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Abstract 

The aim of the present paper is to introduce the notion of Rough neutrosophic hyperideals 

of Γ-semihyperrings. Several theorems, related properties and in particular, some structural 

characteristics of each are given in this paper. 

1. Introduction 

Pawlak [11] introduced the notion of rough sets in 1982. It is derived from 

elementary research on logical properties of information system. Numerous 

models applied this concept those were algebra, graph theory, probability 
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theory, topology, pattern recognition etc., The notion of Fuzzy sets were 

introduced by Zadeh [15] in 1965. The notion of intuitionistic fuzzy sets is 

introduced by Atanassov [1] in 1986. The neutrosophic set theory is the 

generalisation of intuitionistic fuzzy set is introduced by Smarandache [12]. It 

gives the picture of the objective world more practical and realistic. Marty [9] 

initiated the theory of algebraic hyperstructures which is a branch of classical 

algebraic theory. Various fuzzy models in hyperstructures have been 

established by many authors [2] [3] [8] [10]. Davvaz [5] and Vougiouklis [13] 

[14] presented the notion of Semihyperring in which addition and 

multiplication are Hyperoperation. Dehkordi and Davvaz [7] introduced the 

concept of Γ-Semihyperrings. Debabrata Mandal [6] introduced the notion of 

Neutrosophic Hyperideals of Γ-Semihyperrings. 

Inspired by this concept, in this paper the notion of Rough neutrosophic 

Ideals of Γ-Semihyperring is defined and its basic properties, related 

theorems are discussed. 

2. Preliminaries 

Refer [4] [5] [6] [7] [12] for basic definitions and concepts used in this 

work. 

3. Rough Neutrosophic Hyperideals of  semihyperrings 

In this section we will study some results on lower and upper 

approximations of neutrosophic hyperideals (NHI) of  semihyperring. Also 

we introduce Rough neutrosophic left (right) hyper ideals (RNLHI, RNRHI) of 

. Throughout this paper let  be the semihyperring,  be a congruence 

relation on ,  be the subset of . 

Definition 3.1. A NLHI is said to be RNLHI of  if it is both upper 

RNLHI and lower RNLHI of . 

Definition 3.2. A NLHI is said to be upper (lower) RNLHI of  if it’s 

upper (lower) approximation is NLHI. 

Definition 3.3. A NRHI is said to be RNRHI of  if it is both upper 

RNRHI and lower RNRHI of . 
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Definition 3.4. A NRHI is said to be upper (lower) RNRHI of  if it’s 

upper (lower) approximation is NRHI. 

Theorem 3.5. A RNS  E  of  is a RNLHI (RNRHI) of  iff any level 

subsets 
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Hence  lEsyx   and  lE  is a NLHI (NRHI) of . Conversely, 

 lE  is a NLHI (NRHI) of S. Assume  E  is not a upper NLHI (NRHI).  

Then any one of the following inequality is true for ., Sv    
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Similarly we can prove for lower NLHI (NRHI) of . Hence  E  of  is 

a RNLHI (RNRHI) of . Hence Proved. 

Definition 3.6. If E and F be any two RNS of . Then the  of E and F is 

given by 
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Theorem 3.7. A non-empty collection of  of RNHI is a RNHI of . 

Proof. Let    IiEi 
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lower NLHI (NRHI) of . Hence  
1

1

i
li
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  is a RNLHI (RNRHI) of . 

Definition 3.8. If E and F be two RNS of . Then the Cartesian Product 

of FE, is given by 
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    21,   ff FE  

implies FE   is a upper NLHI(NRHI) of .   Similarly we can prove 

FE   is a lower NLHI(NRHI) of .   Hence FE   is a RNHI of 

 .   

Definition 3.10. If FE,  be two RNS of . Then Composition of FE,  is 

defined 
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Theorem 3.11. If FE,  be two RNHI of , then FE   is a RNHI of . 

Proof. Given E and F be RNHI of , ., ba  Assume that, ba    is 

not equal to  
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Similarly we can prove for lower NLHI (NRHI) of . Hence FE   is a 

RNHI of . 

4. Conclusion 

The concept Rough Neutrosophic Hyperideals of -semihyperrings and 

some properties, structural characteristics have been analysed in this paper. 

These results can be extended to other properties such Rough prime 

neutrosophic Hyperideal, Rough neutrosophic Bi-hyperideal and so on. 
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