

NARAYANA PRIME CORDIAL GRAPH LABELING

NAGESH SHYANUBHAG^{1*}, K. M. NAGARAJA², SAMPATH KUMAR R³ and SUDHEER PAI K L⁴

^{1,4}Department of Mathematics
R.N.S. First Grade College
Channasandra, Bangalore-560098, India
E-mail: nageshshyanubhag@gmail.com
spkl@rediffmail.com

²Department of Mathematics J.S.S. Academy of Technical Education Dr. Vishnuvardhan Road, Bangalore-560060, India E-mail: nagkmn@gmail.com

³Department of Mathematics R.N.S. Institute of Technology Channasandra, Bangalore-560098, India E-mail: r.sampathkumar1967@gmail.com

Abstract

The labeling of graph is an assignment between the numbers and vertices/edges. In this paper, the results on the labeling of graph are studied using Narayana numbers and prime numbers for graph namely; Wheel, Star, Complete-bipartite graph, Bistar graph and join of graphs.

1. Introduction and Preliminaries

Graph labeling have enormous applications within mathematics, computer science and communication networks refer [5, 10]. The readers are well known about the following notions.

Binary vertex labeling (BVL). Let G(V, E) be finite and undirected, then g from V(G) to $\{0, 1\}$ is called BVL of G. Let g(v) is the labeling of

²⁰²⁰ Mathematics Subject Classification: 05C78.

Keywords: graph labeling, Narayana numbers, prime numbers. Received: July 7, 2022; Accepted December 22, 2022

vertex v. For an edge e = uv, $g^* : E(G)$ to $\{0, 1\}$ is given by

 $g^{*}(e) = |g(u) - g(v)|$, is called the induced edge labeling.

(1) The notions of G, $v_g(0)$ and $v_g(1)$; vertices number with labels 0 and 1.

(2) The notions of G, $e_{g^*}(0)$ and $e_{g^*}(1)$; edges number with labels 0 and 1.

Cordial labeling (CL) [3]. A BVL of *G* is CL, provided $|v_g(0) - v_g(1)| \le 1$ and $|e_{\sigma^*}(0) - e_{\sigma^*}(1)| \le 1$. Every cordial graph admits CL.

Prime Cordial labeling (PCL) [1, 2, 11, 12, 13]. A PCL of G is an onto mapping e: V(G) to $\{1, 2, 3, ..., V(G)\}$, here V(G) is vertex set and $g^*: E(G) \rightarrow \{0, 1\}$ is defined by, $g^*(uv) = 1$; if gcd(g(u); g(v)) = 1, otherwise 0, also $|e_{\sigma^*}(0) - e_{\sigma^*}(1)| \le 1$. Every prime cordial graph admits PCL.

Narayana number (NN) [4]. For all set of non-negative integer N_0 , the numbers, $a \in N_0$. The NN can be expressed as, $N(a, k) = \frac{1}{a} a_{c_k} a_{c_{k+1}}$ where $0 \le k < a$. Relevant work on labeling found in ([5]-[10], [14]).

2. Main Results

The Narayana-prime-cordial-labeling (NPCL) for graphs namely; Wheel, Star, Complete bipartite graph, Bistar graph, Comb Graph are discussed using the following definition.

Definition. For all set of non negative integer, the numbers, $a \in N_0$. The NN can be expressed as,

$$N(a, k) = \frac{1}{a} a_{c_k} a_{c_{k+1}}$$
 where $0 \le k < a$.

Theorem 2.1. A Wheel graph W_s is a Narayana prime cordial graph.

Proof. Let W_s be the wheel with s vertices $V = \{v_{\{j\}} : 1 \le j \le s\}$ and the set of edges $E = \{v_j \ v_{j+1} : 1 \le j \le n-1\} \cup \{v_s \ v_1\} \cup \{v_j \ v_s : 1 \le j \le s-1\}.$

Describe one to one function $g: V \rightarrow N_0$ in such a way that,

Type (a) when $s \equiv 0 \mod (2)$

$$g(v_j) = 2^{j+1} - 1; 1 \le j \le s - 1; \text{ and } g(v_s) = 2^{s+1}$$

In this labeling, $e_{g^*}(0) = s - 1$ and $e_{g^*}(1) = s - 1$, which satisfies the constraint $|e_{g^*}(0) - e_{g^*}(1)| \le 1$.

