# g-IDEMPOTENCY OF LINEAR COMBINATIONS OF TWO IDEMPOTENT MATRICES 

B. VASUDEVAN ${ }^{1 *}$ and N. ANIS FATHIMA ${ }^{2}$<br>${ }^{1}$ Assistant Professor of Mathematics<br>Thiru. Vi. Ka. Government Arts College<br>Tiruvarur, India<br>${ }^{2}$ Research Scholar (PT)<br>Governmrent Arts College (Autonomous)<br>Kumbakonam, India<br>Affiliated to Bharathidasan University<br>Tiruchirappalli, Tamilnadu, India<br>E-mail: anisaadhila@gmail.com


#### Abstract

The aim of this paper is to study $g$-idempotency of linear combinations of two idempotent matrices. A complete solution is established to the problem of characterizing all situations, where a linear combination $C=\alpha M+\beta N$ of an idempotent matrix $M$ and a tripotent matrix $N$ is $g$-idempotent.


## 1. Introduction

In 2000, Baksalary J. K. and Baksalary O. M. [1] studied the linear combinations of two idempotent matrices and they have listed a set of conditions for a linear combination of two idempotent matrices to be idempotent. The idempotency of linear combinations of an idempotent matrix and a tripotent matrix was studied in [2].

The concept of $g$-idempotent matrices was introduced in [4], and the spectral theory of such matrices were obtained in [5].

2020 Mathematics Subject Classification: 15A57, 15A15, 15A12.
Keywords: g-idempotent matrix, idempotent matrix, tripotent matrix, essentially tripotent matrix.
*Corresponding author; E-mail: vasudevb4u@gmail.com
Received June 24, 2021; Accepted November 11, 2021

The purpose of this paper is to establish a complete solution to the problem of characterizing all situations, where the operation of combining linearly $M$, an idempotent matrix, and $N$, a tripotent matrix, preserves the $g$ idempotentcy property.

## 2. Preliminaries

Let the space of $n \times n$ complex matrices be denoted by $\mathbb{C}^{n \times n}$. Let $\mathbb{C}^{n}$ be the space of complex $n$-tuples. Let $u=\left(u_{0}, u_{1}, u_{2}, \ldots, u_{n-1}\right) \in \mathbb{C}^{n}$. Let $G$ be the Minkowski metric tensor defined by $G u=\left(u_{0},-u_{1},-u_{2}, \ldots,-u_{n-1}\right)$. Then the Minkowski metric matrix $G$ is given by $G=\left(\begin{array}{cc}1 & 0 \\ 0 & -I_{n-1}\end{array}\right)$ and $G^{2}=I_{n}$. Minkowski inner product on $\mathbb{C}^{n}$ is defined by $(u, v)=\langle u, G v\rangle$, where $\langle\cdot, \cdot\rangle$ is the conventional Hilbert Space inner product. A space with Minkowski inner product is called a Minkowski space, which has been studied by physicists in optics. With respect to the Minkowski inner product the adjoint of a matrix $M \in \mathbb{C}^{n \times n}$ is given by $M^{\sim}=G M^{*} G$, where $M^{*}$ is the usual Hermitian adjoint.

A matrix $M \in \mathbb{C}^{n \times n}$, that satisfies the relation $M^{2}=M$ is called an idempotent matrix. If $M^{3}=M$, then $M$ is called tripotent matrix.

It is well known that a tripotent matrix $N$ can uniquely be represented as a difference of two idempotent matrices, say $N_{1}$ and $N_{2}$ (i.e., $N=N_{1}-N_{2}$ ), which are disjoint, in the sense that $N_{1} N_{2}=N_{2} N_{1}=0$ (cf. Lemma 5.6.6 of [6]).

If $N_{1}$ and $N_{2}$ are non zero, then $N$ is called an essentially tripotent matrix, otherwise, $N$ reduces to a scalar multiple of an idempotent matrix.

A matrix $X \in \mathbb{C}^{n \times n}$, which satisfies $M X M=M, X M X=X$ and $M X=X M$, is called group inverse of $M$, and it is denoted by $M^{\#}$.

A complex matrix $M \in \mathbb{C}^{n \times n}$ satisfying $M^{\#}=M^{k-1}$ for $k=2,3, \ldots$ is called a $\{k\}$-group periodic matrix [3].

