FUZZY QUOTIENT- 3 CORDIAL LABELING ON SOME SUBDIVISION GRAPHS

P. SUMATHI and J. SURESH KUMAR

Department of Mathematics
C. Kandaswami Naidu College for Men
Anna Nagar, Chennai 600 102, India
E-mail: sumathipaul@yahoo.co.in
Department of Mathematics
St. Thomas College of Arts and Science
Koyambedu, Chennai-600107, India
E-mail: jskumar.robo@gmail.com

Abstract

Consider a non-trivial, simple, undirected, connected, and finite graph G with p vertices and q edges. G 's vertex and edge sets are $V(G)$ and $E(G)$ respectively. Let the function $\sigma: V(G) \rightarrow[0,1]$ defined by $\sigma(\alpha)=\frac{\alpha}{10}, \alpha \in Z_{4}-\{0\}$ and for each $\alpha \beta \in E(G)$, the induced function $\mu: E(G) \rightarrow[0,1]$ defined by $\mu(\alpha \beta)=\frac{1}{10}\left\lceil\frac{3 \sigma(\alpha)}{\sigma(\beta)}\right\rceil$, where $\sigma(\alpha) \leq \sigma(\beta)$. σ is called fuzzy quotient 3 cordial labeling if $\left|v_{\sigma}(1)-v_{\sigma}(\tau)\right| \leq 1 \quad$ and $\quad\left|\varepsilon_{\mu}(1)-\varepsilon_{\mu}(\tau)\right| \leq 1$. For $\mathrm{l} \in\left\{\frac{r}{10}, r \in Z_{4}-\{0\}\right\}, v_{\sigma}[\mathrm{l}]$ and $\varepsilon_{\mu}[\mathrm{l}]$ represent the number of vertices and edges assigned the labels 1 respectively, If a graph admit this labeling, then it is fuzzy quotient 3 cordial. The existence of above labeling on $S^{\prime}\left(C_{\eta}[m]\right), S^{\prime}\left(C_{\eta}[K m] A\right), S^{\prime}\left(C_{\eta}[a, d]\right)$ and $S^{\prime}\left(C_{\eta}[a, r]\right)$ are examined and the results are provided in this paper.

1. Introduction

Labeling is a process of assigning values to vertices, edges, or both of a graph based on certain conditions. Rosa (1967) and Graham and Sloane (1967) were the first to use this technique (1980). The researchers are highly 2020 Mathematics Subject Classification: 05C78.
Keywords: Cycle, Pendant edges, Fuzzy quotient 3 cordial graph.
motivated and enthusiastic about labeling the graph. Joseph A. Gallian summarises a comprehensive discussion of graph labelling. As a result of these labelings, we investigated and analysed some graph families as fuzzy quotient 3 cordial [14]. This paper investigates fuzzy quotient-3 cordial labeling on several subdivision graphs and demonstrates that the graphs are naturally fuzzy quotient 3 cordial.

2. Definitions

Definition 2.1. A graph denoted by $C_{\eta}(m)$ is produced by linking a vertex of the cycle C_{η} with m leaves.

Definition 2.2. A graph results by connecting the m leaves to the nonadjacent vertices of a cycle $C_{2 \eta}$ is denoted by $C_{2 \eta}[m] A, \eta \geq 2$.

Definition 2.3. Attaching $a+(i-1) d, a, d \geq 1$ leaves to the $i^{\text {th }}$ vertex of a cycle C_{η} yields the new graph and it is denoted by $C_{\eta}[a, d]$.

Definition 2.4. Attaching $\frac{a\left(r^{i}-1\right)}{r-1}, a, r \geq 1$ leaves to the $i^{\text {th }}$ vertex of a cycle C_{η} yields the new graph and it is denoted by $C_{\eta}[a, r]$.

Definition 2.5. A graph $S^{\prime}(G)$ is formed by inserting a new vertex into each pendant edge of graph G.

Definition 2.6. Consider a non-trivial, simple, undirected, connected, and finite graph G with p vertices and q edges. G's vertex and edge sets are $V(G)$ and $E(G)$ respectively. Let the function $\sigma: V(G) \rightarrow[0,1]$ defined by $\sigma(\alpha)=\frac{\alpha}{10}, \alpha \in Z_{4}-\{0\}$ and for each $\alpha \beta \in E(G)$, the induced function $\mu: E(G) \rightarrow[0,1]$ defined by $\mu(\alpha \beta)=\frac{1}{10}\left\lceil\frac{3 \sigma(\alpha)}{\sigma(\beta)}\right\rceil$, where $\sigma(\alpha) \leq \sigma(\beta)$. σ is called fuzzy quotient 3 cordial labeling if $\left|v_{\sigma}(\imath)-v_{\sigma}(\tau)\right| \leq 1$ and $\left|\varepsilon_{\mu}(\imath)-\varepsilon_{\mu}(\tau)\right| \leq 1$. For $\mathrm{t} \in\left\{\frac{r}{10}, r \in Z_{4}-\{0\}\right\}, v_{\sigma}[1]$ and $\varepsilon_{\mu}[1]$ represent the number of vertices and edges assigned the labels 1 respectively, if a graph admit this labeling, then it is fuzzy quotient 3 cordial.
3. Main Results

