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Abstract

The aim of this paper is to study g-idempotency of linear combinations of two idempotent
matrices. A complete solution is established to the problem of characterizing all situations,
where a linear combination C = oM + BN of an idempotent matrix M and a tripotent matrix N

is g-idempotent.
1. Introduction

In 2000, Baksalary J. K. and Baksalary O. M. [1] studied the linear
combinations of two idempotent matrices and they have listed a set of
conditions for a linear combination of two idempotent matrices to be
idempotent. The idempotency of linear combinations of an idempotent matrix

and a tripotent matrix was studied in [2].

The concept of g-idempotent matrices was introduced in [4], and the

spectral theory of such matrices were obtained in [5].
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The purpose of this paper is to establish a complete solution to the
problem of characterizing all situations, where the operation of combining
linearly M, an idempotent matrix, and N, a tripotent matrix, preserves the g-
1dempotentcy property.

2. Preliminaries

Let the space of n x n complex matrices be denoted by C™**". Let C" be
the space of complex n-tuples. Let u = (ug, 1y, ug, ..., t,_1) € C". Let G be

the Minkowski metric tensor defined by Gu = (ug, —uy, —Ug, ..., — Up_1)-

1 0
Then the Minkowski metric matrix G is given by G = [0 j and
“4tn-1

G? = I,. Minkowski inner product on C" is defined by (u, v) = (u, Gv),
where (., ) is the conventional Hilbert Space inner product. A space with

Minkowski inner product is called a Minkowski space, which has been
studied by physicists in optics. With respect to the Minkowski inner product

the adjoint of a matrix M e C™" is given by M~ = GM*G, where M" is
the usual Hermitian adjoint.
A matrix M e C™", that satisfies the relation M2 = M is called an

idempotent matrix. If M 3 = M, then M is called tripotent matrix.

It is well known that a tripotent matrix N can uniquely be represented as
a difference of two idempotent matrices, say N; and Ny (i.e., N = N; — Ny),

which are disjoint, in the sense that NNy = NoN; = 0 (cf. Lemma 5.6.6 of
[6)).
If Ny and Ny are non zero, then NV is called an essentially tripotent

matrix, otherwise, N reduces to a scalar multiple of an idempotent matrix.

A matrix X e C", which satisfies MXM = M, XMX =X and
MX = XM, is called group inverse of M, and it is denoted by M*.

A complex matrix M e C™" satisfying M* = M*™! for k=2,3, ... is

called a {k}-group periodic matrix [3].
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A complex matrix M e C™" is said to be g-idempotent, if M = GM?G,

1 0
where G is the Minkowski metric matrix, G = (O J
—in-1

1 0 -1/2 /2
For example, let G = and M = / i/ . Then M is g-
0 -1 3i/2  -1/2

idempotent matrix.

It was proved in [4] that if M is g-idempotent, then it is quadripotent (i.e.,
M* = GMGGMG = GM*G = M).

3. Main Results

In this section we study the g-idempotency of linear combinations of two
commuting idempotent matrices. A set of necessary conditions are given in
Theorem 3.4 for linear combinations of a commuting idempotent matrix and
an essentially tripotent matrix to be g-idempotent.

Lemma 3.1. All g-idempotent matrices are {3}-group periodic.

Proof. Let M be g-idempotent matrix. Then M is quadripotent (i.e.,
M* = M)

Since MM?M = M* = M, M>MM? = M? and MM? = M>M, we have
M* = M2
Thus M is {3}-group periodic.

Remark 3.2. Let M and N be two non zero idempotent matrices. If

M = alN for some o € C (the set of all complex numbers), then o = 1.
Proof. Since M? = (aN)? = o®>N?

a(aN) [+ N? = N]

=aoM [+ M = aN]|

l-o)M =0
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Since M # 0, we have o =1.

Theorem 3.3. Let M and N be two non zero, commuting idempotent

matrices. Then a linear combination C = oM + BN with non zero complex

scalars a and B, is g-idempotent if and only if one of the following conditions
(1) and (2) holds.

