\right), S_{b}\left(\sigma^{*}, \sigma^{*}, T_{2} \sigma^{*}\right),\right. \\
\left.S_{b}\left(\sigma, \sigma, T_{1} \sigma\right), \frac{1}{2 s}\left[S_{b}\left(\sigma, \sigma, T_{1} \sigma\right)+S_{b}\left(\sigma^{*}, \sigma^{*}, T_{2} \sigma\right)\right]\right) \\
=\psi\left(S_{b}\left(\sigma, \sigma, \sigma^{*}\right), S_{b}(\sigma, \sigma, \sigma), S_{b}\left(\sigma^{*}, \sigma^{*}, \sigma^{*}\right)\right. \\
\left.S_{b}(\sigma, \sigma, \sigma), \frac{1}{2 s}\left[S_{b}(\sigma, \sigma, \sigma)+S_{b}\left(\sigma^{*}, \sigma^{*}, \sigma\right)\right]\right) \\
=\psi\left(S_{b}\left(\sigma, \sigma, \sigma^{*}\right), 0,0,0, \frac{1}{2} S_{b}\left(\sigma, \sigma, \sigma^{*}\right)\right) .
\end{gathered}
$$

Since $\psi \in \Psi$ satisfies the condition (R3), then we get

$$
\begin{aligned}
& S_{b}\left(\sigma, \sigma, \sigma^{*}\right) \leq q S_{b}\left(\sigma, \sigma, \sigma^{*}\right) \\
& \text { that is, }(1-q) S_{b}\left(\sigma, \sigma, \sigma^{*}\right)
\end{aligned}
$$

Since $1 \leq q \leq \frac{1}{s^{2}}$. Therefore we get $S_{b}\left(\sigma, \sigma, \sigma^{*}\right)=0$. Hence $\sigma=\sigma^{*}$. This shows that σ is the unique common fixed point of T_{1} and T_{2}.

Theorem 3.3. Let T_{1} and T_{2} be two continuous selfmaps on a complete Sbmetric space $\left(\Omega, S_{b}\right)$ with $s \geq 1$ and

$$
\begin{gather*}
S_{b}\left(T_{1}^{p} \varsigma, T_{1}^{p} \vartheta, T_{2}^{p} w\right) \leq \psi\left(S_{b}(\varsigma, \vartheta, w), S_{b}\left(\vartheta, \vartheta, T_{1}^{p} \varsigma\right), S_{b}\left(w, w, T_{2}^{p} w\right),\right. \\
\left.S_{b}\left(\varsigma, \varsigma, T_{1}^{p} \vartheta\right), \frac{1}{2 s}\left[S_{b}\left(\vartheta, \vartheta, T_{1}^{p} \vartheta\right)+S_{b}\left(w, w, T_{1}^{p} \varsigma\right)\right]\right) \tag{8}
\end{gather*}
$$

for all $\varsigma, \vartheta, w \in \Omega$, where p and q are integers and $\psi \in \Psi$. If ψ satisfies the conditions (R1), (R2) and (R3), then T_{1} and T_{2} have a unique fixed point in Ω.

Proof. Since T_{1}^{p} and T_{2}^{p} satisfies the conditions of Theorem 3.2. Let λ be the common fixed point.

Then, we have $T_{1}^{p} \lambda=\lambda \Rightarrow T_{1}\left(T_{1}^{p} \lambda\right)=T_{1} \lambda \Rightarrow T_{1}^{p}\left(T_{1} \lambda\right)=T_{1} \lambda$.
If $T_{1} \lambda=\lambda_{0}$, then $T_{1}^{p} \lambda_{0}=\lambda_{0}$. So, $T_{1} \lambda$ is a fixed point of T_{1}^{p}.