Type (b) when $s \equiv 1 \mod(2)$

$$g(v_j) = 2^{j+1} - 1; 1 \le j \le s - 1; \text{ and } g(v_s) = 2^{s+1}.$$

In this labeling, $e_{g^*}(0) = s - 1$ and $e_{g^*}(1) = s - 1$, which satisfies the constraint $|e_{g^*}(0) - e_{g^*}(1)| \le 1$.

Hence, both types of W_s admits a NPCL. Therefore a wheel graph W_s is a NPC graph.

Theorem 2.2. A Star graph St_s is a Narayana prime cordial graph.

Proof. Consider the star graph St_s of s vertices of vertex set $V = \{v_0\} \cup \{V_j/1 \le 1 \le j \le s\}$. Let v_0 be the central vertex with $g(v_0) = 1$.

Describe one to one function $g: V \rightarrow N_0$ in such a way that,

Type (a) when $s \equiv 1 \pmod{2}$

 $g(v_0) = 1$ $g(v_j) = 2^{j+1} - 1; 1 \le j \le s; \text{ and } j \equiv 1 \pmod{2}$ $g(v_j) = 2^{j+1}; 1 \le j \le s; \text{ and } j \equiv 1 \pmod{2}.$

In this labeling, $e_{g^*}(0) = \frac{s-1}{2}$ and $e_{g^*}(1) = \frac{s-1}{2}$, which satisfies the constraint $|e_{g^*}(0) - e_{g^*}(1)| \le 1$.

Type (b) when $s \equiv 0 \pmod{2}$

$$\begin{split} g(v_0) &= 1 \\ g(v_j) &= 2^{j+1} - 1; \ 1 \leq j \leq s; \ \text{ and } \ j \equiv 1 \pmod{2} \\ g(v_j) &= 2^{j+1}; \ 1 \leq j \leq s; \ \text{and } \ j \equiv 0 \pmod{2} \end{split}$$

In this labeling, $e_{g^*}(0) = \frac{s}{2}$ and $e_{g^*}(1) = \frac{s}{2} - 1$, which satisfies the constraint $|e_{g^*}(0) - e_{g^*}(1)| \le 1$.

Hence, both types of Star St_s admit a NPCL. Therefore a Star graph St_s is a NPC graph.

Theorem 2.3. A complete bipartite graph $K_{m,k}$ admits Narayana prime cordial labeling.

Proof. Let $K_{m,k}$ be the complete bipartite graph with m + k vertices. Vertex set of graph can be written as; $V = X \cup Y$ where $X = \{v_1, v_2, ..., v_m\}$ and $Y = \{v_{m+1}, v_{m+2}, ..., v_{m+k}\}$.

Describe one to one function $g:V \to N_0$ in such a way that,

Type (a) when m is even and k is even,

$$g(v_i) = 2^{j+1} - 1; \ 0 \le j \le m + k; \ j \equiv 0 \pmod{2}$$

$$g(v_i) = 2^{j+1}; 1 \le j \le m+k; \ j \equiv 0 \pmod{2}.$$

In this labeling, $e_{g^*}(0) = \frac{mk}{2}$ and $e_{g^*}(1) = \frac{mk}{2}$, then $|e_{g^*}(0) - e_{g^*}(1)| = \left|\frac{mk}{2} - \frac{mk}{2}\right| = 0 \le 1.$

Type (b) when m is odd and k is odd.

Consider any one of the vertices of Y as a starting vertex v_o with $g(v_0) = 1$,

$$g(v_j) = 2^{j+1} - 1; \ 0 \le j \le m + k; \ j \equiv 0 \pmod{2}$$

$$g(v_j) = 2^{j+1}; 1 \le j \le m+k; \ j \equiv 1 \pmod{2}$$

In this labeling, $e_{g^*}(0) = \frac{m(k-1)}{2} + \frac{m+1}{2}$ and $e_{g^*}(1) = \frac{m(k-1)}{2} + \frac{m+1}{2}$.

Then, $|e_{g^*}(0) - e_{g^*}(1)| \le 1$.

Type (c) when m is even and k is odd

Consider any one of the vertices of Y as a starting vertex v_o with $g(v_0) = 1$,

$$g(v_j) = 2^{j+1} - 1; \ 0 \le j \le m + k; \ j \equiv 0 \pmod{2}$$
$$g(v_j) = 2^{j+1}; \ 1 \le j \le m + k; \ j \equiv 1 \pmod{2}.$$

In this labeling, $e_{g^*}(1) = \frac{m(k-1)}{2} + \frac{m}{2}$ and $e_{g^*}(0) = \frac{m(k-1)}{2} + \frac{m}{2}$. Then $|e_{g^*}(0) - e_{g^*}(1)| = \left|\frac{m(k-1)}{2} - \frac{m}{2} - \frac{m(k-1)}{2} - \frac{m}{2}\right| = 0 \le 1.$

Type (d) when m is even and k is odd.

