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Abstract 

Feature selection plays an important role in the construction of predictive models by 

selecting a subset of important features. Least absolute shrinkage and selection operator 

(LASSO) is one of the widely used techniques which does shrinkage and variable selection 

simultaneously. It’s often utilised to make the model easy to understand. This procedure is 

mainly based on ordinary least square principle with penalty. Least square principle is very 

sensitive to outliers, hence this procedure gives unreliable results when extreme observations 

are present in the data. Moreover, the conventional approaches of feature selection are not 

resistant to the presence of outliers. In this context, robust statistics helps to play as an 

alternative. Robust statistics are used to describe the structure by best fitting the majority of 

data and also to identify deviating data points. This paper explores LASSO type robust 

procedures which have been developed in the past, such as Least Absolute Deviation (LAD), 

adaptive, Huber procedures. The efficiency of these procedures have been studied under real 

environment and by comparing the error measures such as RMSE, MAPE in the context of 

model fitting. It is concluded that the adaptive procedures perform well in the context of 

prediction accuracy and variable selection. With the help of robust statistical procedures, it is 

now possible to develop a variety of automated feature selection algorithms because of 

increasing availability of fast computing. 

1. Introduction 

Data containing outliers is one of the most typical challenges we 

encounter in various scientific domains and real-time applications which can 

cause several complications in regression analysis. Outliers can exist either in 

dependent variables or covariates (predictor variables). Because of the 

presence of outliers, traditional approaches such as Ordinary Least Squares 
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(OLS) methods fail to determine the real value of the estimate and also the 

interpretation becomes more complex if we are following the traditional 

methods. This pay a route for feature selection methods or penalised 

estimator approaches. Feature selection/variable selection is becoming more 

essential in statistics which plays a significant part in statistical analysis 

owing to the complexity and dimensionality of data. The key advantage of the 

feature selection approach is that it identifies the essential variables while 

also assisting in a parameter estimate. The loss function plus a penalty 

function helps to choose the most essential variables from a bigger range of 

variables. Over fitting occurs when the number of variables rises, making 

computation more complex. As the number of variables increases, 

interpretation becomes more difficult, resulting in decreasing prediction 

power. This piques the researchers' interest in approaches for simultaneous 

variable selection and parameter estimation. In the last several decades, 

various shrinkage regression algorithms for variable selection in regression 

methods have been proposed. 

The most popular shrinkage methods/penalized methods for variable 

selection is Least Absolute Shrinkage and Selection Operator (LASSO) 

introduced by (Tibshirani, [5]) which makes the coefficients in the model 

exactly towards zero. The LASSO is operated by a loss function of the OLS 

technique and a penalty factor (also known as the L1 penalty). Later, it was 

shown that LASSO does not meet the oracle property, prompting (Zou, [8]) to 

create adaptive lasso in 2006, in which adaptive weights are used to shrink 

distinct coefficients in the L1 penalty. 

The presence of extreme observations or outliers in the data renders both 

approaches ineffective for executing feature selection procedures. This 

prompted the researchers to consider developing robust variable selection 

methods, which are resistant to outlier or extreme observation. (Rosset and 

Zhu, [4]) and (H. Wang et al., [6]) took the initial step in this direction by 

combining the Huber as a loss function with the lasso penalty factor to create 

Huber-LASSO, which can withstand outliers in the dependent variables and 

Least Absolute Deviation (LAD) as a loss function with same procedure to 

overcome the outliers in the dependent variables. In 2008, (Zou and Yuan, 

[9]) proposed the notion of composite quantile regression. (Lambert-Lacroix 

and Zwald, [2]) developed Huber Adaptive lasso, which can also resist outliers 
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in response variables. (X. Wang et al., [7]) proposed the Exponential Squared 

LASSO for feature selection, and (Qin et al., [3]) studied the Maximum 

Tangent Likelihood Estimator (MTE) and its asymptotic properties in 2017, 

which aids in variable selection methods, and many researchers are working 

to develop more robust feature selection methods that will be useful for 

statistical analysis. In this study, we will compare all of the key conventional 

LASSO and their adaptive versions. The rest of the paper is organised as 

follows. Section 2 briefly defines the LASSO-type approaches. Section 3 shows 

that the performance of the various LASSO-type algorithms on real data, and 

the work concludes with a conclusion and provides scope for further research. 