Similarly, $T_{2}\left(T_{2}^{q} \lambda\right)=T_{2}^{q}\left(T_{2} \lambda\right)=T_{2} \lambda$. Now, using equation (8) and Lemma 2.1 , we obtain

$$
\begin{gathered}
S_{b}\left(\lambda, \lambda, T_{1} \lambda\right)=S_{b}\left(T_{1}^{p} \lambda, T_{1}^{p} \lambda, T_{1}^{p}\left(T_{1} \lambda\right)\right) \\
\leq \psi\left(S_{b}\left(\lambda, \lambda, T_{1} \lambda\right), S_{b}\left(\lambda, \lambda, T_{1}^{p} \lambda\right), S_{b}\left(T_{1} \lambda, T_{1} \lambda, T_{1}^{p}\left(T_{1} \lambda\right)\right),\right. \\
\left.S_{b}\left(\lambda, \lambda, T_{1}^{p} \lambda\right), \frac{1}{2 s}\left[S_{b}\left(\lambda, \lambda, T_{1}^{p} \lambda\right)+S_{b}\left(T_{1} \lambda, T_{1} \lambda, T_{1}^{p} \lambda\right)\right]\right) \\
\leq \psi\left(S_{b}\left(\lambda, \lambda, T_{1} \lambda\right), S_{b}(\lambda, \lambda, \lambda), S_{b}\left(T_{1} \lambda, T_{1} \lambda, T_{1} \lambda\right)\right. \\
\left.S_{b}(\lambda, \lambda, \lambda), \frac{1}{2 s}\left[S_{b}(\lambda, \lambda, \lambda)+S_{b}\left(T_{1} \lambda, T_{1} \lambda, \lambda\right)\right]\right) \\
\leq \psi\left(S_{b}\left(\lambda, \lambda, T_{1} \lambda\right), 0,0,0, \frac{1}{2}\left[S_{b}\left(\lambda, \lambda, T_{1} \lambda\right)\right]\right)
\end{gathered}
$$

Since $\psi \in \Psi$ satisfies the condition (R3), then we get

$$
S_{b}\left(\lambda, \lambda, T_{1} \lambda\right) \leq k S_{b}\left(\lambda, \lambda, T_{1} \lambda\right)
$$

that is, $(1-k) S_{b}\left(\lambda, \lambda, T_{1} \lambda\right) \leq 0$.
Since $0 \leq k \leq \frac{1}{s^{2}}$ and $s \geq 1$. Therefore we get $S_{b}\left(\lambda, \lambda, T_{1} \lambda\right)=0$. Hence $T_{1} \lambda=\lambda$. Similarly, we can show that $T_{2} \lambda=\lambda$. This shows that λ is a common fixed point of T_{1} and T_{2}. For uniqueness of λ, Let $\lambda^{*} \neq \lambda$ be another common fixed point of T_{1} and T_{2}. Then clearly λ^{*} is also a common fixed point of T_{1}^{p} and T_{2}^{q}, which implies $\lambda=\lambda^{*}$. Hence T_{1} and T_{2} have a unique common fixed point.

Theorem 3.4. Let $\left\{G_{\alpha}\right\}$ be a family of continuous selfmaps on a complete S_{b}-metric space $\left(\Omega, S_{b}\right)$ with $s \geq 1$ and

$$
\begin{gather*}
S_{b}\left(G_{\alpha} \varsigma, G_{\alpha} \vartheta, G_{\beta} w\right) \leq \psi\left(S_{b}(\varsigma, \vartheta, w), S_{b}\left(\vartheta, \vartheta, G_{\alpha} \varsigma\right), S_{b}\left(w, w, G_{\beta} w\right)\right. \\
\left.S_{b}\left(\varsigma, \varsigma, G_{\alpha} \vartheta\right), \frac{1}{2 s}\left[S_{b}\left(\vartheta, \vartheta, G_{\alpha} \vartheta\right)+S_{b}\left(w, w, G_{\alpha} \varsigma\right)\right]\right) \tag{9}
\end{gather*}
$$

for all $\varsigma, \vartheta, w \in \Omega$, and $\alpha, \beta \in R^{+}$with $\alpha \neq \beta$. Then there exists a unique $\eta \in \Omega$ satisfying $G_{\alpha} \eta=\eta$, for all $\alpha \in \Psi$.

