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Abstract 

A subset D of vertices in G is called dominating set if every vertex not in D has at least one 

neighbor in D. An edge Steiner set of G is a set  GVW   such that every edge of G is 

contained in a Steiner W-tree of G. The edge Steiner number  Gse  of W is the minimum order 

of its edge Steiner set and any edge Steiner set of order  Gse  is an edge Steiner set of G. A set 

of vertices W in G is called an edge Steiner dominating set of G if W is both edge Steiner set and 

a dominating set of G. The minimum cardinality of an edge Steiner dominating set of G is its 

edge Steiner domination number and is denoted by  .Gse  An edge Steiner dominating set of 

size  Gse  is said to be a -se set of G. The edge Steiner domination number of certain classes 

of graphs is determined. Necessary conditions for connected graphs of order with edge Steiner 

domination number p or 1p  are given. It is shown that for every two integers a and b with 
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,2 ba   there exists a connected graph G such that   aGs   and   ,bGse   where  Gs  

is the Steiner domination number of a graph. 

1. Introduction 

By a graph  ,, EVG   we mean a finite undirected connected graph 

without loops or multiple edges. The order and size of G are denoted by p and 

q respectively. 

The distance  vud ,  between two vertices u and v in a connected graph G 

is the length of a shortest vu   path in G. An vu   path of length  vud ,  is 

called an vu   geodesic. A set of vertices D in a graph G is a dominating set 

if each vertex of G is dominated by some vertex of D. The domination number 

 G  of G is the minimum cardinality of a dominating set of G. For a 

nonempty set W of vertices in a connected graph G, the Steiner distance 

 Wd  of W is the minimum size of a connected subgraph of G containing W. 

Necessarily, each such subgraph is a tree and is called a Steiner tree with 

respect to W or a Steiner W-tree It is to be noted that    ,, vudWd   when 

 ., vuW   The set of all vertices of G that lie on some Steiner W-tree is 

denoted by  .WS  If   ,VWS   then W is called a Steiner set for G. A Steiner 

set of minimum cardinality is a minimum Steiner set or simply a s-set of G 

and this cardinality is the Steiner number  Gs  of G. A set  GVW   is 

called an edge Steiner set of G if every edge of G is contained in a Steiner W-

tree of G. The edge Steiner number  Gse  of G is the minimum cardinality of 

its edge Steiner sets and any edge Steiner set of cardinality  Gse  is a edge 

Steiner set of G. A set of vertices W in G is called a Steiner dominating set if 

W is both a Steiner and a dominating set. The minimum cardinality of a 

Steiner dominating set of G is its Steiner domination number and is denoted 

by  Gs  is said to be a -s set of G. The following theorem is used in sequel. 

Theorem 1.1 [13]. Each extreme vertex of G belongs to edge Steiner set of 

G. 

2. The Edge Steiner Domination Number of a Graph 

Definition 2.1. Let G be a connected graph of order at least three 
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vertices. A set of vertices W in G is called an edge Steiner dominating set of G 

if W is both an edge Steiner set and a dominating set of G. The minimum 

cardinality of an edge Steiner dominating set of G is its edge Steiner 

domination number and is denoted by  .Gse  An edge Steiner dominating 

set of G size  Gse  is said to be a  -Gse set of G. 

Example 2.2. Consider the graph G given in Figure 2.1. The set 

 421 ,, vvvW   is an edge Steiner dominating set for G so that   .3 Gse  

 

Figure 2.1. 

Remark 2.3. Consider the graph G given in Figure 2.1. The set 

 42 , vvW   is a Steiner dominating set of G so that   .2 Gs  Thus the 

Steiner domination number and the edge Steiner domination number of a 

graph are different. 

Remark 2.4. There can be more than one edge Steiner domination set for 

a graph. Consider the graph G given in Figure 2.2,  8521 ,,, vvvvW   and 

 65411 ,,, vvvvW   are two -se sets. 

 

Figure 2.2. 

Theorem 2.5. Each extreme vertex G of belongs to every edge Steiner 

dominating set of G. 
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Proof. This follows from Theorem 1.1.  

Observation 2.6. Let G be a connected graph and v be a cut-vertex of G. 

Then every edge Steiner dominating set contains at least one element from 

each component of  .vG    

Observation 2.7. If G is a connected graph of order p, then 

       .,max2 pGGGs see    

In the following we determine the edge Steiner dominating number of 

some standard graphs. 

Theorem 2.8. For the complete graph     .,2 pKpK psep    

Proof. Since every vertex of the complete graph  2pK p  is an extreme 

vertex by Observation 2.5, the vertex set of pK  is the unique edge Steiner 

dominating set of .pK  Thus   .pK pse    

Theorem 2.9. For a connected graph G of order   2,2  GP se  if and 

only if there exists an edge Steiner dominating set  vuW ,  of G such that 

  .3, vud  

Proof. First, assume that   .2 Gse  Let  vuW ,  be an edge Steiner 

dominating set of G. Suppose that   .4, vud  Then consider the diametrical 

path, say P contains at least three internal vertices and hence   ,3 Gse  

which is a contradiction. Therefore   .3, vud  The converse is clear. 

Theorem 2.10. Let G be a connected graph of order 3p  with at least 

one universal vertex. Then  vN  is a subset of every edge Steiner dominating 

set of G. 

