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Abstract

The aim of the present paper is to introduce the notion of Rough neutrosophic hyperideals

of T'-semihyperrings. Several theorems, related properties and in particular, some structural

characteristics of each are given in this paper.

1. Introduction

Pawlak [11] introduced the notion of rough sets in 1982. It is derived from

elementary research on logical properties of information system. Numerous

models applied this concept those were algebra, graph theory, probability
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theory, topology, pattern recognition etc., The notion of Fuzzy sets were
introduced by Zadeh [15] in 1965. The notion of intuitionistic fuzzy sets is
introduced by Atanassov [1] in 1986. The neutrosophic set theory is the
generalisation of intuitionistic fuzzy set is introduced by Smarandache [12]. It
gives the picture of the objective world more practical and realistic. Marty [9]
initiated the theory of algebraic hyperstructures which is a branch of classical
algebraic theory. Various fuzzy models in hyperstructures have been
established by many authors [2] [3] [8] [10]. Davvaz [5] and Vougiouklis [13]
[14] presented the notion of Semihyperring in which addition and
multiplication are Hyperoperation. Dehkordi and Davvaz [7] introduced the
concept of I'-Semihyperrings. Debabrata Mandal [6] introduced the notion of
Neutrosophic Hyperideals of I'-Semihyperrings.

Inspired by this concept, in this paper the notion of Rough neutrosophic
Ideals of I'-Semihyperring is defined and its basic properties, related
theorems are discussed.

2. Preliminaries

Refer [4] [5] [6] [7] [12] for basic definitions and concepts used in this
work.

3. Rough Neutrosophic Hyperideals of I' semihyperrings

In this section we will study some results on lower and upper
approximations of neutrosophic hyperideals (NHI) of I' semihyperring. Also
we introduce Rough neutrosophic left (right) hyper ideals (RNLHI, RNRHI) of

R. Throughout this paper let R be the semihyperring, ® be a congruence
relation on R, S be the subset of R.

Definition 3.1. A NLHI is said to be RNLHI of R if it is both upper
RNLHI and lower RNLHI of R.

Definition 3.2. A NLHI is said to be upper (lower) RNLHI of R if it’s

upper (lower) approximation is NLHI.

Definition 3.3. A NRHI is said to be RNRHI of R if it is both upper
RNRHI and lower RNRHI of R.
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Definition 3.4. A NRHI is said to be upper (lower) RNRHI of R if it’s

upper (lower) approximation is NRHI.

Theorem 3.5. A RNS ®(E) of R is a RNLHI (RNRHI) of R iff any level
subsets

cp*(Ef) =lxeS| qn*(Ef(x)) >1,1elo0,1]
OE)={xeS|0ERx)=211e0,1]} | and
O (Ef)={x e S| 0" (E(x)) <1, 1e0,1]

O, (E)={x e S| 0, (E'(x)) > 1,1¢e]0,1]

O (E})={x eS| D,(E(x)) 21, 1e[0,1]} | are NLHIINRHI) of R.
D (Ef)={x e S| 0 (E(x)) < 1, 1 e [0, 1]}

Proof. Consider RNS of R is upper NLHI (NRHI) of R. Then not all of

E!, E}, Elf are equal to zero. Let v, o € E; = (E!, E}, Elf) and s € R. Then

. g{w{@*(Et (¢))} = min{®*(E'(v)), ®*(E'(®))} > min{l, I} =1

ciﬂfm{q’*(Ei(C))} S {@*(El(v))(;)m*(El(w))} S @*(%) _

sup {®*(E/ ()} < max{®*(E/ (), ®*(Ef (0))} < max{l, I} =

cev, ®
Dv+(ogEf,Eli,Elf, ile.v+oc B

Also inf {®*(E'(c))} = ®*(E'(v) > [; Ciergx{qn*(Ei(c))} > Y (El(x) > I;

cesyx

sup {®*(Ef (o))} < ®*(Ef (x) < L

cesyx

Hence syx ¢ ®*(E;) and ®*(E;) is a NLHI (NRHI) of R. Conversely,

®*(E;) is a NLHI (NRHI) of S. Assume ®"(E) is not a upper NLHI (NRHI).

