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Abstract 

This paper re-investigates a nonlinear COVID-19 model. The given two ordinary differential 

equations (ODEs), governing this model, are successfully combined to a single nonlinear 

differential equation. A direct series solution is established for the reduced model and hence, 

approximate analytical expressions are determined for the infected and recovered individuals. It 

is declared that the exact solution of the current model is also available at a specific restriction of 

the given initial conditions. The accuracy of our results are examined through several 

comparisons with another accurate numerical method. In addition, it is shown in this paper that 

our approach enjoys better accuracy in contrast to the homotopy perturbation method (HPM) in 

the literature. Moreover, the numerical results using the present Pade approximations revealed 

a complete coincidence with the Runge-Kutta numerical method if compared with the HPM in 

the literature. 

1. Introduction 

The Corona pandemic still occupies the attention of many researchers 

worldwide. Many mathematical models ([1]-[16]) have been published to 

describe this pandemic and try to understand its current and future behavior. 

In the current research, we want to shed some light on one of these models 

and present the accurate/exact solution, which may come as an alternative to 

the solution proposed in previous studies. The present nonlinear COVID-19 

model was formulated in Ref. [5] and expressed by the following system of 
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ODEs: 

( ),=


I
d

dR
 (1) 

( ) ( )  ( ) ( ),1 −−−=


IIIR
d

dR
 (2) 

where tTt ,=  is the time in days and T is the time of transmission of the 

virus. The symbols ( )tI  and ( )tR  stand for the infected individuals and the 

recovered individuals, respectively. Beside, ( )tS  denotes the susceptible 

individuals: ( ) ( ) ( ),1 tItRtS −−=  where  is the transmission rate (physical 

contact number between susceptible and infected individuals). The model is 

governed by the initial conditions (ICs) [6]: 

( ) ( ) .0,0 BIAR ==  (3) 

In the literature, a number of analytical approaches were discussed to 

solve linear and nonlinear ODEs. Samples of such approaches are known as 

the Adomian decomposition method (ADM) ([17]-[32]) and the HPM ([33]-

[39]). The main notice on the ADM and the HPM is the requirement of 

finding/calculating the Adomian’s polynomials to deal with the nonlinear 

terms contained in the governing system. Thus, a considerable effort is 

needed to calculate such polynomials. An alternate procedure is suggested in 

this paper in order to avoid these difficulties. 

So, a simple analytical approach is proposed to directly solve the 

nonlinear system (1)-(3). The suggested approach is based on reducing the 

ODEs (1-2) to a single nonlinear ODE in only ( ).R  

Then, the series solution of the reduced nonlinear ODE in ( )R  shall be 

determined by means the direct Maclaurin expansion (ME). The validity of 

the ME-approximations will be examined by performing several comparisons 

with the numerical solution using the Runge-Kutta method. 

In addition, it will be shown that the present approach has many 

advantages over the HPM used in Ref. [6] to solve the nonlinear COVID-19 

model (1)-(3). To improving the accuracy of the present results, several Pade-

approximations are to be constructed. Moreover, it will be declared that the 



ON SOLVING THE SYSTEM OF ORDINARY DIFFERENTIAL …  

Advances and Applications in Mathematical Sciences, Volume 22, Issue 4, February 2023 

811 

diagonal Pade-approximations are coincide with the Runge-Kutta method in 

the whole domain. Let us begin our analysis by reducing the model (1)-(3) as 

indicated in the next section. 

2. The Equivalent Model 

Differentiating Equation (1) once with respect to  and then substituting 

into Equation (2), we obtain the 2nd-order nonlinear ODE: 

( ) ,1
2

2


−









−−=
 d

dR

d

dR

d

dR
R

d

Rd
  (4) 

which is subjected to the ICs: 

( )
( )

.
0

,0 B
d

dR
AR =


=   (5) 

Equation (4) can be rewritten as 

( )

( )
,

1


=











+−











+


d

dR

d

dR
R

d

dR
R

d

d

 (6) 

which can be easily integrated with respect to  to give 

( ) ( ),1 −+=


+ Rce
d

dR
R   (7) 

where c is a constant of integration. Applying the ICs (5) on Equation (7) 

yields 

( ) .1 AeABc −+=   (8) 

Hence, 

( ) ( ).1 −+−=


RceR
d

dR
  (9) 

This is a 1st-order nonlinear ODE in the single unknown ( ).R  In the 

next section, a series solution of the nonlinear ODE (9) will be obtained via 

analytical approximations. 
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3. Direct Series Solution via Maclaurin Expansion 

In this section, a direct series solution is to be obtained for Equation (9) 

by means of the Maclaurin expansion (ME): 

( ) ( )( )


=


=

0

,
!

