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Abstract

The labeling of graph is an assignment between the numbers and vertices/edges. In this
paper, the results on the labeling of graph are studied using Narayana numbers and prime
numbers for graph namely; Wheel, Star, Complete-bipartite graph, Bistar graph and join of
graphs.

1. Introduction and Preliminaries

Graph labeling have enormous applications within mathematics,
computer science and communication networks refer [5, 10]. The readers are
well known about the following notions.

Binary vertex labeling (BVL). Let G(V, E) be finite and undirected,
then g from V(G) to {0, 1} is called BVL of G. Let g(v) is the labeling of
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1354 NAGESH SHYANUBHAG et al.
vertex v. For an edge e = uv, g* : E(G) to {0, 1} is given by
g"(e) = | g(w) — g(v) |, is called the induced edge labeling.
(1) The notions of G, v4(0) and vg(l); vertices number with labels 0

and 1.

(2) The notions of G, e (0) and e s (1); edges number with labels 0 and 1.

Cordial labeling (CL) [3]. A BVL of G is CL, provided | vg(0) - vg(1)| <1
and | e, (0)- e, (1) | < 1. Every cordial graph admits CL.

Prime Cordial labeling (PCL) [1, 2, 11, 12, 13]. A PCL of G is an onto
mapping e: V(G) to {1,2 3,..., V(G),, here V(G) is vertex set and
g" 1 E(G) = {0, 1} is defined by, g"(uv) = 1; if ged(g(u); g(v)) = 1, otherwise
0, also | e (0) - e (1) | £ 1. Every prime cordial graph admits PCL.

Narayana number (NN) [4]. For all set of non-negative integer N, the

numbers, a € Ny. The NN can be expressed as, N(a, k) = %ackackﬂ where

0 < k < a. Relevant work on labeling found in ([5]-[10], [14]).
2. Main Results

The Narayana-prime-cordial-labeling (NPCL) for graphs namely; Wheel,
Star, Complete bipartite graph, Bistar graph, Comb Graph are discussed
using the following definition.

Definition. For all set of non negative integer, the numbers, a € Nj,.

The NN can be expressed as,

1

N(a, k) = 5 %%,

where 0 < k < a.

Theorem 2. 1. A Wheel graph W, is a Narayana prime cordial graph.

Proof. Let W be the wheel with s vertices V = {v(;; : 1 < j < s} and the

setof edges E = {vj vj,1 :1<j<n-1JU{us v} U{vj v, :1<j<s—1).
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Describe one to one function g : V' — Nj in such a way that,
Type (a) when s = 0 mod(2)
gW;) = 2/ _1;1<j<s-1; and g(v,) = 2°*L.
In this labeling, e, (0)=s-1 and e s (1) = s—1, which satisfies the
1 % - % <1.
constraint | e, (0) e, @|=<1
Type (b) when s = 1mod(2)
gl;) = 2/*1 _1;1<j<s—1; and g(vg) = 2°*%
In this labeling, e (0)=s-1 and e (1) = s—1, which satisfies the
i «(0)—e (1) £1.
constraint | e, (0) e, @]

Hence, both types of W, admits a NPCL. Therefore a wheel graph W, is
a NPC graph.

Theorem 2.2. A Star graph St, is a Narayana prime cordial graph.

Proof. Consider the star graph St; of s vertices of vertex set

V ={v} U {V] /1 <1< j<s} Let vy be the central vertex with g(vg) = 1.
Describe one to one function g : V — Nj in such a way that,
Type (a) when s = 1(mod 2)
8(vp) =1
gl;) = 2/*1 _1;1<j<s and j = 1(mod 2)
gvj) = 2/*1,1 < j < s and j = 1(mod 2).

s—1 s —

and e = 5 1, which satisfies the

In this labeling, e 0) =

1 % - % <1
constraint | e, (0) e, @=<1

Type (b) when s = 0(mod 2)
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8(vp) =1
g(;) = 2/l _1,1<j<s and j=1(mod2)
gl;) = 2/t 1< j<s and j = 0(mod 2)

In this labeling, e, 0) =% and e = % —1, which satisfies the

traint * —e (1) <1
constrain |eg (0) e, @ |

Hence, both types of Star St, admit a NPCL. Therefore a Star graph St,
is a NPC graph.

Theorem 2.3. A complete bipartite graph K,, j admits Narayana prime

cordial labeling.

Proof. Let K,, ; be the complete bipartite graph with m + k& vertices.
Vertex set of graph can be written as; V = X UY where X = {vy, vg, ..., U,,,}

and Y = {Um+1’ Um+2s «++» Um+k}'
Describe one to one function g : V' — Nj in such a way that,
Type (a) when m is even and % is even,

g(vj):2j+1 -1,0<j<m+k j=0(mod?2)

g;)) =211 < j <m+k; j = 0(mod 2).