Proof. Let v be a vertex of degree 1p  and    .,,, 121  pvvvvN   

Let W be an edge Steiner set of G. Suppose that .1 Wv   Then the edge 1vv  

lies on a Steiner W-tree of G, say T. Since 11 , vWv   is not an end vertex of 

T. Let 1T  be a tree obtained from T by removing the vertex 1v  in T and 

joining all the neighbors of 1v  other than v in T to v. Then 1T  is a Steiner W-

tree such that     111  TVTV  which is a contradiction to 1T  a Steiner 

W-tree. Therefore  vN  is a Steiner subset of every edge dominating set. 
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Corollary 2.11. Let G be a connected graph G with at least one Universal 

vertex. Then   .1 pGse   

Proof. This follows from Theorem 2.10. 

Theorem 2.12. For a connected graph G with v a Universal vertex, 

(i) if v is a cut vertex of G, then   .1 pGse   

(ii) if v is not a cut vertex of G, then   .pGse    

Proof. By Corollary 2.11   .1 pGse   

(i) Let  .vNW   Then W is an edge Steiner dominating set of G so that 

  .1 pGse  

(ii) Since v is not a cut vertex of WG,  is connected and so   .pGse   

Therefore VW   is the unique se  set of G so that   .pGse   

Corollary 2.13. For a connected graph G with at least two universal 

vertices,   .pGse   

Proof. Since G contains at least two universal vertices, G has not cut 

vertex. Then the result follows form Theorem 2.12 (ii). 

Corollary 2.14. For a connected graph G of order 3p  such that 

,1 jjKmKG   where   .2jm  Then   .1 pGse  

Proof. Since G is connected graph with exactly one cut-vertex of degree 

,1p  the result follows from Theorem 2.12(i). 

The edge Steiner domination number and the Steiner domination 

number of a graph 

Theorem 2.15. Every edge Steiner dominating set of a connected graph G 

is a Steiner dominating set of G. 

Proof. Let W be an edge Steiner dominating set of G. Then W is an edge 

Steiner set of G and a dominating set of G which implies W is a Steiner set of 

G and a dominating set of G. Therefore W is a Steiner dominating set of G.  

Corollary 2.16. For any connected graph    ., GGG ses    
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Proof. Let W be a -se set of G. Then  .GW se  By Theorem 2.15, W 

is a Steiner dominating set of G so that    .GWG sese   

Remark 2.17. For the graph given in Figure 2.1,   2 Gs  and 

  3 Gse  so that    .GG ses   Also, for any non-trivial tree 

   ., TTT ses   

The following theorem gives a realization for the Steiner domination 

number and the edge Steiner domination number of a graph.  

Theorem 2.18. For any positive integers ,2 ba   there exists a 

connected graph G such that   aGs   and   .bGse   

Proof. If ,ba   take .,1 aKG   Then it is easily verified that, 

   .GaG ses   If ,3,2  ba  consider the graph G given in Figure 2.1. 

It is easily seen that   2 Gs  and   .3 Gse  If ,4,2  ba  let G be the 

graph in Figure 2.3. obtained from the path on three vertices ,,,: 321 uuuP  

by adding 3b  new vertices 321 ,,, bvvv   and joining each 

 31  bivi  with .,, 321 uuu  Let  ., 31 uuW   Then W is a Steiner 

dominating set of G so that   .2 aGs   Since 2u  is a Universal vertex 

such that it is not a cut-vertex of G, by Theorem 2.12 (ii) 

  .33 bbGse   

 

Figure 2.3. 

If 4,3  ba  and ,1 ab  let G be the graph obtained in Figure 2.4 

from the path on three vertices ,,,: 321 uuuP  by adding the new vertices 
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121 ,,, abvvv   and 221 ,,, awww   and joining each  11  abivi  

with 321 ,, uuu  and also joining each  21  aiwi  with 1u  and .2u  

Since each  21  aiwi  is an extreme vertex of G, each  21  aiwi  

belongs to every Steiner dominating set of G. Let  .,,, 221  awwwW   

Then W is not a Steiner dominating set of G. Also, it is easily verified that 

 ,vW   where ,Wv   is not a Steiner dominating set of G. Now, it is clear 

that  31 , uuW   is a Steiner dominating set of G and so   .aGs   Since 

2u  is an Universal vertex of G such that it is not a cut-vertex of G, it follows 

from Theorem 2.12 (ii) that   .321 baabGse   

 

Figure 2.4. 

If 4,3  ba  and ,1 ab  consider the graph G given in Figure 2.5. 

It is easily observed that,  21  aiwi  belongs to every Steiner 

dominating set of G. Let  .,,, 221  awwwW   Then W is not a Steiner 

domination set of G. Also, it is easily verified that  ,vW   where Wv   is 
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not a Steiner dominating set of G. However, it is clear that  21 , vvW   is a 

Steiner dominating set of G so   .aGs   

By Theorem 2.5,  21  aiwi  belongs to every edge Steiner 

dominating set of G and then W is not an edge Steiner dominating set of G. 

Also, it is easily verified that neither  vW   nor  ,, vuW   where 

Wvu ,  is an edge Steiner dominating set of G. However,  872 ,, vvvW   

is an edge Steiner dominating set of G and so   .132 baaGse   

Thus the proof is complete. 

 

Figure 2.5 
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