2. Shrinkage Methods 

To explain the regression regularisation approaches, we begin with the 

usual model for multiple linear regression. Let the data be 

   ,,,,, 11 nn yxyx   let the design matrix be  TT
n

T
I xxX ,,   and the 

general linear model be defined as 

 XY  (1) 

Here  Tp ,1  represent the regression coefficients 

   n
T

n IN 2
1 ,0~,,    known as error terms, kx  termed as the 

repressors for observation kx  and nk ,,1   and   .,,1
T

nyyy   The 

OLS estimates  by minimizing the error sum of squares, i.e. 

   .minˆ 


XYXY
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In general, OLS yields unbiased estimators with high variances, and 

lowering the variance by a little amount can enhance prediction accuracy. 

2.1 LASSO 

A method is used to reduce the variance of the estimate and to accomplish 

variable selection, named LASSO was proposed by (Tibshirani, [5]) as a novel 

approach for linear model estimation. It is a regression shrinkage method 

that is frequently used in models with such a large number of variables 

although little observations. This approach minimises the residual sum of 
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squares subject to the sum of the absolute value of the coefficients being less 

than a constant, which is same as minimizing the sum of squares with a 

constant ,sj   and brings some of the  coefficients shrunk to zero. The 

method applies L1 regularisation to the objective under optimization by 

imposing a penalty. This penalty is the total of the absolute values of the 

coefficients and decides which coefficients and how much to shrink. The 

LASSO estimate is given by 
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where  is termed as the shrinkage parameter. 

2.2 Adaptive LASSO 

The LASSO proposed by Tibshirani does not satisfy the oracle property, 

in order to overcome this problem Zou (2006) introduced a weight function to 

each  coefficients and it is defined as 
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where  pjWj ,,1   are the weight functions, which can be estimated 

by ,
ˆ
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jw  where  is a positive constant and ĵ ‘s are the initial 

estimates of  coefficients. 

2.3 LAD-LASSO 

Wang et al. [6] combined the LAD along with LASSO penalty to obtain 

the robust estimator, namely LAD-LASSO estimator defined as 
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The resulting estimator should be resistant to outliers and have a sparse 

representation. 
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2.4 Adaptive LAD-LASSO 

For a robust estimate and to have a consistent variable selection, Zou’s 

Adaptive LASSO method for variable selection is paired with LAD regression 

in the situation of heavy tailed errors and is given by 
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where  pj www ,,ˆ 1   is known as weight vector. 

2.5 Huber LASSO 

When there are outliers in the regression response variable, LASSO 

performance may diminish. Rosset and Zhu [4] and Wang et al. [6]  were the 

first to attempt to solve this problem. Rosset and Zhu [4] use Huber's 

criterion as a loss function for the LASSO penalty. They employ Huber’s loss 

function with a fixed M and a penalty equal to the L1 penalty defined as 
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2.6 Adaptive Huber LASSO 

The Huber’s Criteria with Adaptive LASSO was proposed by Lambert-

Lacroix and Zwald [2], this combines Huber’s objective function and the 

Adaptive LASSO penalty stated by 
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where  pj www ,ˆ 1  is known as weight function and the Huber’s 

function is defined by 
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where, 0s  is the scale parameter for the function. For small and large 

residuals the loss function changes from quadratic to linear which helps in 

penalizing outliers. 

2.7 Maximum Tangent Likelihood Estimation (MTE) 

Qin et al. [3] proposed MTE defined as   
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iz  represents the dependent and independent variables, and the normal 

distribution with a mean of zero is represented by f. However, even if only a 

small fraction of the data is contaminated, the performance of such an 

estimator generally falls dramatically. When model assumptions are valid, 

the robust statistical process should perform almost ideally, and it should 

continue perform well when the assumptions are broken. For variable 

selection, the penalised maximum tangent likelihood estimate (penalised 

MTE) is used and is defined as 
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where the  tln  is as follows 
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In this case, 0t  is a tuning parameter  u  is just a pth order Taylor 

expansion of  uln  for .0 tu   

2.8 Adaptive MTE 

The Zou’s Adaptive LASSO for consistent variable selection is combined 

with MTE regression in the MTE-LASSO criteria. 
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Where  L  is the MTE loss function which is defined in (7) and (8), n  is 

the regularization parameter of L1 penalty and Where  pj wwW ,,1   is 

known as weight vector. 