. . mk mk
In this labeling, e 0) = 5 and e 1) = 5 then
mk mk
- = —_— = <
PRORRH] ‘ ik _mkl o<1

Type (b) when m is odd and £ is odd.

Consider any one of the vertices of Y as a starting vertex v, with

glo) =1,

gl;) = 2/l _1,0<j<m+k j=0(mod?2)
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gW;) = 2/l 1< j<m+k; j=1(mod 2).

m(l 1)
2

m(k—1)+m+1
2

In this labeling, eg*(O) ==

and e 1 =

m+1
2

- <
Then, | e (0) e s 1| =<1

Type (c) when m is even and % is odd

Consider any one of the vertices of Y as a starting vertex v, with

glo) =1,
gv;) = 2/ _1,0<j<m+k; j=0(mod?2)

gv;) = 2l 1< j<m+kj= 1(mod 2).

In this labeling, e s @ = @ + % and e (0) = # + % Then
3 _|mk-1) m_ mk-1) m|_ <
| e (0) e Q= 3 3 3 2| = 0<1.

Type (d) when m is even and k is odd.

Consider any one of the vertices of Y as a starting vertex v, with

g(vo) =1
g(v;) = 2/t 1,0 < j<m+k j=0(mod 2)
g(vj) = 2j+1; 1<j<m+k; j=1(mod?2).

m(k—1)+ﬂ

In this labeling, e, 1) = 5 5

_ _|mk-1) m_mk-1)_ m|_
Then|eg*(0) eg*(1)|— 5 "5 3 3 =0<1.

Hence, the four types of complete bipartite graph K,, ;, admit a NPCL.

Theorem 2.4. The bistar graph BS,, , admits Narayana prime cordial

labeling.
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Proof. Consider a bistar graph BS,, , of m + k vertices. Vertex set of
the graph can be written as, V = XUY where X = {vy, v, v, ..., U,,_1} and

Y = {Uys Umats ---» Ums1-1) Where v, and v, are the centres. Describe one

to one function g : V — N in such a way that,
Type (a) when m is even and % is odd
gl;) = 2/ _1,0<j<m+k; j=0(mod2) and
gl;) = 2/t 1< j<m+k; j=1(mod?2)

; : m-2 k-1
In this labeling, e, 1) = 5ty

and eg*(O) _m=-2 k-1

m-2 k-1 m-2 k-1
Then|eg*(0)—eg*(1)|— T+T+1—T—T =

Hence the constraint | e, (0)- e, (1)| <1 is proved.

Type (b) when m is even and % is even.
g(v;) = 271 1,0 <j<m+k; j=0(mod?2) and

gv;)=2"1<j<m+k j=1mod2)

. . m  k
In this labeling, e 1) = ) and e ,

m-2 k-2 m k
— < = | —————— —_— — =
|eg*(0) eg*(1)| <1 5t 3 +1 5+ 1

Type (c) when m is odd and £ is odd.
gv;) = 2/t 1,0 <j<m+k; j=0(mod?2) and
gv;) = 2t 1<j<m+kj= 1(mod 2)

m-1 k-1
+1 and eg*(o)_T+T

: : m-1 m-1
In this labeling, e 1) = R

1 k-1 k-1 m-1_

2 2 5 1 =1

Th * - * = m -
en | e, 0) e, @] 5

Type (d) when m is odd and % is even.
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glv;) = 21 _1,0<j<m+k; j=0(mod2) and

gv;) = 2 1< j<m+kj= 1(mod 2)

. . m-1 k-2 kR m-1
In this labeling, eg*(l)_T+T+1 and eg*(O)—§+T.Then
k- m-1 m-1 k-2
|eg*(0)—eg*(1)|— st~ 5 5 ! =0

Therefore in all the types, BS,, , admits a NPCL.

Theorem 2.5. Every graph G with vertices with s admits a Narayana-
prime-cordial-labeling.

Proof. Let the graph G with s vertices, V:{vj :lﬁjﬁg}
U{uj :%<j£s} and edge set E:{vjvjﬂ :1Sj£%}
. o S
U{vjuj 1< SE}'

Describe one to one function g : V' — Nj in such a way that,
gl;) = 2/l _1;1<j<s j=1(mod 2);

gvj) = 2/ 1< j<s j=0(mod2)

In this labeling, eg*(O) =3 1 and e (1) 5 Then
* - * <1

e 0= ()] <1
Therefore, the graph G admits NPCL.
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