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Abstract

Limits in a category are defined by means of diagrams. We begin with the definitions of a
diagram scheme and a diagram in an arbitrary category A over a scheme as in [1]. We have
proved that the category of graphs G is finitely complete by using the fact that “A category with
finite products and equalizers is finitely complete”.

1. Introduction

A graph G consists of a pair G = (V(G), E(G)) (also written as
G = (V, E) whenever the context is clear) where V(G) is a finite set whose
elements are called vertices and E(G) is a set of unordered pairs of distinct
elements in V(G) whose members are called edges. The graphs as we have

defined above are called simple graphs. Throughout our discussions all

graphs are considered to be simple graphs. Let G and G; be graphs. A
homomorphisms f : G — Gy is a pair f = (f*, f) where f*:V(G)—> V(G,)
and f : E(G) > E(G,) are functions such that f((u, v)) = (f*@), f*()) for
all edges (u, v) € E(G). For convenience if (u, v) € E(G) then f((u, v)) is
simply denoted as f ((«, v)) [3].

Then we have the category of graphs say G, where objects are graphs and

morphisms are as defined above, where equality, compositions and the
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identity morphisms are defined in the natural way. It is also proved that two

homomorphisms f = (7, }7) and g = (g%, g) of graphs are equal if and only

if f* = g" Lemma 1.6 [3]

1. Limits

Definition 2.1. A diagram scheme is a triple (I, M, d) where I is a set

whose elements are called vertices (not to be confused with the vertices of a
Graph), M is a set whose elements are called arrowsand d : M — I x1I isa

function. If m € M and d(m) = (i, j) then we call i the origin and j the
extremity of m.

A diagram in a category A over the scheme ¥ is a function D which

assigns to each vertex i € I an object D; € A and to each arrow m ¢ M
with origin i and extremity j a morphism D(m) from D; into D;, ie,
D(m) : D; — Dj is a morphism in A. If I and M are finite sets then we call a
finite scheme and D a finite diagram over X.

Definition 2.2. Let D be a diagram in A over a scheme X = (I, M, d). A
family of morphisms {f; : X — D;};,_; is called a compatible family for D if
for every arrow m e M, with d(m)= (i, j) the following diagram
commutative.

D;

D(m)

Figure 1

ie. D(m)f; = f; for all m € M. The above family is said to be a limit for D if

(1) it 1s a compatible family for D, and

(11) (Universal Mapping Property) for every compatible family
{g; :Y > D;}iel, there is a unique morphism 7:Y — X such that

fiy=g forall i € I.
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¥

gi

> Di
X fi

Figure 2.

Theorem 2.3. Let G be the Category of graphs. Then every finite diagram

in G (over a finite scheme) has a limit.

Proof. We prove the theorem by actually constructing the limit of any
finite diagram in G. Let = = (I, M, d) be any finite scheme and let D be a

diagram in G over the scheme . Let I = {1, 2, ..., n}.

Step 1: By Theorem 2.2 [7], G has categorical products so let P = X, D,

be the r =1 categorical product of {D,} ; [Remark 2.4 in [7]] with the
canonical projections p; : P —» D; from the product P into the it component
D,
Then from Theorem 2.2 in [7], we know that V(P) = V(D;)x...x V(D,)
(Cartesian product) which is the set {(x1, ..., x,,)/x; € V(D;) for all i =1 to
n}. Moreover (xi, ..., x,,) 1s adjacent to (¥, ..., »,,) in P if and only if each
x; 1s adjacent with y; in G; forall i € I.
Let me M be an arrow with origin j and extremity k. Since
D(m): D; — Dy, D(m)p; is a morphism from P = X, D, — D;,r = 1.

n D(m)p;

Km -»P=X Dr —» Dk

Um =1 Dk

Let up, :K, — P be the equalizer of D(m)p; and p,. Since G has

equalizers this is meaningful. Moreover since any two equalizers are
isomorphic (proposition 2.4 in [6]). We may take, without loss of generality
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V(Km) = {(xla X9 -0y xn) € V(P)/D(m)*p] * (xl? D) xn): p;;(xla BRED) xn)}

ie, V(K,)={(x1, ..., x,)/D(m) x; = x,}. (1).

