NARAYANA PRIME CORDIAL GRAPH LABELING

NAGESH SHYANUBHAG1* ${ }^{*}$, K. M. NAGARAJA ${ }^{2}$, SAMPATH KUMAR R ${ }^{3}$ and SUDHEER PAI K L ${ }^{4}$

1,4 Department of Mathematics
R.N.S. First Grade College

Channasandra, Bangalore-560098, India
E-mail: nageshshyanubhag@gmail.com
spkl@rediffmail.com
${ }^{2}$ Department of Mathematics
J.S.S. Academy of Technical Education

Dr. Vishnuvardhan Road, Bangalore-560060, India
E-mail: nagkmn@gmail.com
${ }^{3}$ Department of Mathematics
R.N.S. Institute of Technology

Channasandra, Bangalore-560098, India
E-mail: r.sampathkumar1967@gmail.com

Abstract

The labeling of graph is an assignment between the numbers and vertices/edges. In this paper, the results on the labeling of graph are studied using Narayana numbers and prime numbers for graph namely; Wheel, Star, Complete-bipartite graph, Bistar graph and join of graphs.

1. Introduction and Preliminaries

Graph labeling have enormous applications within mathematics, computer science and communication networks refer [5, 10]. The readers are well known about the following notions.

Binary vertex labeling (BVL). Let $G(V, E)$ be finite and undirected, then g from $V(G)$ to $\{0,1\}$ is called BVL of G. Let $g(v)$ is the labeling of
vertex v. For an edge $e=u v, g^{*}: E(G)$ to $\{0,1\}$ is given by
$g^{*}(e)=|g(u)-g(v)|$, is called the induced edge labeling.
(1) The notions of $G, v_{g}(0)$ and $v_{g}(1)$; vertices number with labels 0 and 1.
(2) The notions of $G, e_{g^{*}}(0)$ and $e_{g^{*}}(1)$; edges number with labels 0 and 1.

Cordial labeling (CL) [3]. A BVL of G is CL, provided $\left|v_{g}(0)-v_{g}(1)\right| \leq 1$ and $\left|e_{g^{*}}(0)-e_{g^{*}}(1)\right| \leq 1$. Every cordial graph admits CL.

Prime Cordial labeling (PCL) [1, 2, 11, 12, 13]. A PCL of G is an onto mapping $e: V(G)$ to $\{1,2,3, \ldots, V(G)\}$, here $V(G)$ is vertex set and $g^{*}: E(G) \rightarrow\{0,1\}$ is defined by, $g^{*}(u v)=1$; if $\operatorname{gcd}(g(u) ; g(v))=1$, otherwise 0 , also $\left|e_{g^{*}}(0)-e_{g^{*}}(1)\right| \leq 1$. Every prime cordial graph admits PCL.

Narayana number (NN) [4]. For all set of non-negative integer N_{0}, the numbers, $a \in N_{0}$. The NN can be expressed as, $N(a, k)=\frac{1}{a} a_{c_{k}} a_{c_{k+1}}$ where $0 \leq k<\alpha$. Relevant work on labeling found in ([5]-[10], [14]).

2. Main Results

The Narayana-prime-cordial-labeling (NPCL) for graphs namely; Wheel, Star, Complete bipartite graph, Bistar graph, Comb Graph are discussed using the following definition.

Definition. For all set of non negative integer, the numbers, $a \in N_{0}$. The NN can be expressed as,
$N(a, k)=\frac{1}{a} a_{c_{k}} a_{c_{k+1}}$ where $0 \leq k<a$.
Theorem 2. 1. A Wheel graph W_{s} is a Narayana prime cordial graph.
Proof. Let W_{s} be the wheel with s vertices $V=\left\{v_{\{j\}}: 1 \leq j \leq s\right\}$ and the set of edges $E=\left\{v_{j} v_{j+1}: 1 \leq j \leq n-1\right\} \cup\left\{v_{s} v_{1}\right\} \cup\left\{v_{j} v_{s}: 1 \leq j \leq s-1\right\}$.