Proof. Let $\zeta_{0} \in \Omega$ be arbitrary and a sequence $\left\{\varsigma_{n}\right\}$ in Ω defined by $\varsigma_{2 n+1}=G_{\alpha} \varsigma_{2 n}$ and $\varsigma_{2 n+2}=G_{\beta} \varsigma_{2 n+1}$, for $n=0,1,2,3, \ldots$.

It follows from inequality (9) and Lemma 2.1, we have

$$
\begin{gathered}
S_{b}\left(\varsigma_{2 n+1}, \varsigma_{2 n+1}, \varsigma_{2 n}\right)=S_{b}\left(G_{\alpha} \varsigma_{2 n}, G_{\alpha} \varsigma_{2 n}, G_{\beta} \varsigma_{2 n-1}\right) \\
\leq \psi\left(S_{b}\left(\varsigma_{2 n}, \varsigma_{2 n}, \varsigma_{2 n-1}\right), S_{b}\left(\varsigma_{2 n}, \varsigma_{2 n}, G_{\alpha} \varsigma_{2 n}\right), S_{b}\left(\varsigma_{2 n-1}, \varsigma_{2 n-1}, G_{\beta} \varsigma_{2 n-1}\right)\right. \\
\left.S_{b}\left(\varsigma_{2 n}, \varsigma_{2 n}, G_{\alpha} \varsigma_{2 n}\right), \frac{1}{2 s}\left[S_{b}\left(\varsigma_{2 n}, \varsigma_{2 n}, G_{\alpha} \varsigma_{2 n}\right)+S_{b}\left(\varsigma_{2 n-1}, \varsigma_{2 n-1}, G_{\alpha} \varsigma_{2 n}\right)\right]\right) \\
=\psi\left(S_{b}\left(\varsigma_{2 n}, \varsigma_{2 n}, \varsigma_{2 n-1}\right), S_{b}\left(\varsigma_{2 n}, \varsigma_{2 n}, \varsigma_{2 n+1}\right), S_{b}\left(\varsigma_{2 n-1}, \varsigma_{2 n-1}, \varsigma_{2 n}\right),\right. \\
\left.S_{b}\left(\varsigma_{2 n}, \varsigma_{2 n}, \varsigma_{2 n+1}\right), \frac{1}{2 s}\left[S_{b}\left(\varsigma_{2 n}, \varsigma_{2 n}, \varsigma_{2 n+1}\right)+S_{b}\left(\varsigma_{2 n-1}, \varsigma_{2 n-1}, \varsigma_{2 n+1}\right)\right]\right) \\
\leq \psi\left(S_{b}\left(\varsigma_{2 n}, \varsigma_{2 n}, \varsigma_{2 n-1}\right), s S_{b}\left(\varsigma_{2 n+1}, \varsigma_{2 n+1}, \varsigma_{2 n}\right), s S_{b}\left(\varsigma_{2 n}, \varsigma_{2 n}, \varsigma_{2 n-1}\right),\right. \\
\quad s S_{b}\left(\varsigma_{2 n+1}, \varsigma_{2 n+1}, \varsigma_{2 n}\right), \frac{1}{2 s}\left[s S_{b}\left(\varsigma_{2 n+1}, \varsigma_{2 n+1}, \varsigma_{2 n}\right)\right. \\
\left.\left.+2 s S_{b}\left(\varsigma_{2 n-1}, \varsigma_{2 n-1}, \varsigma_{2 n}\right)+s S_{b}\left(\varsigma_{2 n+1}, \varsigma_{2 n+1}, \varsigma_{2 n}\right)\right]\right) \\
\leq \psi\left(S_{b}\left(\varsigma_{2 n}, \varsigma_{2 n}, \varsigma_{2 n-1}\right), s S_{b}\left(\varsigma_{2 n+1}, \varsigma_{2 n+1}, \varsigma_{2 n}\right), s S_{b}\left(\varsigma_{2 n}, \varsigma_{2 n}, \varsigma_{2 n-1}\right),\right. \\
\left.s S_{b}\left(\varsigma_{2 n+1}, \varsigma_{2 n+1}, \varsigma_{2 n}\right), \frac{1}{2 s}\left[2 s S_{b}\left(\varsigma_{2 n+1}, \varsigma_{2 n+1}, \varsigma_{2 n}\right)+2 s^{2} S_{b}\left(\varsigma_{2 n}, \varsigma_{2 n}, \varsigma_{2 n-1}\right)\right]\right)(10)
\end{gathered}
$$