Then any one of the following inequality is true for v, ® € S.
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@) inf {O"(E'(c)} < min{®"(E'(v)), ©"(E' (o))

(mCgEJ®YETd»<[®7E%@é?7E%Mq

(i) sup (@* (B (¢))} > max({®"(E (v)), o"(E/ (0))})

For (i) take 4 = %[cg)lfw ®*(E'(c) + min{®*(E' (v)), ®*(E"(w))}]. then
Cg{@ O*(E'(c)) < 4 < min{®*(E'(v)), ®*(El(0)} = v, € Etl, but

V+o¢g E;l. Which contradicts.

For (i) take I — %[ inf ®*(E!(c) + min{®*(E'(v)), ®*(Ei(0))]. then

CEV+m

nt 0 < < W E D OB

Which contradicts.

:>v,ceri,but v+woe B
Iy Iy

For (ifi) take /3 = %( sup [[@*(E/ ()] + max[{®* (B (v)), ®*(E (0))}]).

CEV+®

[ sup {[@*(E/ ()]} > I3 > max[{®*(E/ (v)), ®*(E! (0))}] = v, © € E;; , but

CEV+®

V+oe¢ El/; . Which contradicts. So, for all three cases it is a contradiction
that ®*(E;) is a NLHI (NRHI) of R.

Similarly we can prove for lower NLHI (NRHI) of R. Hence ®(E) of R is
a RNLHI (RNRHI) of R. Hence Proved.

Definition 3.6. If £ and F be any two RNS of S. Then the N of E and F'is
given by

O[(E' N FY) ()] = min{o" (E*(0), ©"(F!(x)}
O*[(E 1 FF)()] = min{fo" (B (), ©*(F (<)} | and
o [(B N FF)(x)] = max{®”(E/ («)), o (F/ (0)
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.[(E' 1 F') ()] = min{o, (E'(x), ©,(E" ()}
®.[(E' (1 FF)()] = min{fo.(E (<)), .(E' )} | v < S,
.[(E N F)()] = max{o, (B (v), 0.(E (0)

Theorem 3.7. A non-empty collection of N of RNHI is a RNHI of R.

Proof. Let {CD*(Eil);t ¢:4 €I} be upper NLHI (NRHI) of S and

a,beS,yeTl. Then

inf (ﬂ @ (Et )(c) inf 1nf ) (Et )(c) > 1nf{m1n{<D (Et( ), @ (Et ®)}

cea+b el ea+bijel

= mln{lnf @ (Et (@), 1nf o*(EL (D))} = min{ ﬂ @ (Et (@), ﬂ @ (Et ®))}

inf (ﬂ o) (El )(c) 1nf 1nf o (E‘ )(c) > [mf{ (EL-L1 (a)), @ (E;1 (b))ﬂ
ceatb i el a+bijel 9
inf °(5 (@) inf @"(E{®) | (N (B (@) N ©(E]®)
el 2 ol = 2L1€

This

sup (N @ (Ef )(c) sup sup (Ef (c)) < sup{max{®” (Ef (@), @ (Ef ®))}}

cea+b i€l cea+bijel hel

- max{sup@ (! () mfcb (E/ (b))} = max{ neo “(Ef (a)) no “(EL )

Ll el l]_ el L]_ el

inf (N @© (Et (c)) 1nf 1nf ) (Et (c)) = 1nf @ (E'f (%)), @ (Et ()}

cedyx L]_ el

inf (N @ (El (c)) 1nf 11nf @ (El (c)) = 1nf ) (El (%)), @ (El ()}

cedyx l]_ el

sup (1 @ (Ef (c)) sup sup ® (Ef () < sup (Ef (x)), @ (Ef ()}

cedyx i€l cedyx el el

implies () (I)*(Eil) is a upper NLHI(NRHI) of R. Similarly we can prove for

i el
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lower NLHI (NRHI) of R. Hence (I)*(Eil) is a RNLHI (RNRHI) of R.
el

Definition 3.8. If E and F be two RNS of S. Then the Cartesian Product

of E, F is given by

OE < F)(p, o) = minfo" (B (), o°(F (o)
O*[(E x F')(p, 0)] = [[‘D (o) o Wj and

(O [(E" < F) (p, 0)] = max{®"(E/ (p)), ®*(F/ (w))}

[,[(E x F!) (p, 0)] = min{®,(E!(p)), ®.(F' (o))}

@, [(E' x F')(p, 0)] = ([CD*(EL(p))(,ZSD*(FL(Q)))]j for all p, € R.