Describe one to one function $g: V \rightarrow N_{0}$ in such a way that,
Type (a) when $s \equiv 0 \bmod (2)$

$$
g\left(v_{j}\right)=2^{j+1}-1 ; 1 \leq j \leq s-1 ; \text { and } g\left(v_{s}\right)=2^{s+1} .
$$

In this labeling, $e_{g^{*}}(0)=s-1$ and $e_{g^{*}}(1)=s-1$, which satisfies the constraint $\left|e_{g^{*}}(0)-e_{g^{*}}(1)\right| \leq 1$.

Type (b) when $s \equiv 1 \bmod (2)$

$$
g\left(v_{j}\right)=2^{j+1}-1 ; 1 \leq j \leq s-1 ; \text { and } g\left(v_{s}\right)=2^{s+1} .
$$

In this labeling, $e_{g^{*}}(0)=s-1$ and $e_{g^{*}}(1)=s-1$, which satisfies the constraint $\left|e_{g^{*}}(0)-e_{g^{*}}(1)\right| \leq 1$.

Hence, both types of W_{s} admits a NPCL. Therefore a wheel graph W_{s} is a NPC graph.

Theorem 2.2. A Star graph $S t_{s}$ is a Narayana prime cordial graph.
Proof. Consider the star graph $S t_{s}$ of s vertices of vertex set $V=\left\{v_{0}\right\} \cup\left\{V_{j} / 1 \leq 1 \leq j \leq s\right\}$. Let v_{0} be the central vertex with $g\left(v_{0}\right)=1$.

Describe one to one function $g: V \rightarrow N_{0}$ in such a way that,
Type (a) when $s \equiv 1(\bmod 2)$

$$
\begin{aligned}
& g\left(v_{0}\right)=1 \\
& g\left(v_{j}\right)=2^{j+1}-1 ; 1 \leq j \leq s ; \text { and } j \equiv 1(\bmod 2) \\
& g\left(v_{j}\right)=2^{j+1} ; 1 \leq j \leq s ; \text { and } j \equiv 1(\bmod 2) .
\end{aligned}
$$

In this labeling, $e_{g^{*}}(0)=\frac{s-1}{2}$ and $e_{g^{*}}(1)=\frac{s-1}{2}$, which satisfies the constraint $\left|e_{g^{*}}(0)-e_{g^{*}}(1)\right| \leq 1$.

Type (b) when $s \equiv 0(\bmod 2)$

$$
\begin{aligned}
& g\left(v_{0}\right)=1 \\
& g\left(v_{j}\right)=2^{j+1}-1 ; 1 \leq j \leq s ; \text { and } j \equiv 1(\bmod 2) \\
& g\left(v_{j}\right)=2^{j+1} ; 1 \leq j \leq s ; \text { and } j \equiv 0(\bmod 2)
\end{aligned}
$$

In this labeling, $e_{g^{*}}(0)=\frac{s}{2}$ and $e_{g^{*}}(1)=\frac{s}{2}-1$, which satisfies the constraint $\left|e_{g^{*}}(0)-e_{g^{*}}(1)\right| \leq 1$.

Hence, both types of $S t a r ~ S t_{s}$ admit a NPCL. Therefore a Star graph $S t_{s}$ is a NPC graph.

Theorem 2.3. A complete bipartite graph $K_{m, k}$ admits Narayana prime cordial labeling.

Proof. Let $K_{m, k}$ be the complete bipartite graph with $m+k$ vertices. Vertex set of graph can be written as; $V=X \cup Y$ where $X=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ and $Y=\left\{v_{m+1}, v_{m+2}, \ldots, v_{m+k}\right\}$.