Since $\psi \in \Psi$ satisfies the condition (R1), there exists $q \in\left[0, \frac{1}{s^{2}}\right)$ such

896
that

$$
\begin{equation*}
S_{b}\left(\varsigma_{2 n+1}, \varsigma_{2 n+1}, \varsigma_{2 n}\right) \leq q S_{b}\left(\varsigma_{2 n}, \varsigma_{2 n}, \varsigma_{2 n-1}\right) \leq q^{2 n} S_{b}\left(\varsigma_{1}, \varsigma_{1}, \varsigma_{0}\right) \tag{11}
\end{equation*}
$$

For $n, m \in N$ with $n<m$, by using Lemma 2.1 and equation (11), we have

$$
\begin{gathered}
S_{b}\left(\varsigma_{n}, \varsigma_{n}, \varsigma_{m}\right) \leq 2 s S_{b}\left(\varsigma_{n}, \varsigma_{n}, \varsigma_{n+1}\right)+s^{2} S_{b}\left(\varsigma_{n+1}, \varsigma_{n+1}, \varsigma_{m}\right) \\
\leq 2 s S_{b}\left(\varsigma_{n}, \varsigma_{n}, \varsigma_{n+1}\right)+s^{2}\left[2 S_{b}\left(\varsigma_{n+1}, \varsigma_{n+1}, \varsigma_{n+2}\right)+s^{2} S_{b}\left(\varsigma_{n+2}, \varsigma_{n+2}, \varsigma_{m}\right)\right] \\
\leq 2 s q^{n}\left[1+s^{2} q+\left(s^{2} q\right)^{2}+\ldots\right] S_{b}\left(\varsigma_{0}, \varsigma_{0}, \varsigma_{1}\right) \\
\leq\left(\frac{2 s q^{n}}{1-s^{2} q}\right) S_{b}\left(\varsigma_{0}, \varsigma_{0}, \varsigma_{1}\right)
\end{gathered}
$$

Since $q \in\left[0, \frac{1}{s^{2}}\right]$ and $s \geq 1$. Taking the limit as $n \rightarrow \infty$, we get $S_{b}\left(\varsigma_{n}, \varsigma_{n}, \varsigma_{m}\right) \rightarrow 0$. This proves that the sequence $\left\{\varsigma_{n}\right\}$ is a cauchy sequence in the complete S_{b}-metric space $\left(\Omega, S_{b}\right)$. Then, there exists $\eta \in \Omega$ such that $\lim _{n \rightarrow \infty} \varsigma_{n}=\eta$. By the continuity of G_{α} and G_{β}, it is clear that $G_{\alpha} \eta=G_{\beta} \eta=\eta$. Therefore η is a common fixed point of G_{α} and G_{β}, for all $\alpha \in \Psi$. In order to prove the uniqueness, let us take another common fixed point η^{*} of G_{α} and G_{β}, where $\eta \neq \eta^{*}$. Then using equation (9) and Lemma 2.1, we obtain