(1) M- N =0 holds along with either one of the following sets of

conditions:
@A a+p=0
(i) o +p =1 and MG = GM

(2) M- N =0 holds along with either one of the following sets of

conditions:

@) a=1,B=-1, MN =N and GIM -N)G=M - N
(i) a =0 p=0’-wo MN =N and G(IM - N)G = N
(i) o = 0%, B=w->, MN = N and G(M - N)G = N
(iv) a = o, B = 0, MN =0 and GNG = M
vV a=1,B=1, MN =0 and GIM + N)G =M+ N
vi) a=-1,B=1, MN =M and G(IN-M)G=N-M
(viD) o0 = 0® —, B =, MN = M and G(N - MG = M
(vii)) a0 = 0 — &%, p = ®>, MN = M and GIN-M)G =M
(ix) o = o, B=w, MN =0 and GMG = N.
Proof. Let us assume that C = aM + BN is g-idempotent.
()If M — N =0, then C = (a + B)M.
(2) Since Cis g-idempotent, we have

Gl(o + MG = (o + p)M
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ie., (o0 +BPGMG = (o + B)M [As M is idempotent]
If o +B =0, then C = 0, which is situation (i).
If o + B = 0, then (o + B)GMG = M.

Since M and GMG are two non zero idempotents, we have o + p =1 by

remark 3.2 and hence GM = MG, which is situation (ii).
Conversely,

If M — N =0 holds along with o +p = 0, then we have C = 0, which is
trivially g-idempotent.

If M — N =0 holds along with o + p =1, then we have C = M.

Now

GC?G = GM?G = GMG = MGG = M = C, which implies C is g-
idempotent.

@If M-N =0.
Since Cis g-idempotent, we have
GlaM +BNFG = oM + BN
ie., G(a?M +B%N + 20BMN)G = oM + BN (3.1)

By Lemma 3.1, C = oM + BN is {3}-group periodic. Hence the choice of a

and B must be necessarily one among the following cases by Theorem 3.1 of

(3].
Case 1. o € Qg, the set of all cube roots of unity, and o +p = 0.

By the corresponding sub case 1(b) of Theorem 3.1 of [3], we have
MN = N. It follows from (3.1) that aG(M — N)G = M — N, which implies

o = 1. Therefore G(M — N)G = M — N, which is situation (i).
Case 2. o € Qg and a +f € Q3.

The possibility of B € Qg3 is neglected by Note 2 of Section 3 of [3]. Hence
we have MN = N by sub case 2(b) of Theorem 3.1 of [3].
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Pre and post multiplying (3.1) by NG and GN respectively, we have
(o + B2NG = oNGM + BPNGN (3.2)

(o + BPGN = aMGN + BNGN (3.3)
Post multiplying (3.2) by M and N leads to
(o + BPNGM = oNGM + BNGN (3.4)
(o + BINGN = NGN
It follows that o + p =1 or NGN = 0.

If a+p =1, then it can be proved from (3.2), (3.3) and (3.4) that
GN = NG.

Substituting this in (3.1), we have aG(M — N)G = M — N. By Remark
3.2, we have o =1. This implies that f = 0, a contradiction. Therefore, we

must have NGN = 0.

It follows from (3.4) that (o + B)* = o or NGM = 0.

If NGM = 0, then it follows from (3.2) that NG =0 and then N =0, a

contradiction.

Therefore, we must have (o + B)2 = o Substituting the value of § in (3.1)

we get
aG[M + (a® —1)NIG = M + (0. - 1)N (3.5)

Cubing the above equation, we have GMG = M [since MN = N and

e’ = a=1]
It follows from (3.5) that G(M — N)G = N. [a # 1, otherwise B = 0]

Since o € Qg, we have a = ® or ®’. Hence we have the situation (i1) or (iii).
Case 3. o € Qg and B € Qg.