0

n

n
n

n
RR   (10) 

where ( )( )
( )

.
0

0
n

n
n

d

Rd
R


=  Firstly, we may rewrite Equation (9) in the form: 

( )( ) ( ) ( ),11 −+−= RceRR   (11) 

where ( )( ) .1


=

d

dR
R  By this, we note that the first two terms of the 

expansion (10) are known, where ( ) AR =0  and ( )( ) .01 BR =  To find ( )( ),02R  

we differentiate (11) once with respect to , so 

( )( ) ( )( ) ( ) ( )( ),112 −−= − RceRR R   (12) 

and hence, 

( )( ) ( )( ) ( ) ( )( ),000 1012 RceRR R−−−=  

,BceB A−−−=  

( )( ),11 −++−= ABB  

where the value of the constant c is employed. Similarly, differentiating (12) 

once again with respect to  we obtain 

( )( ) ( )( ) ( )( ( )( ) ( ( )( )) ),21223 −−−= − RRceRR R  (14) 

or 

( )( ) ( ( )) ( )( ) ( )( ( )( )) .1 21223 ++−= −− RceRceR RR  (15) 

Thus 

( )( ) ( ) ( )( ) ,010 2223 BceRceR AA −− ++−=   (16) 
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i.e., 

( )( ) ( )( ) ( ).1110 2223 −++−++= ABBABR   (17) 

Similarly, we can get ( )( )04R  and ( )( )05R  as 

( )( ) ( ( )) ( )( ) ( )1114110 2234 −+−++−−++−= ABABBABBR  

( ),133 −+− ABB  (18) 

and 

( )( ) ( )( ) ( ) ( )1111110 332245 −++−++−++= ABBABBABBR  

( )  ( ),11117 44 −++−++ ABBAB  (19) 

respectively. Inserting the above values into the series expansion (10), we 

obtain 

( ) ( ) ( )( )
( )( ) ( )( )

,
!3

0

!2

0
00 3

3
2

2
1 ++++=

RR
RRR   (20) 

or 

( ) ( )( )  ( )( )2
2

11
!2

11 −+++


−++−+= ABBABBBAR  

( )  ( )( ) ( )( )11411
!3

1 223
3

22 −++−−++−+


−++ ABBABBABB  

( ) ( )  ( )( )4
4

33 11
!4

11 −+++


−+−−+ ABBABBAB  

( ) ( )  ( )11171111 3322 −++−++−++ ABABBABB   

( ) ,
!5

1
5

44 +


−++ ABB   (21) 

and hence, ( )I  can be obtained as 

( ) ( )( )  ( )( ) ( )
!2

11111
2

222 
−++−+++−++−= ABBABBABBBI  
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 ( )( ) ( )( ) ( )111411 223
−+−++−−++− ABABBABB  

( )  ( )( ) ( )11111
!3

1 224
3

33 −++−+++


−+− ABBABBABB  

( ) ( )  ( ) ,
!4

111171
4

4433 +


−++−++−++ ABBABABB   (22) 

and the number of terms in the above series solutions for ( )R  and ( )I  can 

be increased, using any software, to reach the desired accuracy. This point 

will be explained in a subsequent section. 

4. Exact Solution at Special Cases 

4.1 Case I. Zero initial susceptible individuals 

The relation ( ) ( ) ( ),0010 IRS −−=  i.e., ( ) BAS −−= 10  gives the initial 

susceptible individuals. 