Describe one to one function $g: V \rightarrow N_{0}$ in such a way that,
Type (a) when m is even and k is even,

$$
\begin{aligned}
& g\left(v_{j}\right)=2^{j+1}-1 ; 0 \leq j \leq m+k ; j \equiv 0(\bmod 2) \\
& g\left(v_{j}\right)=2^{j+1} ; 1 \leq j \leq m+k ; j \equiv 0(\bmod 2) .
\end{aligned}
$$

In this labeling, $\quad e_{g^{*}}(0)=\frac{m k}{2} \quad$ and $\quad e_{g^{*}}(1)=\frac{m k}{2}, \quad$ then $\left|e_{g^{*}}(0)-e_{g^{*}}(1)\right|=\left|\frac{m k}{2}-\frac{m k}{2}\right|=0 \leq 1$.

Type (b) when m is odd and k is odd.
Consider any one of the vertices of Y as a starting vertex v_{o} with $g\left(v_{0}\right)=1$,

$$
g\left(v_{j}\right)=2^{j+1}-1 ; 0 \leq j \leq m+k ; j \equiv 0(\bmod 2)
$$

$g\left(v_{j}\right)=2^{j+1} ; 1 \leq j \leq m+k ; j \equiv 1(\bmod 2)$.
In this labeling, $\quad e_{g^{*}}(0)=\frac{m(k-1)}{2}+\frac{m+1}{2} \quad$ and $\quad e_{g^{*}}(1)=\frac{m(k-1)}{2}$ $+\frac{m+1}{2}$.

Then, $\left|e_{g^{*}}(0)-e_{g^{*}}(1)\right| \leq 1$.
Type (c) when m is even and k is odd
Consider any one of the vertices of Y as a starting vertex v_{o} with $g\left(v_{0}\right)=1$,
$g\left(v_{j}\right)=2^{j+1}-1 ; 0 \leq j \leq m+k ; j \equiv 0(\bmod 2)$
$g\left(v_{j}\right)=2^{j+1} ; 1 \leq j \leq m+k ; j \equiv 1(\bmod 2)$.
In this labeling, $e_{g^{*}}(1)=\frac{m(k-1)}{2}+\frac{m}{2}$ and $e_{g^{*}}(0)=\frac{m(k-1)}{2}+\frac{m}{2}$. Then $\left|e_{g^{*}}(0)-e_{g^{*}}(1)\right|=\left|\frac{m(k-1)}{2}-\frac{m}{2}-\frac{m(k-1)}{2}-\frac{m}{2}\right|=0 \leq 1$.

Type (d) when m is even and k is odd.
Consider any one of the vertices of Y as a starting vertex v_{o} with $g\left(v_{o}\right)=1$,
$g\left(v_{j}\right)=2^{j+1}-1 ; 0 \leq j \leq m+k ; j \equiv 0(\bmod 2)$
$g\left(v_{j}\right)=2^{j+1} ; 1 \leq j \leq m+k ; j \equiv 1(\bmod 2)$.
In this labeling, $e_{g^{*}}(1)=\frac{m(k-1)}{2}+\frac{m}{2}$ and $e_{g^{*}}(0)=\frac{m(k-1)}{2}+\frac{m}{2}$
Then $\left|e_{g^{*}}(0)-e_{g^{*}}(1)\right|=\left|\frac{m(k-1)}{2}+\frac{m}{2}-\frac{m(k-1)}{2}-\frac{m}{2}\right|=0 \leq 1$.
Hence, the four types of complete bipartite graph $K_{m, k}$ admit a NPCL.
Theorem 2.4. The bistar graph $B S_{m, k}$ admits Narayana prime cordial labeling.