[ @.[(E" x FT)(p, 0)] = max{®,(E/ (p)), ®.(F/ (o))}

Theorem 3.9. Let E and F be the two RNHI of R. Then Cartesian product
E x Fisa RNHI of R xR.

Proof. Consider (A, Ag), (V1, V3) € R x R.

inf{ ®"(E' x F*)(¢;, ¢cy) } = inf ®*(E' x F*)(¢y, ¢9)
(1, e2)e(Ar, Ag)+(Vy, V) c1e(A1+Vy), cae(Ag, Vo)

= inf min{d)*(Et(Cl)), ‘D*(Ft(cz))}
4] E(Al +V1), Cc9 E(AZ’ V2)

> min{min{®"(E'(4A;)), ®"(E'(¢; € (V1))}, min{®"(F'(Ay)), ®"(F'(Va))}}
= min({min{®"(E"(4;)), ®*(F'(Ay))}, min{®"(E'(V,)), @ (F (V3))}})
= min({QO*(E' x F') (A1, Ag), ®*(E' x F')(Vy, Vy)})

inf{ ®*(E' x F')(cy, ¢y) } = inf ®*(E' x F)(cy, co)

(c1, c2)e(Aq, Ag)+(V1, V) c1€(A1+V1), coe(Ag, V)
_ inf D (E'(c))), D (F'(cy))
c1€(A1+V1), coe(Ag, Vo) (2)
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L (1] (B (A)), DU(E'(VY) | P(F(Ag)) ' (F'(V3))
|2 2) (2)

_ (% {m*(zai(Al)),zm*(Ei(Az» V). @*(FWZ»B

= (1/2{Q%(E" x F') (A, Ag), O (E' x F')(Vy, Vy)})

sup{ ®*(E/ x F/)(c), ¢) } = inf @*(E' x F/)(c1, c)
(c1, c2)e(Ar, Ag)+(V1, Va) c1€(A1+V1), cae(Ag, Vo)

= (sup max{®*(E/ (1)), @*(F/(cp))}
c1€(A1+V7), cae(Ag, Va)

< max{max{®"(E (&), ®"(E/ (v,))}, max{®"(F/ (A5), @ (F/ (V2))}}
= max({max(®”(E’ (&), ©"(F/(a5))}, max{®"(Ef (vy)), ©"(F/ (Vo))
= (tmax{®"(E/ x F/) (A1, Ag), @ (B x FT)(Vy, V,)}})

inf{ ®*(E' x F')(c;, ¢g) } = inf{ ®*(E' x F*)(¢y, ¢5) }
(c1, c2)e(Ar, A2 v(V1, V) (c1, c2)e(A1yV1), (A2yV2)

= inf min{®"(E*(¢;)), ®"(F'(c))} 2 min{®"(E'(V;)), ®*(E'(V3))}
c1€(A17V1), cae(A2vVs)

= (O"(E" x F')(Vy, V3))

inf{ ®*(E* x F')(c;, ¢g) } = inf{ ®*(E' x F')(cy, o) }

(c1, e2)e(Ar, A2)v(Ve, Va) (c1, e2)e(A1vV1)s (A27V2)
_ it (@*(E%cl)), ‘D*(Fi(cz))] L O (E(Vy)), (B (V)
c1€(A17V1), c2€(Ag7Va) 2 2

= (O*(E' x F')(Vy, V3))

sup{ ®*(E x F/)(¢;, ¢5) } = inf{®*(E/ x F)(c;, ¢5)}
(c1, c2)e(Aq, A2)v(Ve, V2) (c1, c2)e(A17V1 ), (A2vV3)

= sup max{ ®*(E/(¢))), ®*(F/ (cp))} < max{®*(E/ (v})), ®*(E/ (V5))}
c1€(A17V1), c2(A2yVse)
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= (O*(E x F')(vy, Vy))

implies E x F' is a upper NLHI(NRHI) of R x R. Similarly we can prove
ExF is a lower NLHI(NRHI) of R xR. Hence Ex F 1s a RNHI of

(R xR).