Accordingly, the case 1=+ BA  corresponds to the zero initial 

susceptible individuals ( ) .00 =S  

In such a case, the exact solution is available and can be determined as 

follows. Substituting 1=+ BA  into the series (21), we obtain 

( ) ,
!5!4!3!2

5432

+


+


−


+


−+= BBBBBAR  (23) 

which can be summed up to infinity to give the following exact solution for 

( ) :R   

( ) ( ).1 −−+= eBAR  (24) 

Similarly, the exact solution for ( )I  can be evaluated from the series (22) 

as 

( ) ,
!5!4!3!2

5432

+


−


+


−


+−= BBBBBBI   (25) 

which gives 
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( ) .−= BeI   (26) 

It is to be noted from the above solutions that ( )I  is actually the first 

derivative of ( )R  and this satisfies the first differential equation of the 

present COVID-19 model. Also, one can easily check the validity of the above 

solutions by direct substitution into the governing system and the given ICS. 

4.2 Case II. Zero contact number. In this case, the value of  vanishes 

and it will be shown that the exact solutions for ( )R  and ( )I  are identical 

to the previous special case .1=+ BA  However, our analysis for proving 

this point comes directly from the nonlinear transformed equation (9) along 

with the constant c defined in Equation (8). At ,0=  we have 1−+= BAc  

and consequently Equation (9) reduces to 

( ) ( ).−+= RBAR   (27) 

This is a 1st-order linear ordinary differential equation which can be 

easily solved by the separation of variables method:  

( )
( ) 

 

=
−+0 0

,ddx
xRBA

xdR
  (28) 

and hence, 

( )
( )

.
0

ln −=







−+

−+

RBA

RBA
 (29) 

On using the IC ( ) AR =0  and performing some simplifications, we 

obtain the same expression given in Equation (24) for ( )R  and thus ( )I  

also has the same expression (26). 

5. Results and Validations 

This section aims to validate the present approximate series solution 

given by the ME in section 

3. The validation is based on extracting some numerical results and 

performing comparisons with another analytical approach in the literature in 

addition to the numerical solution. 
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5.1 Validation of the present ME-approximations. 

Assume that ( )m  and ( )m  represent the m-term approximate 

solutions for ( )R  and ( ),I  respectively. Then, the approximations ( )m  

and ( )m  can be expressed as 

( ) ( )( )
−

=


=

1

0

,
!

0

m

n

n
n

m n
R   (30) 

and 

( ) ( )( )
−

=

+ 
=

1

0

1 ,
!

0

m

n

n
n

m n
R   (31) 

respectively. Figures 1 and 2 show the comparisons between for the present 

approximations ( )m  and ( )m  using ten terms ( )10=m  and the 

numerical solution obtained using MATHEMATICA. 

It can be seen in these figures that the approximations ( )10  and 

( )10  are coincide with the numerical solution in a specific domain. Such a 

domain of coincidence can be enlarged via increasing the number of terms 

taken from the ME-approximations. Another way to achieve this task is to 

apply the Pade-approximations as indicated in the next section. 

5.2 Improved results via Pade-approximations 

This section is devoted to prove the effectiveness and efficiency of Pade-

approximations over the standard ME-approximations. Also, it will be 

revealed that the present Pade-approximations. 
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Figure 1. Comparison between the present ( )m  and the numerical 

solution (Runge-Kutta) at initial recovered individuals 01.0=A  initial 

infected individuals 001.0=B  and transmission rate 1=  for the 

instantaneous recovered individuals ( ).R  

 

Figure 2. Comparison between the present ( )10  and the numerical 

solution (Runge-Kutta) at initial recovered individuals ,01.0=A  initial 

infected individuals ,001.0=B  and transmission rate 1=  for the 

instantaneous infected individuals ( ).I  

enjoy better accuracy than those approximations in Ref. [6] using the HPM 

and given by 

( ) ( )





 −−+−−−−++−= −−−−−−− eeBeBeeeBBBBeAtR 2

2

1
 

,1
2

3







 − BB   (32) 
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( )  ( )  ( )BBBBeBBeBBeBetI 224
2

1 22 +−−−−−−+= −−−−  

 −−−−− −−−+− 2222222 2264
2

1
BBeBeBeBBe  

.224222 22 −−+−++− −−− BeBeBBBBe  

( )  ( −−− −−+= BeBBeBetI   (33) 

The diagonal Pade-approximations   ( )rr  is an effective tool to enlarge 

the domain of applicability of a series solution. As examples, the diagonal 

Pade-approximations  ( )11  and  ( )22  are constructed as 

  ( )
( )
( )

,11
1

1




=

Q

P
 (34) 

  ( )
( )
( )