Theorem 1. $S^{\prime}\left(C_{\eta}[m]\right)$ is fuzzy quotient 3 cordial graph.
Proof. Let $V\left(S^{\prime}\left(C_{\eta}[m]\right)\right)=\left\{x_{\imath}: 1 \leq \imath \leq \eta\right\} \cup\left\{y_{\tau}: 1 \leq \tau \leq \eta m\right\}$
$\cup\left\{x_{\tau}: 1 \leq \tau \leq \eta m\right\} \quad$ and $\quad E\left(S^{\prime}\left(C_{\eta}[m]\right)\right)=\left\{x_{1} x_{1+1}: 1 \leq \imath \leq \eta-1\right\} \cup\left\{x_{1} x_{\eta}\right\}$
$\bigcup\left\{x_{1} y_{\tau}: 1 \leq \imath \leq \eta,(\imath-1) m+1 \leq \tau \leq m(1)\right\} \cup\left\{y_{\tau} z_{\tau}: 1 \leq \tau \leq \eta m\right\}$.
$p=\eta+2 \eta m$ and $q=\eta+2 \eta m$.
The following cases must be considered while defining

$$
\sigma: V\left(S^{\prime}\left(C_{\eta}[m]\right)\right) \rightarrow[0,1] .
$$

For $m=1$

$$
\begin{array}{ll}
\sigma\left(x_{\imath}\right)=0.3 & 1 \leq \imath \leq \eta \\
\sigma\left(y_{\tau}\right)=0.1 & 1 \leq \tau \leq \eta \\
\sigma\left(z_{\tau}\right)=0.2 & 1 \leq \tau \leq \eta
\end{array}
$$

For $m \geq 2$, labeling of $x_{1} y_{\tau}$ and z_{τ} are as follows.
Case 1. $\eta=3 \xi, \xi \geq 1$.
Subcase 1.1. $m=3 \xi, \xi \geq 1$.

$$
\begin{aligned}
& \sigma\left(x_{\mathrm{\imath}}\right)=0.3 \quad 1 \leq \imath \leq \eta \\
& \sigma\left(y_{\tau}\right)=0.3 \quad 1 \leq \tau \leq\left(\frac{\eta m-\eta}{3}\right) \\
& \sigma\left(z_{\tau}\right)=0.3 \quad 1 \leq \tau \leq\left(\frac{\eta m-\eta}{3}\right) \\
& \sigma\left(y_{\tau}\right)=0.1 \quad\left(\frac{\eta m-\eta}{3}\right)+1 \leq \tau \leq \eta m \\
& \sigma\left(y_{\tau}\right)=0.2\left(\frac{\eta m-\eta}{3}\right)+1 \leq \tau \leq \eta m
\end{aligned}
$$

Subcase 1.2. $m=3 \xi+1, \xi \geq 0$.
labeling of $x_{1} y_{\tau}$ and z_{τ} is same as in subcase 1.1
Subcase 1.3. $m=3 \xi+2, \xi \geq 0$.
labeling of x_{1}, y_{τ} and z_{τ} is same as in subcase 1.1
Case 2. $\eta=3 \xi+1, \eta \geq 1$.
Subcase 2.1. $m=3 \xi, \eta \geq 1$.

$$
\begin{aligned}
& \sigma\left(x_{\imath}\right)=0.3 \quad 1 \leq \imath \leq \eta \\
& \sigma\left(y_{\tau}\right)=0.3 \quad 1 \leq \tau \leq\left(\frac{\eta m-\eta+1}{3}\right) \\
& \sigma\left(z_{\tau}\right)=0.3 \quad 1 \leq \tau \leq\left(\frac{\eta m-\eta+1}{3}\right) \\
& \sigma\left(y_{\tau}\right)=0.1\left(\frac{\eta m-\eta+1}{3}\right)+1 \leq \tau \leq \eta m \\
& \sigma\left(y_{\tau}\right)=0.2\left(\frac{\eta m-\eta+1}{3}\right)+1 \leq \tau \leq \eta m
\end{aligned}
$$

Subcase 2.2. $m=3 \xi+1, \xi \geq 0$.
labeling of x_{1}, y_{τ} and z_{τ} is same as in subcase 1.1
Subcase 2.3. $m=3 \xi+2, \xi \geq 0$.
labeling of x_{1}, y_{τ} and z_{τ} is same as in subcase 3.1
Case 3. $\eta=3 \xi+2, \eta \geq 1$.
Subcase 3.1. $m=3 \xi, \xi \geq 1$.