$$
\begin{gathered}
S_{b}\left(\eta, \eta, \eta^{*}\right)=S_{b}\left(G_{\alpha} \eta, G_{\alpha} \eta, G_{\beta} \eta^{*}\right) \\
\leq \psi\left(S_{b}\left(\eta, \eta, \eta^{*}\right), S_{b}\left(\eta, \eta, G_{\alpha} \eta\right), S_{b}\left(\eta^{*}, \eta^{*}, G_{\beta} \eta^{*}\right)\right. \\
\left.S_{b}\left(\eta, \eta, G_{\alpha} \eta\right), \frac{1}{2 s}\left[S_{b}\left(\eta, \eta, G_{\alpha} \eta\right)+S_{b}\left(\eta^{*}, \eta^{*}, G_{\alpha} \eta\right)\right]\right) \\
\leq \psi\left(S_{b}\left(\eta, \eta, \eta^{*}\right), S_{b}(\eta, \eta, \eta), S_{b}\left(\eta^{*}, \eta^{*}, \eta^{*}\right)\right. \\
\left.S_{b}(\eta, \eta, \eta), \frac{1}{2 s}\left[S_{b}(\eta, \eta, \eta)+S_{b}\left(\eta^{*}, \eta^{*}, \eta\right)\right]\right)
\end{gathered}
$$

$$
\leq \psi\left(S_{b}\left(\eta, \eta, \eta^{*}\right), 0,0,0, \frac{1}{2} S_{b}\left(\eta, \eta, \eta^{*}\right)\right)
$$

Since $\psi \in \Psi$ satisfies the condition (R3), then we get

$$
S_{b}\left(\eta, \eta, \eta^{*}\right) \leq q S_{b}\left(\eta, \eta, \eta^{*}\right)
$$

that is, $(1-q) S_{b}\left(\eta, \eta, \eta^{*}\right) \leq 0$.
Since $0 \leq q \leq \frac{1}{s^{2}}$. Therefore we get $S_{b}\left(\eta, \eta, \eta^{*}\right)=0$. Hence $\eta=\eta^{*}$. This shows that η is the unique common fixed point of G_{α}, for all $\alpha \in \Psi$.

Corollary 3.1. Let $\left(\Omega, S_{b}\right)$ be a complete S_{b}-metric space. Suppose that the mapping $T: \Omega \rightarrow \Omega$ satisfies $S_{b}(T \varsigma, T \vartheta, T w) \leq \gamma S_{b}(\varsigma, \vartheta, w)$ for all $\varsigma, \vartheta, w \in \Omega$, where $\gamma \in[0,1)$ is a constant. Then T has a unique fixed point in Ω. Moreover, T is continuous at the fixed point.

Proof. We can prove easily by using Theorem 3.1. with $\psi(a, b, c, d, e)=\gamma a$, for some $\gamma \in[0,1)$ and $a, b, c, d, e \in R^{+}$.

Corollary 3.2. Let $\left(\Omega, S_{b}\right)$ be a complete S_{b}-metric space. Suppose that the mappings $T_{1}, T_{2}: \Omega \rightarrow \Omega$ satisfies $S_{b}\left(T_{1} \varsigma, T_{1} \vartheta, T_{2}, w\right) \leq \delta S_{b}(\varsigma, \vartheta, w)$ for all $\varsigma, \vartheta, \omega \in \Omega$, where $\delta \in[0,1)$ is a constant. Then T_{1} and T_{2} have a unique fixed point in Ω.

Proof. We can prove easiy by using Theorem 3.2. with $\psi(a, b, c, d, e)=\delta a$, for some $\delta \in[0,1)$ and $a, b, c, d, e \in R^{+}$.

Example 3.1. Let $\left(\Omega, S_{b}\right)$ be a complete S_{b}-metric space with $s=4$. Where $\Omega=[0,1]$ and $S_{b}(\varsigma, \vartheta, w)=(|\varsigma-w|+|\vartheta-w|)^{2}$.