,22
2

2




=

Q

P
  (35) 

where ( )1P  and ( )1Q  are polynomials of first degree in  while ( )2P  and 

( )2Q  are polynomials of second degree. These polynomials can be obtained 

as 

( ) ( ) ( )( )  ( ( )( )) ( ) ( )( ) ,0002002 2211
1 −+= RRRRRP  (36) 

( ) ( )( ) ( )( ) ,002 21
1 −= RRQ  (37) 

( )  ( ) ( ( )( )) ( ( )( )) ( )( ) ( ) ( )( ) ( )( )0001200240136 323122
2 RRRRRRRP −−=  

( ) ( )( ) ( )( )  ( ( )( )) ( )( ) ( )( ) ( )( )000240180006 3213241 RRRRRRR −++   

( ) ( ( )( )) ( ( )( )) ( )( ) ( ) ( ) ( )( ) ( )( ) 24242123 000303006004 −−++ RRRRRRRR   

( ) ( ( )( )) ( ) ( )( ) ( )( ),000240036 3122 RRRRR   (38) 

( ) ( ( )( )) ( )( ) ( )( )  ( )( ) ( )( ) ( )( ) ( )( )00120060024036 3241312
2 RRRRRRRQ −+−=  

( ( )( )) ( )( ) ( )( ) .0030 24223 −+ RRR   (39) 
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Higher-order diagonal Pade-approximations  ( ) ( )2 rrr  are also 

available but ignored here for lengthy results. Figures 3 and 4 depict the 

diagonal Pade-approximations  ( )rr  for 6,4,2=r  and compared with the 

numerical solution using the Runge-Kutta method. It is observed from 

 

Figure 3. Comparison between the present diagonal Pade-approximations 

 ( ) ( )6,4,2= rrr  and the numerical solution (Runge-Kutta) at initial 

recovered individuals ,01.0=A  initial infected individuals ,001.0=B  and 

transmission rate 1=  for the instantaneous infected individuals ( ).R  

these figures that the diagonal Pade-approximations  ( )66  agree with the 

numerical solution in the whole domain. This is one of the advantages of the 

present analysis. 

In order to confirm the accuracy of the diagonal Pade-approximations 

over those in the literature, the numerical results are listed in table 1 for the 

purpose of comparison between the present  ( ),66   the HPM-

approximations [6], and the obtained numerical ones using MATHEMATICA. 

It is obvious that our analysis is much accurate than the HPM [6]. 

6. Conclusions 

In this paper, the approximate series solution was obtained for a 

nonlinear COVID-19 model based on the ME. It was shown that the obtained 

ME-series solution transforms to an exact solution at a specific condition for 

the sum of the initial values of the infected and recovered individuals. In 
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addition, several comparisons were accomplished to stand on the accuracy of 

the current results. Regarding, it was proved that our analysis enjoys better 

accuracy in contrast to another analytical solution in the literature via the 

HPM [6]. Moreover, the tabulated values for the recovered individuals using 

the Pade-approximations revealed that our numerical results are much 

accurate than those of the HPM [6]. This conclusion was based on 

implementing the 

 

Figure 4. Comparison between the present diagonal Pade-approximations 

 ( ) ( )6,4,2= r  and the numerical solution (Runge-Kutta) at initial 

recovered individuals ,01.0=A  initial infected individuals ,001.0=B  and 

transmission rate 1=  for the instantaneous infected individuals ( ).I  

Table 1. Comparisons between the approximate values of ( )R  using the 

HPM-approximations [6], the present Pade  ( ),66   and the numerical 

solution using Runge-Kutta (MATHEMATICA) at 01.0,1 == A  and 

.001.0=B  

 HPM [6]  ( )66  (Present) Runge-Kutta 

5 0.011951 0.014846 0.014846 

10 0.011998 0.019325 0.019325 

15 0.011999 0.023376 0.023376 

20 0.011999 0.026968 0.026968 

25 0.011999 0.030097 0.030097 

30 0.011999 0.032782 0.032782 
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35 0.011999 0.035056 0.035056 

40 0.011999 0.036962 0.036962 

45 0.011999 0.038543 0.038543 

50 0.011999 0.039846 0.039846 

Runge-Kutta method as a reference numerical method. Therefore, the 

current numerical results may give better predictions for the progress of the 

outbreak than those in the relevant literature. 
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