A complex matrix $M \in \mathbb{C}^{n \times n}$ is said to be $g$-idempotent, if $M=G M^{2} G$, where $G$ is the Minkowski metric matrix, $G=\left(\begin{array}{cc}1 & 0 \\ 0 & -I_{n-1}\end{array}\right)$.

For example, let $G=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ and $M=\left(\begin{array}{cc}-1 / 2 & i / 2 \\ 3 i / 2 & -1 / 2\end{array}\right)$. Then $M$ is $g$. idempotent matrix.

It was proved in [4] that if $M$ is $g$-idempotent, then it is quadripotent (i.e., $\left.M^{4}=G M G G M G=G M^{2} G=M\right)$.

## 3. Main Results

In this section we study the $g$-idempotency of linear combinations of two commuting idempotent matrices. A set of necessary conditions are given in Theorem 3.4 for linear combinations of a commuting idempotent matrix and an essentially tripotent matrix to be $g$-idempotent.

Lemma 3.1. All g-idempotent matrices are $\{3\}$-group periodic.
Proof. Let $M$ be $g$-idempotent matrix. Then $M$ is quadripotent (i.e., $\left.M^{4}=M\right)$.

Since $M M^{2} M=M^{4}=M, M^{2} M M^{2}=M^{2}$ and $M M^{2}=M^{2} M$, we have $M^{\#}=M^{2}$.

Thus $M$ is $\{3\}$-group periodic.
Remark 3.2. Let $M$ and $N$ be two non zero idempotent matrices. If $M=\alpha N$ for some $\alpha \in \mathbb{C}$ (the set of all complex numbers), then $\alpha=1$.

Proof. Since $M^{2}=(\alpha N)^{2}=\alpha^{2} N^{2}$

$$
\begin{aligned}
& =\alpha(\alpha N)\left[\because N^{2}=N\right] \\
& =\alpha M[\because M=\alpha N] \\
& (1-\alpha) M=0
\end{aligned}
$$

Since $M \neq 0$, we have $\alpha=1$.
Theorem 3.3. Let $M$ and $N$ be two non zero, commuting idempotent matrices. Then a linear combination $C=\alpha M+\beta N$ with non zero complex scalars $\alpha$ and $\beta$, is g-idempotent if and only if one of the following conditions (1) and (2) holds.
(1) $M-N=0$ holds along with either one of the following sets of conditions:
(i) $\alpha+\beta=0$
(ii) $\alpha+\beta=1$ and $M G=G M$
(2) $M-N \neq 0$ holds along with either one of the following sets of conditions:
(i) $\alpha=1, \beta=-1, M N=N$ and $G(M-N) G=M-N$
(ii) $\alpha=\omega, \beta=\omega^{2}-\omega, M N=N$ and $G(M-N) G=N$
(iii) $\alpha=\omega^{2}, \beta=\omega-\omega^{2}, M N=N$ and $G(M-N) G=N$
(iv) $\alpha=\omega, \beta=\omega^{2}, M N=0$ and $G N G=M$
(v) $\alpha=1, \beta=1, M N=0$ and $G(M+N) G=M+N$
(vi) $\alpha=-1, \beta=1, M N=M$ and $G(N-M) G=N-M$
(vii) $\alpha=\omega^{2}-\omega, \beta=\omega, M N=M$ and $G(N-M) G=M$
(viii) $\alpha=\omega-\omega^{2}, \beta=\omega^{2}, M N=M$ and $G(N-M) G=M$
(ix) $\alpha=\omega^{2}, \beta=\omega, M N=0$ and $G M G=N$.

Proof. Let us assume that $C=\alpha M+\beta N$ is $g$-idempotent.
(1) If $M-N=0$, then $C=(\alpha+\beta) M$.
(2) Since $C$ is $g$-idempotent, we have

$$
G[(\alpha+\beta) M]^{2} G=(\alpha+\beta) M
$$

i.e., $(\alpha+\beta)^{2} G M G=(\alpha+\beta) M$ [As $M$ is idempotent]

If $\alpha+\beta=0$, then $C=0$, which is situation (i).
If $\alpha+\beta \neq 0$, then $(\alpha+\beta) G M G=M$.
Since $M$ and $G M G$ are two non zero idempotents, we have $\alpha+\beta=1$ by remark 3.2 and hence $G M=M G$, which is situation (ii).