3. Experimental Results 

In this section, the performance of various LASSO type feature selection 

procedures has been studied on real environment. The real data set contains 

outliers, they were detected and removed by using cook distance (Cook, 2000) 

and the analysis has been carried out using R software. The results such as 

number of variable selected, Mean Absolute Error (MAE), Median Absolute 

Error (MDAE), Mean Absolute Percent Error (MAPE), Root Mean Squared 

Error (RMSE) under various procedures by considering with and without 

outliers are summarized in the following tables. 

3.1 Diabetes data set 

The Diabetes data initially used by Efron et al. (2004). The data contains 

442 observations and nine covariates and a dependent variable. We 

standardize all the variables before doing the analysis. The Figure 1 – (a) 

gives the information of correlation plot and Figure 1 – (b) gives number of 

variables chosen by each method. The Table (1) gives error values and 

variables chosen by each method under with and without outliers. 
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Figure 1-(a). Correlation Plot. 

 

Figure 1-(b) No. of variables chosen by each method. 

All LASSO algorithms selects same variables under with and without 

outlier study except adaptive LASSO. The other adaptive methods except 

adaptive LASSO method selects less number of variables when compared 

with other standard LASSO methods. The error value is also minimum for 

adaptive methods. 
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Table 1. Error values, variables selected by each method under with and 

without outlier (.) without outlier. 

Methods MAE MDAE RMSE MAPE Variables 

Selected 

No. of 

Variables 

Selected 

LASSO 0.564 

(0.579) 

0.515 

(0.510) 

0.696 

(0.668) 

1.142 

(1.470) 

Bmi, bp, s3, s5 

(Bmi, bp, s3, 

s5) 

4 

(4) 

LAD LASSO 0.561 

(0.546) 

0.489 

(0.526) 

0.693 

(0.635) 

1.287 

(1.563) 

Bmi, bp, s3, s5 

(Bmi, bp, s3, 

s5) 

4 

(4) 

Huber LASSO 0.558 

(0.556) 

0.500 

(0.509) 

0.692 

(0.645) 

1.221 

(1.524) 

Bmi, bp, s3, s5 

(Bmi, bp, s3, 

s5) 

4 

(4) 

MTE LASSO 0.564 

(0.583) 

0.516 

(0.503) 

0.696 

(0.673) 

1.146 

(1.458) 

Bmi, bp, s3, s5 

(Bmi, bp, s3, 

s5) 

4 

(4) 

Adaptive 

LASSO 

0.560 

(0.545) 

0.506 

(0.503) 

0.694 

(0.630) 

1.222 

(1.664) 

Bmi, bp, s1, s2, 

s5 

(Bmi, s2, s5) 

5 

(3) 

Adaptive LAD 

Lasso 

0.580 

(0.532) 

0.466 

(0.488) 

0.717 

(0.633) 

1.259 

(1.576) 

Bmi, s5 

(Bmi, s5) 

2 

(2) 

Adaptive 

Huber LASSO 

0.575 

(0.532) 

0.464 

(0.502) 

0.708 

(0.622) 

1.206 

(1.689) 

Bmi, s5 

(Bmi, s5) 

2 

(2) 

MTE Adaptive 

LASSO 

0.574 

(0.546) 

0.502 

(0.508) 

0.705 

(0.632) 

1.151 

(1.66) 

Bmi, s5 

(Bmi, s5) 

2 

(2) 

From the results, it is concluded that adaptive Huber LASSO algorithm 

produces less prediction errors and also select less number of variables when 

compared with standard LASSO, and adaptive LASSO algorithms for feature 

selection. 

3.2 Boston Housing dataset 

This dataset contains information collected by the U.S Census Service 
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concerning housing in the area of Boston Mass and the dataset is available at 

the ml bench package in R-software. The data set contains 506 observations 

and 15 covariates and a dependent variable CMDEV (Corrected median value 

of owner-occupied homes per 1000 US $). The objective of the data set is to 

predict the value of prices of the houses in Boston region using the given 

features such as crime rate, accessibility to highway, number of rooms, 

distance of employment centres, nitric oxides concentration etc. We 

standardize all the variables before doing the analysis. The Figure 2 – (a) 

gives the information of correlation plot and Figure 2 – (b) gives number of 

variables chosen by each method. The Table (2) gives variables chosen by 

each method and gives the various error measurements. 

 

Figure 2 (a). Correlation Plot. 