Consider any one of the vertices of Y as a starting vertex v_o with $g(v_o) = 1$,

$$g(v_j) = 2^{j+1} - 1; \ 0 \le j \le m + k; \ j \equiv 0 \pmod{2}$$
$$g(v_j) = 2^{j+1}; \ 1 \le j \le m + k; \ j \equiv 1 \pmod{2}.$$

In this labeling, $e_{g^*}(1) = \frac{m(k-1)}{2} + \frac{m}{2}$ and $e_{g^*}(0) = \frac{m(k-1)}{2} + \frac{m}{2}$ Then $|e_{g^*}(0) - e_{g^*}(1)| = \left|\frac{m(k-1)}{2} + \frac{m}{2} - \frac{m(k-1)}{2} - \frac{m}{2}\right| = 0 \le 1.$

Hence, the four types of complete bipartite graph $K_{m,k}$ admit a NPCL.

Theorem 2.4. The bistar graph $BS_{m,k}$ admits Narayana prime cordial labeling.

Proof. Consider a bistar graph $BS_{m,k}$ of m + k vertices. Vertex set of the graph can be written as, $V = X \cup Y$ where $X = \{v_0, v_1, v_2, ..., v_{m-1}\}$ and $Y = \{v_m, v_{m+1}, ..., v_{m+1-1}\}$. Where v_o and v_m are the centres. Describe one to one function $g: V \to N_0$ in such a way that,

Type (a) when m is even and k is odd

. .

$$g(v_j) = 2^{j+1} - 1; \ 0 \le j \le m + k; \ j \equiv 0 \pmod{2}$$
 and

$$g(v_j) = 2^{j+1}; 1 \le j \le m+k; j \equiv 1 \pmod{2}$$

In this labeling, $e_{g^*}(1) = \frac{m-2}{2} + \frac{k-1}{2}$ and $e_{g^*}(0) = \frac{m-2}{2} + \frac{k-1}{2} + 1$. Then $|e_{g^*}(0) - e_{g^*}(1)| = \left|\frac{m-2}{2} + \frac{k-1}{2} + 1 - \frac{m-2}{2} - \frac{k-1}{2}\right| = 1$

Hence the constraint $|e_{g^*}(0) - e_{g^*}(1)| \le 1$ is proved.

Type (b) when m is even and k is even.

$$g(v_j) = 2^{j+1} - 1; \ 0 \le j \le m + k; \ j \equiv 0 \pmod{2}$$
 and
 $g(v_j) = 2^{j+1}; \ 1 \le j \le m + k; \ j \equiv 1 \pmod{2}$

In this labeling, $e_{g^*}(1) = \frac{m}{2} + \frac{k}{2}$ and $e_{g^*}(0) = \frac{m-2}{2} + \frac{k-2}{2} + 1$. Then $|e_{g^*}(0) - e_{g^*}(1)| \le 1 = \left|\frac{m-2}{2} + \frac{k-2}{2} + 1 - \frac{m}{2} + \frac{k}{2}\right| = 1$

Type (c) when m is odd and k is odd.

$$g(v_j) = 2^{j+1} - 1; \ 0 \le j \le m + k; \ j \equiv 0 \pmod{2}$$
 and
 $g(v_j) = 2^{j+1}; \ 1 \le j \le m + k; \ j \equiv 1 \pmod{2}$

In this labeling, $e_{g^*}(1) = \frac{m-1}{2} + \frac{m-1}{2} + 1$ and $e_{g^*}(0) = \frac{m-1}{2} + \frac{k-1}{2}$

Then
$$|e_{g^*}(0) - e_{g^*}(1)| = \left|\frac{m-1}{2} + \frac{k-1}{2} - \frac{k-1}{2} - \frac{m-1}{2} - 1\right| = 1$$

Type (d) when m is odd and k is even.

$$g(v_j) = 2^{j+1} - 1; \ 0 \le j \le m + k; \ j \equiv 0 \pmod{2}$$
 and
 $g(v_j) = 2^{j+1}; \ 1 \le j \le m + k; \ j \equiv 1 \pmod{2}$

In this labeling,
$$e_{g^*}(1) = \frac{m-1}{2} + \frac{k-2}{2} + 1$$
 and $e_{g^*}(0) = \frac{k}{2} + \frac{m-1}{2}$. Then $|e_{g^*}(0) - e_{g^*}(1)| = \left|\frac{k}{2} + \frac{m-1}{2} - \frac{m-1}{2} - \frac{k-2}{2} - 1\right| = 0$

Therefore in all the types, $BS_{m,k}$ admits a NPCL.

