

THE EDGE STEINER DOMINATION NUMBER OF A GRAPH

J. NESA GOLDEN FLOWER, T. MUTHU NESA BEULA and S. CHANDRAKUMAR

Research Scholar Register No.19213162092012 Scott Christian College Nagercoil-629003, India

Department of Mathematics Women's Christian College Nagercoil-629001, India

Department of Mathematics Scott Christian College Nagercoil-629003, India

Affiliated to Manonmaniam Sundaranar University Abishekapatti, Tirunelveli-627 012 Tamil Nadu, India

Abstract

A subset D of vertices in G is called dominating set if every vertex not in D has at least one neighbor in D. An edge Steiner set of G is a set $W \subseteq V(G)$ such that every edge of G is contained in a Steiner W-tree of G. The edge Steiner number $s_e(G)$ of W is the minimum order of its edge Steiner set and any edge Steiner set of order $s_e(G)$ is an edge Steiner set of G. A set of vertices W in G is called an edge Steiner dominating set of G if W is both edge Steiner set and a dominating set of G. The minimum cardinality of an edge Steiner dominating set of G is its edge Steiner domination number and is denoted by $\gamma_{se}(G)$. An edge Steiner dominating set of size $\gamma_{se}(G)$ is said to be a γ_{se} - set of G. The edge Steiner domination number of certain classes of graphs is determined. Necessary conditions for connected graphs of order with edge Steiner domination number p or p-1 are given. It is shown that for every two integers a and b with

2010 Mathematics Subject Classification: 05C12, 05C69.

Keywords: domination number, Steiner number, Steiner domination number, Edge Steiner number, Edge Steiner domination number.

Received December 7, 2019; Accepted May 13, 2020

 $2 \le a \le b$, there exists a connected graph G such that $\gamma_s(G) = a$ and $\gamma_{se}(G) = b$, where $\gamma_s(G)$ is the Steiner domination number of a graph.

1. Introduction

By a graph G = (V, E), we mean a finite undirected connected graph without loops or multiple edges. The order and size of G are denoted by p and q respectively.

The distance d(u, v) between two vertices u and v in a connected graph G is the length of a shortest u - v path in G. An u - v path of length d(u, v) is called an u - v geodesic. A set of vertices D in a graph G is a dominating set if each vertex of G is dominated by some vertex of D. The domination number $\gamma(G)$ of G is the minimum cardinality of a dominating set of G. For a nonempty set W of vertices in a connected graph G, the Steiner distance d(W) of W is the minimum size of a connected subgraph of G containing W. Necessarily, each such subgraph is a tree and is called a Steiner tree with respect to W or a Steiner W-tree It is to be noted that d(W) = d(u, v), when $W = \{u, v\}$. The set of all vertices of G that lie on some Steiner W-tree is denoted by S(W). If S(W) = V, then W is called a Steiner set for G. A Steiner set of minimum cardinality is a minimum Steiner set or simply a s-set of Gand this cardinality is the Steiner number s(G) of G. A set $W \subseteq V(G)$ is called an edge Steiner set of G if every edge of G is contained in a Steiner Wtree of G. The edge Steiner number $s_e(G)$ of G is the minimum cardinality of its edge Steiner sets and any edge Steiner set of cardinality $s_e(G)$ is a edge Steiner set of G. A set of vertices W in G is called a Steiner dominating set if W is both a Steiner and a dominating set. The minimum cardinality of a Steiner dominating set of G is its Steiner domination number and is denoted by $\gamma_s(G)$ is said to be a γ_s - set of G. The following theorem is used in sequel.

Theorem 1.1 [13]. Each extreme vertex of G belongs to edge Steiner set of G.

2. The Edge Steiner Domination Number of a Graph

Definition 2.1. Let G be a connected graph of order at least three

vertices. A set of vertices W in G is called an edge Steiner dominating set of G if W is both an edge Steiner set and a dominating set of G. The minimum cardinality of an edge Steiner dominating set of G is its edge Steiner domination number and is denoted by $\gamma_{se}(G)$. An edge Steiner dominating set of G size $\gamma_{se}(G)$ is said to be a $\gamma_{se}(G)$ -set of G.