Definition 3.10. If E, F' be two RNS of R. Then Composition of E, F is

defined

O*(E' o F!)(2) =

O (E' o F')(2) =

O, (E' o F)(2) =

O, (E' o F')(z) =

sup{min{®*(E(x;)), ®*(F'(3;))}} |
n

ze N

0, otherwise

Sup[cb*wi(a», @*(F%b»]

(2)

n
ze ) XYY
0, otherwise

O (B« FI)(2) =4z € 37w

db*(Ef o Ff)(z) =<z € Z:.Lzl X;YiY;i

inf{max{‘b*(Ef(xi)), ‘D*(Ff(yi))}}

0, otherwise

sup{min{®, (E' (x;)), ®.(F(y;))}}
n

S zi:1 XiVidi

0, otherwise

sup ©,(E'(a)), D.(F'(b))
(2)

n
ze Y X%V
0, otherwise

inf{max{q)*(Ef(xi ), (D*(Ff(yi i

0, otherwise

Vz,x, ¥, e Ry fori=1,2, ..., n

and
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Theorem 3.11. If E, F' be two RNHI of R, then E o F isa RNHI of R.

Proof. Given E and F be RNHI of R, a, b € R. Assume that, a + b 1is

not equal to Z?zl x;Y;¥;, for x;v;5; € R and y; € I. Then

inf b{(CD*(Et o F')(2))} = sup {min{®"(E' (x;)), ®"(F*(3;))}}
ceat cea+beZ?:1 XY Yi g

> sup {min{®*(E'(p; )), ©"(F(q;)), ®"(E' (7)), @ (F(s;))}}
GGZL DiYi%is 562?21 DiYiqi

=min{ sup {min{®"(E'(p;)), " (F'(g;)), _sup  ®(E'(n)) O (F'(s:)}}
GEZ?:IPL'YL'QL' ! bEZ?:IPiYiQi

= min{(®*(E! - F')(a)), (®*(E* - F*)())}

nf (@ E P = s Y [@*(Ei(xi», @*(F%yi))J

i=1 2n
cea-%—bezlll X;YiYi

> sup

n n i=1 4n
ae)  pvidi be) . pividi

3 (GD*(Ei (p1)), *(F'(g;)), " (E' (1)), ®*(F i(si))J

>

2?21 (D*(El(pi );n(l)*(Fl(qi ))7 Snup 2?21 cI)*(El(ri ))2’nq)*(FL(Si ))]
bed " Pivit;

[ sup
aed." | pivig;

N

_O(E Fi)(a),2q>*(Ei ° F')(b)

sup {(®*(E" o FT)(2))} = inf min{®*(E (x;)), ®*(F/ (3))}}

cea+b cea+b62?=1 XV

< o inf o {minf@"(E(p), ©"(F/ (), (B (1)), @ (F ()}
aedi, PiYidi> b€, PiYidi

= min{ _inf {min{o"(E/ (p;)), ®*(F/(q;), inf *(E/ (1)), @ (F/ (s;))}}
ae) i pividi ' bey ! pividi

= min[{(®*(E © F')(a)), (®"(E" - FT) (0))}]
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inf {(@"(E" » F) (2))} = sup  {min{®"(E(x;)), ®*(F' ()}
cear ceaybezlll XYY !

> sup {min{®*(E' (ad;1;)), ©"(F' ()}
c eaybez :.121 adiryyis;

>  sup  {min{®"(E'(r)), ®"(F'(s;))}} = ®"((E" = F')b))
bey ! pivigi

c

inf {(@"(E  F)@) = s 3 (@*(E‘(xi», @*(F%yi))J

i=1 2n
ceaybez:.lzl XYY ( )

> sup

i=1 2n
ceaybez:.l:l adit;yis

N [®*(Ei(a5i77)), <1>*(Fi(si))j

S sup z;zzl CD*(EL(ri ))2,nq)*(Fl(Si)) _ (D*((Ei o FL)(b))
bed " pividi

sup (@ (B o FI)@) = inf | fmax{o (B (e ) (P ()}
ceayb CEGYbEZ?ﬂ XiYiYi !
> inf max{"(E (an) (F/(s,))

ceaybezzlzl adiryisi

> _inf {min{@*(E/ (r,)), ®*(F/(s,))}} = @ (B o F/)(b))
bed . pividi

Similarly we can prove for lower NLHI (NRHI) of R. Hence E o F' is a
RNHI of R.

4. Conclusion

The concept Rough Neutrosophic Hyperideals of I'-semihyperrings and
some properties, structural characteristics have been analysed in this paper.
These results can be extended to other properties such Rough prime
neutrosophic Hyperideal, Rough neutrosophic Bi-hyperideal and so on.
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