Theorem 2.5. Every graph G with vertices with s admits a Narayanaprime-cordial-labeling.

Proof. Let the graph G with s vertices, $V = \left\{ v_j : 1 \le j \le \frac{s}{2} \right\}$ $\cup \left\{ u_j : \frac{s}{2} < j \le s \right\}$ and edge set $E = \left\{ v_j v_{j+1} : 1 \le j \le \frac{s}{2} \right\}$ $\cup \left\{ v_j u_j : 1 \le j \le \frac{s}{2} \right\}.$

Describe one to one function $g: V \to N_0$ in such a way that,

$$g(v_j) = 2^{j+1} - 1; 1 \le j \le s; \ j \equiv 1 \pmod{2};$$
$$g(v_j) = 2^{j+1}; 1 \le j \le s; \ j \equiv 0 \pmod{2};$$

In this labeling, $e_{g^*}(0) = \frac{s}{2} - 1$ and $e_{g^*}(1) = \frac{s}{2}$. Then $|e_{g^*}(0) - e_{g^*}(1)| \le 1$.

Therefore, the graph G admits NPCL.

References

- [1] S. Babitha and J. Baskar Babujee, Prime cordial labelling and duality, Advances and Applications in Discrete Mathematics 11(1) (2013), 79-102.
- [2] S. Babitha and J. Baskar Babujee, Prime cordial labelling on graphs, International Journal of Mathematical Science 17(1) (2013), 43-48.
- [3] I. Cahit, Cordial graphs: a weaker version of graceful and harmonious graphs, Ars Combinatoria 23 (1987), 201-207.

- [4] B. J. Murali, K. Thirusanga and B. J. Balamurugan, Narayana prime cordial labeling of graphs, International Journal of Pure and Applied Mathematics 117(13) (2017), 18.
- [5] K. M. Nagaraja, S. Ramachandraiah and V. B. Siddappa, Power exponential mean labeling of graphs, Montes Taurus Journal of Pure and Applied Mathematics 3(2) (2021), 70-79.
- [6] P. S. K. Reddy, K. M. Nagaraja and R. S. Kumar, Alpha-Centroidal means and its applications to graph labeling, Palestine Journal of Mathematics 10(2) (2021), 704-709.
- [7] R. Sampath Kumar, K. M. Nagaraja, G. Narasimhan and Ambika M Hajib, Centroidal mean labelling of graphs-II, Proceedings of the Jangjeon Mathematical Society 23(2) (2020), 193-208.
- [8] R. Sampath Kumar and K. M. Nagaraja, Centroidal mean labeling of graphs, International Journal of Research in Advent Technology 7(1) (2019), 183-189.
- [9] R. Sampath Kumar, G. Narasimhan and R. Chandrasekhar, Contra harmonic mean labeling of graph, Mapana. J. Sci. 12(3) (2013), 23-29.
- [10] R. Sampath Kumar, G. Narasimhan and K. M. Nagaraja, Heron mean labeling of graphs, International Journal of Recent Scientific Research 8(9) (2017), 19808-19811.
- [11] M. Sundaram, R. Ponraj and S. Somasundaram, Prime cordial labelling of graphs, Journal of the Indian Academy of Mathematics 27(2) (2005), 373-390.
- [12] S. K. Vaidya and P. L. Vihol, Prime cordial labelling for some cycle related graphs, International Journal of Open Problems in Computer Science and Mathematics 3(5) (2010), 223-232.
- [13] S. K. Vaidya and P. L. Vihol, Prime cordial labelling for some graphs, Modern Applied Science 4(8) (2010), 119-126.
- [14] V. Yegnanarayanan and P. Vaidhyanathan, Some interesting applications of graph labellings, Journal of Mathematical and Computational Science 2(5) (2012), 1522-1531.

Advances and Applications in Mathematical Sciences, Volume 22, Issue 6, April 2023

1360