Example 2.2. Consider the graph G given in Figure 2.1. The set $W = \{v_1, v_2, v_4\}$ is an edge Steiner dominating set for G so that $\gamma_{se}(G) = 3$.

Figure 2.1.

Remark 2.3. Consider the graph G given in Figure 2.1. The set $W = \{v_2, v_4\}$ is a Steiner dominating set of G so that $\gamma_s(G) = 2$. Thus the Steiner domination number and the edge Steiner domination number of a graph are different.

Remark 2.4. There can be more than one edge Steiner domination set for a graph. Consider the graph *G* given in Figure 2.2, $W = \{v_1, v_2, v_5, v_8\}$ and $W_1 = \{v_1, v_4, v_5, v_6\}$ are two γ_{se} -sets.

Figure 2.2.

Theorem 2.5. Each extreme vertex G of belongs to every edge Steiner dominating set of G.

Proof. This follows from Theorem 1.1.

Observation 2.6. Let G be a connected graph and v be a cut-vertex of G. Then every edge Steiner dominating set contains at least one element from each component of $G - \{v\}$.

Observation 2.7. If G is a connected graph of order p, then $2 \le \max \{s_e(G), \gamma(G)\} \le \gamma_{se}(G) \le p$.

In the following we determine the edge Steiner dominating number of some standard graphs.

Theorem 2.8. For the complete graph $K_p(p \ge 2)$, $\gamma_{se}(K_p) = p$.

Proof. Since every vertex of the complete graph $K_p (p \ge 2)$ is an extreme vertex by Observation 2.5, the vertex set of K_p is the unique edge Steiner dominating set of K_p . Thus $\gamma_{se}(K_p) = p$.

Theorem 2.9. For a connected graph G of order $P \ge 2$, $\gamma_{se}(G) = 2$ if and only if there exists an edge Steiner dominating set $W = \{u, v\}$ of G such that $d(u, v) \le 3$.

Proof. First, assume that $\gamma_{se}(G) = 2$. Let $W = \{u, v\}$ be an edge Steiner dominating set of G. Suppose that $d(u, v) \ge 4$. Then consider the diametrical path, say P contains at least three internal vertices and hence $\gamma_{se}(G) \ge 3$, which is a contradiction. Therefore $d(u, v) \le 3$. The converse is clear.

Theorem 2.10. Let G be a connected graph of order $p \ge 3$ with at least one universal vertex. Then N(v) is a subset of every edge Steiner dominating set of G.

Proof. Let v be a vertex of degree p-1 and $N(v) = \{v_1, v_2, ..., v_{p-1}\}$. Let W be an edge Steiner set of G. Suppose that $v_1 \notin W$. Then the edge vv_1 lies on a Steiner W-tree of G, say T. Since $v_1 \notin W$, v_1 is not an end vertex of T. Let T_1 be a tree obtained from T by removing the vertex v_1 in T and joining all the neighbors of v_1 other than v in T to v. Then T_1 is a Steiner Wtree such that $|V(T_1)| = |V(T_1)| - 1$ which is a contradiction to T_1 a Steiner W-tree. Therefore N(v) is a Steiner subset of every edge dominating set.

Corollary 2.11. Let G be a connected graph G with at least one Universal vertex. Then $\gamma_{se}(G) \ge p - 1$.

Proof. This follows from Theorem 2.10.

Theorem 2.12. For a connected graph G with v a Universal vertex,

(i) if v is a cut vertex of G, then $\gamma_{se}(G) = p - 1$.

(ii) if v is not a cut vertex of G, then $\gamma_{se}(G) = p$.

Proof. By Corollary 2.11 $\gamma_{se}(G) \ge p - 1$.

(i) Let W = N(v). Then W is an edge Steiner dominating set of G so that $\gamma_{se}(G) = p - 1$.

(ii) Since v is not a cut vertex of G, $\langle W \rangle$ is connected and so $s_e(G) \ge p$. Therefore W = V is the unique γ_{se} set of G so that $\gamma_{se}(G) = p$.