Also u,, : K,, > P may be taken as the inclusion map. By Proposition

4.31n [6], G has finite intersection.

So let

n
X=NKn > Kn—>P=XD,

meEM vy Mo =1

with the inclusion map v,, as shown above. Let
U =upo, X > P. @)

We have following picture

n

Vm  Um Pi
X=N Kn—>Kn— P=X D, — D;
me M =1
Let f;: X — D; be defined by the composition of the above morphisms; i.e.
f; = piu, vy, forall i e I, (3)

Step 2: We claim that {f; : X — D;}; € I is a compatible family.

D(m)

Figure 3

Now D(m)"f; (x1, ..., x,) = D(m) D} thy, Uy (1, ..., %) (by (3))

= D(m)*p;('xli ) xn)

[since u,,, v, are inclusion maps].
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= D(m)*(xj)...A

and
fr (%15 s %) = DR Uy (%1, -5 %)

= pplxg, ..., x;,)

= Xp (B)

R

From (1), A and B D(m)'f; = f; and so by Lemma 1.6 in [3]. D(m)f; = f
providing that the above family is compatible for D.
Step 3. We now prove that {f; : X — D;},_; is in fact the limit for the

diagram D. Let {g; : Y — D;},_.; be any compatible family for D. Then by
definition we have D(m)g; = g;, (4).

Y

gi
w

P=X D>°
r=l pi

Di

Figure 4

Then from the definition of products there exists a unique morphism say

()
w:Y - P =X, D, suchthat p; = g; forall i € 1.(5)
r=1

Next we have D(m)p;w
= D(m)g; by (5).

= & by (4)

ppw by (5).

Since k,, is the equalizer of D(m)p; and pj, by definition of equalizer,

there exists a unique morphism say w,, : Y — K,, such that
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Uy W,y = W. (6)
Y
w
Wm
5 -8 Dim) p,
> p=X D,—2.D,
Km Um I i

Figure 5

Since X is the intersection NK,, and w:Y — P also factors through

u,m e M for each m € M, by the definition of intersection there exists a

unique morphism

y:Y — X such that uy = w. (7).

NP=X D,

Figure 6

& > Di
Figure 7.
Now f;y = p;u,,v,,y (by definition of f;)
= p;uy (by definition of )
= pjw by (7)
= g; by (5)
This completes the proof.
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Definition 2.4. A category A is said to be X complete if every diagram in
A over has a limit. If A is Z-complete for all diagram schemes X, then A is
called Complete. If A is Z-complete for all finite diagram schemes X, then A is
said to be finitely complete [1].

Note: The dual notions are that of colimits and finitely co-complete

category.
Theorem 2.5. The category of graphs G is finitely complete.

Proof. The theorem is a direct consequence of the above Theorem.

Remarks 2.6. In [1, 4, 5] the authors have proved the above theorem by
using the fact that “A category with finite products and equalizers is finitely
complete”. However in theorem 2.3, we have proved the same by actually
constructing the limit of a finite diagram over a finite scheme X. This is found

to be useful in application.

Remark 2.7. Again in [1, 4, 5] the authors have proved that the category
of graphs is finitely co-complete by using the fact that “a category with
coprodcuts and co-equalizers is finitely co-complete”. However in our

definition of the category G of simple graphs we have shown that G does not

have coequalizers. Hence the above argument is not applicable in our case.

Definition 2.8. Let D and D’ be diagrams in G over scheme
T = (I, M, d). Then D and I’ are said to be isomorphic diagrams in G over X
if

(i) there exists a family of isomorphisms {8; : D; — D;};, € I and

(i) to each arrow m e M with d(m)= (i, j) the following diagram

commutes [1].

9i
Dj > D’
x -
; p O™
Dj 9j> D’
Figure 8.
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Theorem 2.9. Let D and D’ be isomorphic diagrams in G over a scheme
2=, M, d) with {8; : D; - D'}, e I as the family of isomorphisms.