The LAD- LASSO selects all variables in without outlier case and Huber 

method selects almost same number of variables in both cases. The number of 

variables selected by the Adaptive method is less compared with other 

LASSO methods and also rm, ptratio, istat are the variables mostly selected 

by all methods.  
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Figure 2 - (b). No. of variables chosen by each method. 

Table 2. Error values, variables selected by each method under with and 

without outlier (.) without outlier. 

Methods  MAE  MDAE  RMSE  MAPE  Variables Selected No. of 

Variables 

Selected  

LASSO  0.402  

(0.125)  

0.302  

(0.122)  

0.595  

(0.145)  

4.261  

(0.782)  

Tract, ion, lat, crim, zn, nox, 

rm, dis, tax, ptratio, b, istat  

(ion, crim, zn, indus, nox, rm, 

age, dis, tax, ptratio, b, istat)  

12(11)  

LAD 

LASSO  

0.373  

(0.239)  

0.266  

(0.176)  

0.585  

(0.316)  

4.063  

(1.192)  

Tract, ion, crim, zn, nox, rm, 

age, dis, tax, ptratio, b, istat  

(Tract, ion, lat, crim, zn, indus, 

nox, rm, age, dis, rad, tax, 

ptratio, b, istat)  

12(15)  

Huber 

LASSO  

0.390  

(0.237)  

0.290  

(0.188)  

0.599  

(0.315)  

3.964  

(1.168)  

Tract, ion, crim, nox, rm, age, 

dis, tax, ptratio, b, istat  

(Tract, ion, crim, zn, indus, rm, 

age, dis, tax, ptratio, b, istat)  

11(12)  

MTE 

LASSO  

0.403  

(0.302)  

0.306  

(0.244)  

0.595  

(0.390)  

4.230  

(1.310)  

Tract, ion, crim, nox, rm, dis, 

tax, ptratio, b, istat  

(ion, crim, zn, indus, rm, age, 

dis, tax, ptratio, b, istat)  

10(11)  
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Adaptive 

LASSO  

0.442  

(0.126)  

0.361  

(0.119)  

0.624  

(0.148)  

5.270  

(0.808)  

nox, rm, dis, tax, tratio, istat  

(ion, crim, zn, rm, age, dis, tax, 

ptratio, b, istat)  

6(10)  

Adaptive 

LAD 

LASSO  

0.386  

(0.123)  

0.275  

(0.113)  

0.600  

(0.147)  

4.720  

(0.758)  

rm, ptratio, istat  

(rm, age)  

3 (2)  

Adaptive 

Huber 

LASSO  

0.410  

(0.123)  

0.299  

(0.114)  

0.611  

(0.143)  

4.812  

(0.773)  

rm, ptratio, istat  

(rm)  

3(1)  

MTE 

Adaptive 

LASSO  

0.457  

(0.128)  

0.332  

(0.139)  

0.652  

(0.149)  

5.048  

(0.789)  

rm, istat  

(rm)  

2(1)  

From the table it is observed that under with outlier case the various 

error values of LAD and Huber is very less and also the predictive capacity is 

good for both methods, and in Adaptive case except Adaptive LASSO all other 

Adaptive algorithms selects only less number of variable and also the error 

measurements and predictive capacity is better for both Adaptive (LAD and 

Huber) methods. 

4. Conclusion 

Feature selection approach is a method which helps in identifying the 

essential variables from a larger set of variables. Feature selection is 

becoming highly significant in statistics, and it plays an important role in 

statistical analysis. LASSO methods are popular among them which helps in 

shrinking some variables exactly to zero. LASSO methods fails if the data 

contains outlier so we come across some robust LASSO techniques and we 

compared the robust LASSO methods and its adaptive version with the 

standard LASSO. In this study it is clear that Adaptive methods selects less 

number of variables when compared with all other LASSO methods. The 

predictive capacity and various other error measurements of Adaptive 

methods is good by choosing a less number of variables from a larger set of 

variables. So the adaptive procedures outperform when compared with the 

other ordinary LASSO methods, especially Adaptive Huber LASSO and 

Adaptive LAD-LASSO can resist to outlier to a large amount. Moreover, the 

study shows that the robust procedures, namely LAD and Huber algorithms 

outperform over the other algorithms in the context of feature selection. A 
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further study in the adaptive based methods is useful to get an improved 

version of the adaptive method or else a better robust loss function with 

penalty factor could able to get better results in feature selection methods. 
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