Proof. Consider a bistar graph $B S_{m, k}$ of $m+k$ vertices. Vertex set of the graph can be written as, $V=X \cup Y$ where $X=\left\{v_{0}, v_{1}, v_{2}, \ldots, v_{m-1}\right\}$ and $Y=\left\{v_{m}, v_{m+1}, \ldots, v_{m+1-1}\right\}$. Where v_{o} and v_{m} are the centres. Describe one to one function $g: V \rightarrow N_{0}$ in such a way that,

Type (a) when m is even and k is odd

$$
\begin{aligned}
& g\left(v_{j}\right)=2^{j+1}-1 ; 0 \leq j \leq m+k ; j \equiv 0(\bmod 2) \text { and } \\
& g\left(v_{j}\right)=2^{j+1} ; 1 \leq j \leq m+k ; j \equiv 1(\bmod 2)
\end{aligned}
$$

In this labeling, $e_{g^{*}}(1)=\frac{m-2}{2}+\frac{k-1}{2}$ and $e_{g^{*}}(0)=\frac{m-2}{2}+\frac{k-1}{2}+1$.
Then $\left|e_{g^{*}}(0)-e_{g^{*}}(1)\right|=\left|\frac{m-2}{2}+\frac{k-1}{2}+1-\frac{m-2}{2}-\frac{k-1}{2}\right|=1$
Hence the constraint $\left|e_{g^{*}}(0)-e_{g^{*}}(1)\right| \leq 1$ is proved.
Type (b) when m is even and k is even.

$$
\begin{aligned}
& g\left(v_{j}\right)=2^{j+1}-1 ; 0 \leq j \leq m+k ; j \equiv 0(\bmod 2) \text { and } \\
& g\left(v_{j}\right)=2^{j+1} ; 1 \leq j \leq m+k ; j \equiv 1(\bmod 2)
\end{aligned}
$$

In this labeling, $e_{g^{*}}(1)=\frac{m}{2}+\frac{k}{2}$ and $e_{g^{*}}(0)=\frac{m-2}{2}+\frac{k-2}{2}+1$. Then $\left|e_{g^{*}}(0)-e_{g^{*}}(1)\right| \leq 1=\left|\frac{m-2}{2}+\frac{k-2}{2}+1-\frac{m}{2}+\frac{k}{2}\right|=1$

Type (c) when m is odd and k is odd.

$$
\begin{aligned}
& g\left(v_{j}\right)=2^{j+1}-1 ; 0 \leq j \leq m+k ; j \equiv 0(\bmod 2) \text { and } \\
& g\left(v_{j}\right)=2^{j+1} ; 1 \leq j \leq m+k ; j \equiv 1(\bmod 2)
\end{aligned}
$$

In this labeling, $e_{g^{*}}(1)=\frac{m-1}{2}+\frac{m-1}{2}+1$ and $e_{g^{*}}(0)=\frac{m-1}{2}+\frac{k-1}{2}$
Then $\left|e_{g^{*}}(0)-e_{g^{*}}(1)\right|=\left|\frac{m-1}{2}+\frac{k-1}{2}-\frac{k-1}{2}-\frac{m-1}{2}-1\right|=1$
Type (d) when m is odd and k is even.
$g\left(v_{j}\right)=2^{j+1}-1 ; 0 \leq j \leq m+k ; j \equiv 0(\bmod 2)$ and
$g\left(v_{j}\right)=2^{j+1} ; 1 \leq j \leq m+k ; j \equiv 1(\bmod 2)$
In this labeling, $e_{g^{*}}(1)=\frac{m-1}{2}+\frac{k-2}{2}+1$ and $e_{g^{*}}(0)=\frac{k}{2}+\frac{m-1}{2}$. Then $\left|e_{g^{*}}(0)-e_{g^{*}}(1)\right|=\left|\frac{k}{2}+\frac{m-1}{2}-\frac{m-1}{2}-\frac{k-2}{2}-1\right|=0$

Therefore in all the types, $B S_{m, k}$ admits a NPCL.
Theorem 2.5. Every graph G with vertices with s admits a Narayana-prime-cordial-labeling.