If {f; : X > D;}; € I is alimit for D over X, then {8; f; : D; - D'}, e I

is a limit for D' over X.
Proof. By hypothesis we have the following commutative diagrams:
Thus D(m)f; = fj. (1) and 6;D(m) = D'(m)6;. (2)
Consider the family of morphisms {0; f; : X — D}}; e I.
Claim 1. The above family is compatible for the diagram D'
For D'(m)(6;f;) = (D'(m)6;)f; = 0;D(m)f; by (1)
= 0;f; by (1) and hence the claim.

Claim 2: {0;f; : X > Dj}; eI is a limit for D' over X. Let
{gi 1Y > Dj}; € I be any compatible family for D;. Then D'(m)g; = g; (3).

We claim that the family {Gi_lgi : X > D;}; eI is a compatible family for
the diagram D.

For 9]—.1 g =9]_-1D'(m)}gi by (3).
= 0.1(6;D(m)0; " )g; by (1).

= D(m) (Gi_l g;) and hence the claim. Since {f; : X > D;}; € I is a limit
for the diagram D, there exists a unique morphism y:Y — X such that
fiv = Gi_lgi for all iel ie. (0;,f;)y=g; for all iel Thus
{6,f; : X > D}, e I is a limit for the diagram D".
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Dy
fi
D(m)
X D
fi
0i
Dy - D’
D(m)
v y m
A7 D‘l
D; el
Figure 9.

We illustrate the above theorem by actually constructing the limit of a
given diagram in G over a finite scheme.

Example 2.10. Let X = (I, M,d) be a finite scheme where
I=1{,2 3}, M={m, mg}, and d(m;) = (1, 2), d(my) = (2, 3). Let D be the
diagram in G over where D;, Dy, D3 and D(m;), D(mg) are as given below.
D(m;): D; - Dy is given by the rule x; — y;; X9 = y9. Similarly
D(mg): Dy — Dy y1 — Z1; y9 — Zg; y3 — Zs. For convenience Let us

denote the triple (x;, y;, z;) simply as (i, J, k).

3
Then the product graph P = X D, is given by the following diagram.
r=1
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790
X b Yi Y Ya
— — (]
D
1 Dg
51
F2
% Fa
Dy
Figure 10

3
Let py.:P=XD, —>D,py:P—> Dy and p3 : P - D3 be the canonical

r=1
projections. Thenforall 1 <i<2,1<j<3,1<k<4, wehave

pi (%, v, 2) = %65 p3 2 (%0, ¥, 2) = 3 p3 : (%D, Vs 2) = 2
Hence K,,; = Eqn(D(m;)p;, ps) has vertex set
V(K1) = {(xi, 31, 23), (xi, 2, 2} 1 <i <21 < k< 4.
Similarly we can show that K,,o = Eqn(D(mq9)pg, ps) has vertex set

V(K p2) = {(x;, yj, 2)I1 <i<2
3

IA

1<

1<k<4}

(21)  (122) (123)  (124) (131) (132) (133)  (134)
. .

(1) (M2) (M3) (114)
L] [ ]

L] [ ] L ] [ ]
(231)  (232) (233) (234)

(223)  (224)

(221)  (222)

(211)  (212) (213) (214)

Figure 11.
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Therefore V(K,,1 )NV (K2)=1(x;, yj,2)I11 <i <2
1<j<2
1<k <3}

3
Thus if X is the subgraph of X, D, whose vertex set is

r=1

V(K,,1)UV(K,,s) then Xis given by the following diagram.

(111)  (112) (113) (121)  (122) (123)

(211)  (212) (213) (221) (222) (223)

Figure 12.

For i =1 to 3, let f; = p;/X i.e. f; is the restriction of p; to X. Then by
Theorem the family {f; : X — D;}; € I is the limit in G for the diagram D

over the scheme X.

Conclusion 3.1. We have shown every finite diagram in G. has a limit
and have proved that the category of graphs G. is finitely complete. Also we

have shown that the forgetful functors is limit preserving.
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