Corollary 2.13. For a connected graph G with at least two universal vertices, $\gamma_{se}(G) = p$.

Proof. Since G contains at least two universal vertices, G has not cut vertex. Then the result follows form Theorem 2.12 (ii).

Corollary 2.14. For a connected graph G of order $p \ge 3$ such that $G = K_1 + \bigcup m_j K_j$, where $\sum m_j \ge 2$. Then $\gamma_{se}(G) = p - 1$.

Proof. Since *G* is connected graph with exactly one cut-vertex of degree p - 1, the result follows from Theorem 2.12(i).

The edge Steiner domination number and the Steiner domination number of a graph

Theorem 2.15. Every edge Steiner dominating set of a connected graph G is a Steiner dominating set of G.

Proof. Let W be an edge Steiner dominating set of G. Then W is an edge Steiner set of G and a dominating set of G which implies W is a Steiner set of G and a dominating set of G. Therefore W is a Steiner dominating set of G.

Corollary 2.16. For any connected graph G, $\gamma_s(G) \leq \gamma_{se}(G)$.

716 J. N. G. FLOWER, T. M. N. BEULA and S. CHANDRAKUMAR

Proof. Let W be a γ_{se} -set of G. Then $|W| = \gamma_{se}(G)$. By Theorem 2.15, W is a Steiner dominating set of G so that $\gamma_{se}(G) \leq |W| \leq \gamma_{se}(G)$.

Remark 2.17. For the graph given in Figure 2.1, $\gamma_s(G) = 2$ and $\gamma_{se}(G) = 3$ so that $\gamma_s(G) < \gamma_{se}(G)$. Also, for any non-trivial tree T, $\gamma_s(T) = \gamma_{se}(T)$.

The following theorem gives a realization for the Steiner domination number and the edge Steiner domination number of a graph.

Theorem 2.18. For any positive integers $2 \le a \le b$, there exists a connected graph G such that $\gamma_s(G) = a$ and $\gamma_{se}(G) = b$.

Proof. If a = b, take $G = K_{1,a}$. Then it is easily verified that, $\gamma_s(G) = a = \gamma_{se}(G)$. If a = 2, b = 3, consider the graph G given in Figure 2.1. It is easily seen that $\gamma_s(G) = 2$ and $\gamma_{se}(G) = 3$. If a = 2, $b \ge 4$, let G be the graph in Figure 2.3. obtained from the path on three vertices $P : u_1, u_2, u_3$, by adding b-3 new vertices $v_1, v_2, \ldots, v_{b-3}$ and joining each $v_i(1 \le i \le b-3)$ with u_1, u_2, u_3 . Let $W = \{u_1, u_3\}$. Then W is a Steiner dominating set of G so that $\gamma_s(G) = 2 = a$. Since u_2 is a Universal vertex such that it is not a cut-vertex of G, by Theorem 2.12 (ii) $\gamma_{se}(G) = b - 3 + 3 = b$.

Figure 2.3.

If $a \ge 3$, $b \ge 4$ and $b \ne a+1$, let G be the graph obtained in Figure 2.4 from the path on three vertices $P: u_1, u_2, u_3$, by adding the new vertices

 $v_1, v_2, \ldots, v_{b-a-1}$ and $w_1, w_2, \ldots, w_{a-2}$ and joining each $v_i(1 \le i \le b-a-1)$ with u_1, u_2, u_3 and also joining each $w_i(1 \le i \le a-2)$ with u_1 and u_2 . Since each $w_i(1 \le i \le a-2)$ is an extreme vertex of G, each $w_i(1 \le i \le a-2)$ belongs to every Steiner dominating set of G. Let $W = \{w_1, w_2, \ldots, w_{a-2}\}$. Then W is not a Steiner dominating set of G. Also, it is easily verified that $W \cup \{v\}$, where $v \notin W$, is not a Steiner dominating set of G and so $\gamma_s(G) = a$. Since u_2 is an Universal vertex of G such that it is not a cut-vertex of G, it follows from Theorem 2.12 (ii) that $\gamma_{se}(G) = b - a - 1 + a - 2 + 3 = b$.