Conversely,
If $M-N=0$ holds along with $\alpha+\beta=0$, then we have $C=0$, which is trivially $g$-idempotent.

If $M-N=0$ holds along with $\alpha+\beta=1$, then we have $C=M$.
Now

$$
G C^{2} G=G M^{2} G=G M G=M G G=M=C, \quad \text { which implies } C \text { is } g \text {. }
$$ idempotent.

(2) If $M-N \neq 0$.

Since $C$ is $g$-idempotent, we have

$$
\begin{align*}
& \qquad G[\alpha M+\beta N]^{2} G=\alpha M+\beta N \\
& \text { i.e., } G\left(\alpha^{2} M+\beta^{2} N+2 \alpha \beta M N\right) G=\alpha M+\beta N \tag{3.1}
\end{align*}
$$

By Lemma 3.1, $C=\alpha M+\beta N$ is $\{3\}$-group periodic. Hence the choice of $\alpha$ and $\beta$ must be necessarily one among the following cases by Theorem 3.1 of [3].

Case 1. $\alpha \in \Omega_{3}$, the set of all cube roots of unity, and $\alpha+\beta=0$.
By the corresponding sub case 1(b) of Theorem 3.1 of [3], we have $M N=N$. It follows from (3.1) that $\alpha G(M-N) G=M-N$, which implies $\alpha=1$. Therefore $G(M-N) G=M-N$, which is situation (i).

Case 2. $\alpha \in \Omega_{3}$ and $\alpha+\beta \in \Omega_{3}$.
The possibility of $\beta \in \Omega_{3}$ is neglected by Note 2 of Section 3 of [3]. Hence we have $M N=N$ by sub case 2(b) of Theorem 3.1 of [3].

Pre and post multiplying (3.1) by $N G$ and $G N$ respectively, we have

$$
\begin{align*}
& (\alpha+\beta)^{2} N G=\alpha N G M+\beta N G N  \tag{3.2}\\
& (\alpha+\beta)^{2} G N=\alpha M G N+\beta N G N \tag{3.3}
\end{align*}
$$

Post multiplying (3.2) by $M$ and $N$ leads to

$$
\begin{gather*}
(\alpha+\beta)^{2} N G M=\alpha N G M+\beta N G N  \tag{3.4}\\
(\alpha+\beta) N G N=N G N
\end{gather*}
$$

It follows that $\alpha+\beta=1$ or $N G N=0$.
If $\alpha+\beta=1$, then it can be proved from (3.2), (3.3) and (3.4) that $G N=N G$.

Substituting this in (3.1), we have $\alpha G(M-N) G=M-N$. By Remark 3.2, we have $\alpha=1$. This implies that $\beta=0$, a contradiction. Therefore, we must have $N G N=0$.

It follows from (3.4) that $(\alpha+\beta)^{2}=\alpha$ or $N G M=0$.

If $N G M=0$, then it follows from (3.2) that $N G=0$ and then $N=0$, a contradiction.

Therefore, we must have $(\alpha+\beta)^{2}=\alpha$. Substituting the value of $\beta$ in (3.1) we get

$$
\begin{equation*}
\alpha G\left[M+\left(\alpha^{2}-1\right) N\right] G=M+(\alpha-1) N \tag{3.5}
\end{equation*}
$$

Cubing the above equation, we have $G M G=M$ [since $M N=N$ and $\left.\in \Omega^{2} \Rightarrow \alpha=1\right]$

It follows from (3.5) that $G(M-N) G=N . \quad[\alpha \neq 1$, otherwise $\beta=0]$. Since $\alpha \in \Omega_{3}$, we have $\alpha=\omega$ or $\omega^{2}$. Hence we have the situation (ii) or (iii).

Case 3. $\alpha \in \Omega_{3}$ and $\beta \in \Omega_{3}$.