Now, we consider the mapping $T: \Omega \rightarrow \Omega$ defined by $T(\varsigma)=\frac{\varsigma}{5}$, for all $\varsigma \in[0,1]$. Then $S_{b}(T \varsigma, T \vartheta, T w)=(|T \varsigma-T w|+|T \vartheta-T w|)^{2}$

$$
=\left(\left|\frac{\varsigma}{5}-\frac{w}{5}\right|+\left|\frac{\vartheta}{5}-\frac{w}{5}\right|\right)^{2}
$$

$$
\begin{aligned}
& =\frac{1}{25}(|\varsigma-w|+|\vartheta-w|)^{2} \\
& \leq \frac{1}{25} S_{b}(\varsigma, \vartheta, w) \\
& =\gamma S_{b}(\varsigma, \vartheta, w) .
\end{aligned}
$$

where $\gamma=\frac{1}{25}<1$. Thus T satisfies all the conditions of corollary 3.1. and clearly $0 \in \Omega$ is the unique fixed point of T.

4. Conclusion

From this results, we can study the fixed-circle problem [13] using new contrations on different generalized metric spaces.

5. Acknowledgements

We are very grateful to experts for their appropriate and constructive suggestions to improve this paper.

References

[1] I. A. Bakhtin, The contraction mapping principle in Quasi-metric spaces, J. Funct. Anal. 30 (1989), 26-37.
[2] S. Banach, Sur les operations dans les ensembles abstraits et leur applications aux equations integrales, Fund. Math. 3 (1922), 133-181.
[3] N. V. Dung, N. T. Hieu and S. Radojevic, Fixed-point theorems for g-monotone maps on partially ordered S-metric space, Filomat 28(9) (2014), 1885-1898.
[4] M. M. Frechet, Sur quelques points du calcul fonctionnel, Rend. Circ. Mat. Palermo 22(2) (1906), 1-72
[5] Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinearb and Convex Anal. 7(2) (2006), 289-297.
[6] Nihal Tas and Nihal Yilimaz Ozur, New generalized fixed prin ts re sults on S_{b}-Metric Spaces, Konuralp J. Math. 9(1) (2021), 24-32. https://doi.org/10.48550/arXiv.1703.01868.
[7] K. Prudhvi, Fixed-point theorems in S-metric spaces, Universal Journal of Computational Mathematics 3(2) (2015), 19-21.
[8] G. S. Saluja, Some fixed-point theorems under implicit relation on S-metric spaces, Bull. Int. Math. Virtual Inst. 11(2) (2015), 327-340.
[9] S. Sedghi and N. V. Dung, Fixed-point theorems on S-metric spaces, Mat. Vesnik 66(1) (2014), 113-124.
[10] S. Sedghi, A. Gholidahneh, T. Dosenovic, J. Esfahani and S. Radenovic, Common fixed point of four maps in S_{b}-metric spaces, Journal of Linear and Topological Algebra 5(2) (2016), 93-104.
[11] S. Sedghi, N. Shobe and A. Aliouche, A generalization of fixed-point theorem in S-metric spaces, Mat. Vesnik 64(3) (2012), 258-266.
[12] N. Souayah and N. Mlaiki, A fixed-point theorem in S_{b}-metric spaces, Journal of Mathematics and Computer Science 16 (2016), 131-139.
[13] Ufuk Celik and Nihal Ozgur, On the fixed-circle problem, Facta Universitatis (NIS) Ser. Math. Inform. 35(5) (2020) 1273-1290. https://doi.org/10.22190/FUMI2005273C

[^0]: 2020 Mathematics Subject Classification: 47H10, 54H25.
 Keywords: Fixed point, Common fixed point, implicit relation, S_{b}-metric space.
 *Corresponding author; E-mail: venkat409151@gmail.com