It is clear that o +p # 0. As before, the possibility of o+ € Qg 1is
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neglected by Note 2 of Section 3 of [3]. Hence we have a + B ¢ {0} UQg and
MN = 0 by sub case 3(b) of Theorem 3.1 of [3]. It follows from (3.1) that

G(o®>M + B2N)G = oM + BN (3.6)

Cubing (3.6), we have
GM+N)G=M+N 3.7
Pre and post multiplying (3.6) by MG and M respectively leads to

oa?MGM = aMGM, which implies o =1 or MGM = 0. Similarly, we get

B =1 or NGN = 0. Hence we have at least one of the following situations.

a. MGM =0 and NGN =0
b.a=1land =1
c. o =1 and NGN =0
d. 3 =1 and MGM =0
(a) Post multiplying (3.7) by N and M leads respectively to
GMGN = N and GNGM = M (3.8
Pre multiplying (3.7) by NG and MG leads respectively to
MG = MGN and NG = NGM (3.9)
It follows from (3.8) and (3.9) that GMG = N and GNG = M

Post multiplying (3.6) by M and N leads respectively to o? = B and
B2 = o

Hence we have the following three possibilities.

2

a=B=l:a=0,p=0 :oczo)Z,Bz(n

Hence the situations (iv) and (v) are obtained.

(b) The condition (3.7) follows immediately from (3.6), which is situation
w).
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(c) Post multiplying (3.6) and (3.7) by N, we have GMGN = BN = N.

Since N # 0, we have B = 1. It leads to the situation (v) again along with
NGN = 0.

(d) This is similar to the sub case (c) and it turns again to the situation

@av).

Interchanging o and B in cases 1 to 3 and also the role of M and N are
interchanged, we see that the conditions (vi) to (ix) are obtained.

By substituting the corresponding sets of conditions (i) to (ix) in (3.1), the
sufficiency follow.

Theorem 3.4. Let N € C" be an essentially tripotent matrix uniquely
decomposed as N = N; — Ny, where Ny and N, are non-zero idempotent

matrices such that NNy =0 = N;Ny. Let M e C"" be a non-zero
idempotent matrix such that MN = NM. If a linear combination
C = oM + BN with non-zero a, € C, is a g-idempotent matrix then at least

one of the following sets of conditions necessarily hold.

ia=3,p=-5, MN,GN; = N,GN{M and MNyGNy = NyGNoM,

i o = %, B = —%, MN,GN, = NyGN;M and NyGNoM = 0,

i o = 2, B = -2, MN,GN; = NyGN; M and MN5GNj = 0,

iv. o+ B =0, MN;GN; = NGNyM and MN,GNy = 0 = NyGNoM,
v.a=2p=1 MN,GN; = 0 = N\GNyM and NoGNy = NyGN,M,

:5i§ﬁ,5=‘3§lﬁ,NlaNlM=0 and ~ MN,GN,

V1. a

= No,GN,M,

vii. @ = 2+ V2, p =1+ 2, MN,GN; = 0 and MN,GN, = NoGN,M,

Vill. o — B = 1, WlGNlM =0 and WQGNZ = NZGNzM
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The remaining conditions are obtained from (i) to (viii) by interchanging
with -p and N; with No. If the choice of o and B differ from all the above

conditions then

MN,GN;M = 0 = MN;GN,M.

N + N2

Proof. Since N = N; — N,, we have N?2 = N; + Ny. So N, = 5

NZ_N

and N2 = 9

Then it is easy to prove that MN = NM holds if and only if
MN; = NyM and MNy = NoM.

Let the matrix C = aM + BIN; — BNy be g-idempotent. Then
Gla®M + B2Nj + p2Ny + 208 MN; — 20BMN5 |G = oM + BN; — BNy (3.10)
Pre and post multiplying (3.10) by N;G and N; respectively, we have
[0®MN; + B2N; + 20BMN; JIGN; = N;G[aMN; + BV, ] (3.11)
Pre and post multiplying (3.11) by M, we have
o+ B =0 otherwise a +f =1 or MN;GN{M =0 (3.12)

Similarly, pre and post multiplying (3.10) by NoG and N, respectively,

we get
[0®?MNy + B?Ny, — 20BMN JGNo = NoG[oMNy, — BNy ] (3.13)
Pre and post multiplying (3.13) by M, we have
o — B =0 otherwise a —p =1 or MNsGNyM =0 (3.14)

The two sets of situations (3.12) and (3.14) will give the following
different cases.