It is clear that $\alpha+\beta \neq 0$. As before, the possibility of $\alpha+\beta \in \Omega_{3}$ is
neglected by Note 2 of Section 3 of [3]. Hence we have $\alpha+\beta \notin\{0\} \cup \Omega_{3}$ and $M N=0$ by sub case 3(b) of Theorem 3.1 of [3]. It follows from (3.1) that

$$
\begin{equation*}
G\left(\alpha^{2} M+\beta^{2} N\right) G=\alpha M+\beta N \tag{3.6}
\end{equation*}
$$

Cubing (3.6), we have

$$
\begin{equation*}
G(M+N) G=M+N \tag{3.7}
\end{equation*}
$$

Pre and post multiplying (3.6) by $M G$ and $M$ respectively leads to $\alpha^{2} M G M=\alpha M G M$, which implies $\alpha=1$ or $M G M=0$. Similarly, we get $\beta=1$ or $N G N=0$. Hence we have at least one of the following situations.
a. $M G M=0$ and $N G N=0$
b. $\alpha=1$ and $\beta=1$
c. $\alpha=1$ and $N G N=0$
d. $\beta=1$ and $M G M=0$
(a) Post multiplying (3.7) by $N$ and $M$ leads respectively to

$$
\begin{equation*}
G M G N=N \text { and } G N G M=M \tag{3.8}
\end{equation*}
$$

Pre multiplying (3.7) by $N G$ and $M G$ leads respectively to

$$
\begin{equation*}
M G=M G N \text { and } N G=N G M \tag{3.9}
\end{equation*}
$$

It follows from (3.8) and (3.9) that $G M G=N$ and $G N G=M$
Post multiplying (3.6) by $M$ and $N$ leads respectively to $\alpha^{2}=\beta$ and $\beta^{2}=\alpha$.

Hence we have the following three possibilities.

$$
\alpha=\beta=1: \alpha=\omega, \beta=\omega^{2}: \alpha=\omega^{2}, \beta=\omega
$$

Hence the situations (iv) and (v) are obtained.
(b) The condition (3.7) follows immediately from (3.6), which is situation (v).
(c) Post multiplying (3.6) and (3.7) by $N$, we have $G M G N=\beta N=N$.

Since $N \neq 0$, we have $\beta=1$. It leads to the situation (v) again along with $N G N=0$.
(d) This is similar to the sub case (c) and it turns again to the situation (iv).

Interchanging $\alpha$ and $\beta$ in cases 1 to 3 and also the role of $M$ and $N$ are interchanged, we see that the conditions (vi) to (ix) are obtained.

By substituting the corresponding sets of conditions (i) to (ix) in (3.1), the sufficiency follow.

Theorem 3.4. Let $N \in \mathbb{C}^{n \times n}$ be an essentially tripotent matrix uniquely decomposed as $N=N_{1}-N_{2}$, where $N_{1}$ and $N_{2}$ are non-zero idempotent matrices such that $N_{1} N_{2}=0=N_{1} N_{2}$. Let $M \in \mathbb{C}^{n \times n}$ be a non-zero idempotent matrix such that $M N=N M$. If a linear combination $C=\alpha M+\beta N$ with non-zero $\alpha, \beta \in C$, is a g-idempotent matrix then at least one of the following sets of conditions necessarily hold.
i. $\alpha=\frac{1}{2}, \beta=-\frac{1}{2}, M N_{1} G N_{1}=N_{1} G N_{1} M$ and $M N_{2} G N_{2}=N_{2} G N_{2} M$,
ii. $\alpha=\frac{1}{4}, \beta=-\frac{1}{4}, M N_{1} G N_{1}=N_{1} G N_{1} M$ and $N_{2} G N_{2} M=0$,
iii. $\alpha=2, \beta=-2, M N_{1} G N_{1}=N_{1} G N_{1} M$ and $M N_{2} G N_{2}=0$,
iv. $\alpha+\beta=0, M N_{1} G N_{1}=N_{1} G N_{1} M$ and $M N_{2} G N_{2}=0=N_{2} G N_{2} M$,
v. $\alpha=2, \beta=1, M N_{1} G N_{1}=0=N_{1} G N_{1} M$ and $N_{2} G N_{2}=N_{2} G N_{2} M$,
vi. $\quad \alpha=\frac{5 \pm i \sqrt{7}}{8}, \beta=\frac{-3 \pm i \sqrt{7}}{8}, N_{1} G N_{1} M=0 \quad$ and $\quad M N_{2} G N_{2}$ $=N_{2} G N_{2} M$,
vii. $\alpha=2 \pm \sqrt{2}, \beta=1 \pm \sqrt{2}, M N_{1} G N_{1}=0$ and $M N_{2} G N_{2}=N_{2} G N_{2} M$,
viii. $\alpha-\beta=1, M N_{1} G N_{1} M=0$ and $M N_{2} G N_{2}=N_{2} G N_{2} M$

The remaining conditions are obtained from (i) to (viii) by interchanging $\beta$ with $-\beta$ and $N_{1}$ with $N_{2}$. If the choice of $\alpha$ and $\beta$ differ from all the above conditions then

$$
M N_{1} G N_{1} M=0=M N_{2} G N_{2} M
$$

Proof. Since $N=N_{1}-N_{2}$, we have $N^{2}=N_{1}+N_{2}$. So $N_{1}=\frac{N+N^{2}}{2}$ and $N_{2}=\frac{N^{2}-N}{2}$.