Proof. Let the graph G with s vertices, $V=\left\{v_{j}: 1 \leq j \leq \frac{s}{2}\right\}$ $\cup\left\{u_{j}: \frac{s}{2}<j \leq s\right\} \quad$ and \quad edge \quad set $\quad E=\left\{v_{j} v_{j+1}: 1 \leq j \leq \frac{s}{2}\right\}$ $\cup\left\{v_{j} u_{j}: 1 \leq j \leq \frac{s}{2}\right\}$.

Describe one to one function $g: V \rightarrow N_{0}$ in such a way that,

$$
\begin{aligned}
& g\left(v_{j}\right)=2^{j+1}-1 ; 1 \leq j \leq s ; j \equiv 1(\bmod 2) ; \\
& g\left(v_{j}\right)=2^{j+1} ; 1 \leq j \leq s ; j \equiv 0(\bmod 2) ;
\end{aligned}
$$

In this labeling, $\quad e_{g^{*}}(0)=\frac{s}{2}-1 \quad$ and $\quad e_{g^{*}}(1)=\frac{s}{2}$. Then $\left|e_{g^{*}}(0)-e_{g^{*}}(1)\right| \leq 1$.

Therefore, the graph G admits NPCL.

References

[1] S. Babitha and J. Baskar Babujee, Prime cordial labelling and duality, Advances and Applications in Discrete Mathematics 11(1) (2013), 79-102.
[2] S. Babitha and J. Baskar Babujee, Prime cordial labelling on graphs, International Journal of Mathematical Science 17(1) (2013), 43-48.
[3] I. Cahit, Cordial graphs: a weaker version of graceful and harmonious graphs, Ars Combinatoria 23 (1987), 201-207.

Advances and Applications in Mathematical Sciences, Volume 22, Issue 6, April 2023
[4] B. J. Murali, K. Thirusanga and B. J. Balamurugan, Narayana prime cordial labeling of graphs, International Journal of Pure and Applied Mathematics 117(13) (2017), 18.
[5] K. M. Nagaraja, S. Ramachandraiah and V. B. Siddappa, Power exponential mean labeling of graphs, Montes Taurus Journal of Pure and Applied Mathematics 3(2) (2021), 70-79.
[6] P. S. K. Reddy, K. M. Nagaraja and R. S. Kumar, Alpha-Centroidal means and its applications to graph labeling, Palestine Journal of Mathematics 10(2) (2021), 704-709.
[7] R. Sampath Kumar, K. M. Nagaraja, G. Narasimhan and Ambika M Hajib, Centroidal mean labelling of graphs-II, Proceedings of the Jangjeon Mathematical Society 23(2) (2020), 193-208.
[8] R. Sampath Kumar and K. M. Nagaraja, Centroidal mean labeling of graphs, International Journal of Research in Advent Technology 7(1) (2019), 183-189.
[9] R. Sampath Kumar, G. Narasimhan and R. Chandrasekhar, Contra harmonic mean labeling of graph, Mapana. J. Sci. 12(3) (2013), 23-29.
[10] R. Sampath Kumar, G. Narasimhan and K. M. Nagaraja, Heron mean labeling of graphs, International Journal of Recent Scientific Research 8(9) (2017), 19808-19811.
[11] M. Sundaram, R. Ponraj and S. Somasundaram, Prime cordial labelling of graphs, Journal of the Indian Academy of Mathematics 27(2) (2005), 373-390.
[12] S. K. Vaidya and P. L. Vihol, Prime cordial labelling for some cycle related graphs, International Journal of Open Problems in Computer Science and Mathematics 3(5) (2010), 223-232.
[13] S. K. Vaidya and P. L. Vihol, Prime cordial labelling for some graphs, Modern Applied Science 4(8) (2010), 119-126.
[14] V. Yegnanarayanan and P. Vaidhyanathan, Some interesting applications of graph labellings, Journal of Mathematical and Computational Science 2(5) (2012), 1522-1531.