Figure 2.4.

If $a \ge 3$, $b \ge 4$ and b = a + 1, consider the graph *G* given in Figure 2.5. It is easily observed that, $w_i(1 \le i \le a - 2)$ belongs to every Steiner dominating set of *G*. Let $W = \{w_1, w_2, ..., w_{a-2}\}$. Then *W* is not a Steiner domination set of *G*. Also, it is easily verified that $W \cup \{v\}$, where $v \notin W$ is

718 J. N. G. FLOWER, T. M. N. BEULA and S. CHANDRAKUMAR

not a Steiner dominating set of G. However, it is clear that $W \cup \{v_1, v_2\}$ is a Steiner dominating set of G so $\gamma_s(G) = a$.

By Theorem 2.5, $w_i(1 \le i \le a-2)$ belongs to every edge Steiner dominating set of G and then W is not an edge Steiner dominating set of G. Also, it is easily verified that neither $W \cup \{v\}$ nor $W \cup \{u, v\}$, where $u, v \notin W$ is an edge Steiner dominating set of G. However, $W \cup \{v_2, v_7, v_8\}$ is an edge Steiner dominating set of G and so $\gamma_{se}(G) = a - 2 + 3 = a + 1 = b$. Thus the proof is complete.

Figure 2.5

References

- F. Buckley and F. Harary, Distance in Graphs, Addition-Wesley, Redwood City, CA, 1990.
- [2] G. Chartrand and P. Zhang, The Steiner number of a graph, Discrete Mathematics 242 (2002), 41-54.
- [3] J. John and P. Arul Sudhahar, The Monophonic Domination Number of a Graph, Proceedings of the International Conference on Mathematics and Business Management 1 (2012), 142-145.
- [4] J. John G. Edwin and P. Arul Paul Sudhahar, The Steiner domination number of a graph, International Journal of Mathematics and Computer Applications 3(3) (2013), 37-42.
- [5] J. John and N. Arianayagam, The detour domination number of a graph, Discrete Mathematics, Algorithms and Applications 9(1) (2017), 1750006(7 pages).
- [6] J. John, P. Arul Sudhahar and D. Stalin, On the (M, D) number of a graph, Proyectiones (Antofagasta) 38(2) (2019), 255-266.

- J. John and M. S. Malchijah Raj, The upper restrained Steiner number of a graph, Discrete Mathematics Algorithms and Applications, doi:10.1142/S1793830920500044.
- J. John, The total Steiner number of a graph, Discrete Mathematics Algorithms and Applications, https://doi.org/10.1142/S179383092050038X
- [9] M. S. Malchijah Raj and J. John, The restrained edge Steiner number of a graph, Journal of Applied Science and Computations 6(2) (2019), 1-8.
- [10] M. S. Malchijah Raj and J. John, The forcing restrained Steiner number of a graph, International Journal of Engineering and Advanced Technology 8 (2019), 1799-1803.
- [11] M. Perumalsamy, P. Arul Paul Sudhahar, J. John and R. Vasanthi, Edge fixed Steiner number of a graph, International Journal of Mathematical Analysis 11 (2017), 771-785. doi.org/10.12988/ijma.2017.7694.
- [12] M. Perumalsamy, P. Arul Paul Sudhahar, R.Vasanthi and J. John, The forcing edge fixed Steiner number of a graph, Journal of Statistics and Management Systems 22 (2019), 1-10.
- [13] A. P. Santhakumaran and J. John, The Upper Steiner Number of a Graph, Graph Theory Notes (of New York LIX, 2010), 9-14.
- [14] A. P. Santhakumaran and J. John, The forcing Steiner number of a graph, Discussiones Mathematicae Graph Theory 31 (2011), 171-181.
- [15] D. Stalin and J. John, Edge geodetic dominations in graphs, International Journal of Pure and Applied Mathematics 116(22) (2017), 31-40.