Then it is easy to prove that $M N=N M$ holds if and only if $M N_{1}=N_{1} M$ and $M N_{2}=N_{2} M$.

Let the matrix $C=\alpha M+\beta N_{1}-\beta N_{2}$ be $g$-idempotent. Then

$$
\begin{equation*}
G\left[\alpha^{2} M+\beta^{2} N_{1}+\beta^{2} N_{2}+2 \alpha \beta M N_{1}-2 \alpha \beta M N_{2}\right] G=\alpha M+\beta N_{1}-\beta N_{2} \tag{3.10}
\end{equation*}
$$

Pre and post multiplying (3.10) by $N_{1} G$ and $N_{1}$ respectively, we have

$$
\begin{equation*}
\left[\alpha^{2} M N_{1}+\beta^{2} N_{1}+2 \alpha \beta M N_{1}\right] G N_{1}=N_{1} G\left[\alpha M N_{1}+\beta N_{1}\right] \tag{3.11}
\end{equation*}
$$

Pre and post multiplying (3.11) by $M$, we have

$$
\begin{equation*}
\alpha+\beta=0 \text { otherwise } \alpha+\beta=1 \text { or } M N_{1} G N_{1} M=0 \tag{3.12}
\end{equation*}
$$

Similarly, pre and post multiplying (3.10) by $N_{2} G$ and $N_{2}$ respectively, we get

$$
\begin{equation*}
\left[\alpha^{2} M N_{2}+\beta^{2} N_{2}-2 \alpha \beta M N_{2}\right] G N_{2}=N_{2} G\left[\alpha M N_{2}-\beta N_{2}\right] \tag{3.13}
\end{equation*}
$$

Pre and post multiplying (3.13) by $M$, we have

$$
\begin{equation*}
\alpha-\beta=0 \text { otherwise } \alpha-\beta=1 \text { or } M N_{2} G N_{2} M=0 \tag{3.14}
\end{equation*}
$$

The two sets of situations (3.12) and (3.14) will give the following different cases.

Case 1. $\alpha+\beta=0$ and $\alpha-\beta=0$
This case is not possible as it leads to $\beta=0$, a contradiction.

Case 2. $\alpha+\beta=0$ and $\alpha-\beta=1$
This gives $\alpha=\frac{1}{2}$ and $\beta=-\frac{1}{2}$. Now the equation (3.11) implies that

$$
\begin{equation*}
\frac{3}{4} N_{1} G N_{1}=\frac{1}{2} N_{1} G N_{1} M+\frac{1}{4} M N_{1} G N_{1} \tag{3.15}
\end{equation*}
$$

Pre and post multiplying (3.15) by $M$, we have $M N_{1} G N_{1}=N_{1} G N_{1} M$.
Similarly, we get $M N_{2} G N_{2}=N_{2} G N_{2} M$, which is situation (i)
Case 3. $\alpha+\beta=0$ and $M N_{2} G N_{2} M=0$
It follows from (3.11) that

$$
\begin{equation*}
(\alpha+1) N_{1} G N_{1}=N_{1} G N_{1} M+\alpha M N_{1} G N_{1} \tag{3.16}
\end{equation*}
$$

Pre and post multiplying (3.16) by $M$, we have $M N_{1} G N_{1}=N_{1} G N_{1} M$.
From (3.13), we have

$$
\begin{equation*}
3 \alpha M N_{2} G N_{2}+(\alpha-1) N_{2} G N_{2}=N_{2} G N_{2} M \tag{3.17}
\end{equation*}
$$