Casel.a+pf=0and a-pf=0

This case is not possible as it leads to B = 0, a contradiction.
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Case2.0+pB=0and a-p=1

This gives o = % and B = —%. Now the equation (3.11) implies that

%NlGNl _ %NIGNIM ; % MN,GN, (3.15)

Pre and post multiplying (3.15) by M, we have MN;GN; = N;GN; M.
Similarly, we get MNoGN9 = NoGNoM, which is situation (i)
Case 3. a +p = 0 and MNy,GNoM =0
It follows from (3.11) that
(o +1)N;GN; = N;GN; M + o.MN,GN; (3.16)

Pre and post multiplying (3.16) by M, we have MN;GN; = N;GN; M.
From (3.13), we have

3aMN9GNy + (o0 — 1)NoGNg = NoGNo M (3.17)
Pre and post multiplying (3.17) by M, we have respectively,

(40 —1)MNyGN,, = 0
and

(a — 2)N2GN2M =0

If o = %, then P = —% and NoGNoM = 0, which is (ii).

If o = 2, then B = -2 and MNyGNoM = 0, which is (iii).
Otherwise MNoGN,y = 0 = NoGNy M, which is (iv).
Cased.a0+pf=1anda-pP=1

This leads to B = 0, a contradiction.

Case 5. a — B =1 and MN;GN;M =0

It follows from (3.13) that
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(2 — 0)MN,GNy + (o0 —1)N9gGNg = NoGNo M (3.18)
Pre and post multiplying the above by M, we get
(o0 — 2)NoGNyM = (oo — 2)MNoGNo, (3.19)
From (3.11), we see that
(o = 80 + 2)N;GN; + (302 — 20)MN;GN; = aN;GN; M (3.20)
Pre and post multiplying (3.20) by M, we get, respectively
(40® - 5a. + 2)MN;GN; = 0 (3.21)
and
(o - 40 + 2)N;GN; M = 0 (3.22)
Now
(a) Consider (3.19). If a =2, then Bp=1. From (3.18), we have
NyGNy = NoGNoM. It  follows from (3.21) and (3.22) that
MN;GN; = 0 = N;GN; M, which is (v).

5+ V7
8

from (3.19) and (3.22) that MN,GN, = N,GNoM and N;GN;M = 0, which

3+iv7
8

(b) Considering (3.21), if o = , then B =— . It follows

is (vi).

(¢) Considering (3.22), if o =2+ V2, then =1+ V2. 1t follows from
(3.19) and (3.21) that MNoGNy = NoGNoM and MN;GN; = 0, which is
(vii).

(d) If o differs from all the above three sub cases (a) to (c), then by (3.19),
we have MNoGNy = NoGNoM, which is (viii).

The remaining sets of conditions are obtained from the above cases 1 to 5
by interchanging f with -f and N; with Ny. If o and B do not obey any of the
above cases, then the only possibility is MIN{GN{M = MNoGNoM.

Advances and Applications in Mathematical Sciences, Volume 21, Issue 10, August 2022



5958 B. VASUDEVAN and N. ANIS FATHIMA
References

[1] J. K. Baksalary and O. M. Baksalary, Idempotency of linear combinations of two
idempotent matrices, Linear Algebra Appl. 321 (2000), 3-7.

[2] J. K. Baksalary, O. M. Baksalary and G. P. H. Styan, Idempotency of linear
combinations of an idempotent and a tripotent matrix, Lin. Alg. Appl. 354 (2002), 21-34.

[3] Benitez and N. Thome, {k}-group periodic matrices, STAM. J. Matrix Anal. Appl. 18(1)
(2006), 9-25.

[4] B. Vasudevan and N. Anis Fathima, Idempotent matrices in Minkowski Space, Advances
and Applications in Disc. Maths. 24(2) (2020), 165-177.

[6] B. Vasudevan and N. Anis Fathima, Spectral theory of g-idempotent matrices, Global
Journal of Pure and Applied Mathematics 16(6) (2020), 771-782.

[6] C. R. Rao and S. K. Mitra, Generalized Inverse of Matrices and its applications, John
Wiley and Sons, New York, 1971.

Advances and Applications in Mathematical Sciences, Volume 21, Issue 10, August 2022