Pre and post multiplying (3.17) by $M$, we have respectively,

$$
(4 \alpha-1) M N_{2} G N_{2}=0
$$

and

$$
(\alpha-2) N_{2} G N_{2} M=0
$$

If $\alpha=\frac{1}{4}$, then $\beta=-\frac{1}{4}$ and $N_{2} G N_{2} M=0$, which is (ii).
If $\alpha=2$, then $\beta=-2$ and $M N_{2} G N_{2} M=0$, which is (iii).
Otherwise $M N_{2} G N_{2}=0=N_{2} G N_{2} M$, which is (iv).
Case 4. $\alpha+\beta=1$ and $\alpha-\beta=1$
This leads to $\beta=0$, a contradiction.
Case 5. $\alpha-\beta=1$ and $M N_{1} G N_{1} M=0$
It follows from (3.13) that

$$
\begin{equation*}
(2-\alpha) M N_{2} G N_{2}+(\alpha-1) N_{2} G N_{2}=N_{2} G N_{2} M \tag{3.18}
\end{equation*}
$$

Pre and post multiplying the above by $M$, we get

$$
\begin{equation*}
(\alpha-2) N_{2} G N_{2} M=(\alpha-2) M N_{2} G N_{2} \tag{3.19}
\end{equation*}
$$

From (3.11), we see that

$$
\begin{equation*}
\left(\alpha^{2}-3 \alpha+2\right) N_{1} G N_{1}+\left(3 \alpha^{2}-2 \alpha\right) M N_{1} G N_{1}=\alpha N_{1} G N_{1} M \tag{3.20}
\end{equation*}
$$

Pre and post multiplying (3.20) by $M$, we get, respectively

$$
\begin{equation*}
\left(4 \alpha^{2}-5 \alpha+2\right) M N_{1} G N_{1}=0 \tag{3.21}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\alpha^{2}-4 \alpha+2\right) N_{1} G N_{1} M=0 \tag{3.22}
\end{equation*}
$$

Now
(a) Consider (3.19). If $\alpha=2$, then $\beta=1$. From (3.18), we have $N_{2} G N_{2}=N_{2} G N_{2} M$. It follows from (3.21) and (3.22) that $M N_{1} G N_{1}=0=N_{1} G N_{1} M$, which is (v).
(b) Considering (3.21), if $\alpha=\frac{5 \pm i \sqrt{7}}{8}$, then $\beta=\frac{-3 \pm i \sqrt{7}}{8}$. It follows from (3.19) and (3.22) that $M N_{2} G N_{2}=N_{2} G N_{2} M$ and $N_{1} G N_{1} M=0$, which is (vi).
(c) Considering (3.22), if $\alpha=2 \pm \sqrt{2}$, then $\beta=1 \pm \sqrt{2}$. It follows from (3.19) and (3.21) that $M N_{2} G N_{2}=N_{2} G N_{2} M$ and $M N_{1} G N_{1}=0$, which is (vii).
(d) If $\alpha$ differs from all the above three sub cases (a) to (c), then by (3.19), we have $M N_{2} G N_{2}=N_{2} G N_{2} M$, which is (viii).

The remaining sets of conditions are obtained from the above cases 1 to 5 by interchanging $\beta$ with $-\beta$ and $N_{1}$ with $N_{2}$. If $\alpha$ and $\beta$ do not obey any of the above cases, then the only possibility is $M N_{1} G N_{1} M=M N_{2} G N_{2} M$.

## References

[1] J. K. Baksalary and O. M. Baksalary, Idempotency of linear combinations of two idempotent matrices, Linear Algebra Appl. 321 (2000), 3-7.
[2] J. K. Baksalary, O. M. Baksalary and G. P. H. Styan, Idempotency of linear combinations of an idempotent and a tripotent matrix, Lin. Alg. Appl. 354 (2002), 21-34.
[3] Benitez and N. Thome, $\{k\}$-group periodic matrices, SIAM. J. Matrix Anal. Appl. 18(1) (2006), 9-25.
[4] B. Vasudevan and N. Anis Fathima, Idempotent matrices in Minkowski Space, Advances and Applications in Disc. Maths. 24(2) (2020), 165-177.
[5] B. Vasudevan and N. Anis Fathima, Spectral theory of $g$-idempotent matrices, Global Journal of Pure and Applied Mathematics 16(6) (2020), 771-782.
[6] C. R. Rao and S. K. Mitra, Generalized Inverse of Matrices and its applications, John Wiley and Sons, New York, 1971.