$$
\begin{array}{ll}
\sigma\left(x_{\imath}\right)=0.3 & 1 \leq \imath \leq \eta \\
\sigma\left(y_{\tau}\right)=0.3 & 1 \leq \tau \leq\left(\frac{\eta m-\eta-1}{3}\right) \\
\sigma\left(z_{\tau}\right)=0.3 & 1 \leq \tau \leq\left(\frac{\eta m-\eta-1}{3}\right)
\end{array}
$$

$$
\begin{aligned}
& \sigma\left(y_{\tau}\right)=0.1\left(\frac{\eta m-\eta-1}{3}\right)+1 \leq \tau \leq \eta m \\
& \sigma\left(y_{\tau}\right)=0.2\left(\frac{\eta m-\eta-1}{3}\right)+1 \leq \tau \leq \eta m
\end{aligned}
$$

labeling of x_{1}, y_{τ} and z_{τ} are same as in subcase 1.1
Subcase 3.3. $m=3 \xi+2, \xi \geq 0$.
labeling of x_{1}, y_{τ} and z_{τ} are same as in subcase 2.1
Taking $\frac{p}{3}=\delta, v_{\sigma}[\imath]$ and $\varepsilon_{\mu}[\imath]$, where $\imath \in\left\{\frac{r}{10}, r \in Z_{4}-\{0\}\right\}$ is shown in the table below.

Table 1. $v_{\sigma}(t)$ and $\varepsilon_{\mu}(i)$ for $S^{\prime}\left(C_{\eta}[m]\right)$.

Value of η and m	$v_{\sigma}[0.1]$	$v_{\sigma}[0.2]$	$v_{\sigma}[0.3]$	$\varepsilon_{\mu}[0.1]$	$\varepsilon_{\mu}[0.2]$	$\varepsilon_{\mu}[0.3]$
$\eta=3 \xi, \xi \geq 1$ $m \geq 1$	δ	δ	δ	δ	δ	δ
$\eta=3 \xi+1$, $\xi \geq 1$	$\delta-\frac{1}{3}$	$\delta-\frac{1}{3}$	$\delta+\frac{2}{3}$	$\delta-\frac{1}{3}$	$\delta-\frac{1}{3}$	$\delta+\frac{2}{3}$
$\eta=3 \xi+1$, $\xi \geq 1$	δ	δ	δ	δ	δ	δ
$\eta=3 \xi+1$, $\xi \geq 1$	$\delta+\frac{1}{3}$	$\delta+\frac{1}{3}$	$\delta-\frac{2}{3}$	$\delta+\frac{1}{3}$	$\delta+\frac{1}{3}$	$\delta-\frac{2}{3}$
$\eta=3 \xi+2$, $\xi \geq 1$	$\delta+\frac{1}{3}$	$\delta+\frac{1}{3}$	$\delta-\frac{2}{3}$	$\delta+\frac{1}{3}$	$\delta+\frac{1}{3}$	$\delta-\frac{2}{3}$
$\eta=3 \xi+2$, $\xi \geq 1$	δ	δ	δ	δ	δ	δ

$\eta=3 \xi+2$,	$\delta+\frac{2}{3}$	$\delta-\frac{1}{3}$	$\delta-\frac{1}{3}$	$\delta+\frac{2}{3}$	$\delta-\frac{1}{3}$	$\delta-\frac{1}{3}$
$\xi \geq 1$						

It can be seen from the table 2 , that $\left|v_{\sigma}(1)-v_{\sigma}(\tau)\right| \leq 1$ and $\left|\varepsilon_{\mu}(\imath)-\varepsilon_{\mu}(\tau)\right| \leq 1$. Where $\imath \neq\left\{\frac{r}{10}, r \in Z_{4}-\{0\}\right\}$. Thus, the theorem is established.

Theorem 2. $S^{\prime}\left(C_{2 \eta}[m] A\right)$ is fuzzy quotient-3 cordial graph.
Proof. Let $V\left(S^{\prime}\left(C_{2 \eta}[m] A\right)\right)=\left\{x_{\imath}: 1 \leq \imath \leq \eta\right\} \cup\left\{y_{\tau}: 1 \leq \tau \leq \frac{\eta m}{2}\right\}$
$\cup\left\{z_{\kappa}: 1 \leq \kappa \leq \frac{\eta m}{2}\right\} \quad$ and $\quad E\left(S^{\prime}\left(C_{2 \eta}[m] A\right)\right)=\left\{x_{\imath} x_{1+1}: 1 \leq \imath \leq \eta-1\right\} \cup\left\{x_{\imath} x_{\eta}\right\}$
$\bigcup\left\{x_{2 \mathrm{\imath}} z_{\kappa}: 1 \leq \imath \leq \frac{\eta}{2}, 1+(\imath-1) m \leq \kappa \leq \imath m\right\} \cup\left\{z_{\kappa} y_{\kappa}: 1 \leq \kappa \leq \frac{\eta m}{2}\right\}$.
$p=n+\eta m$ and $q=n+\eta m$. The following cases must be considered while defining
$\sigma: V\left(S^{\prime}\left(C_{2 \eta}[m] A\right)\right) \rightarrow[0,1]$.
Case 1. If $m=1$

$$
\begin{array}{lll}
\sigma\left(x_{\imath}\right)=0.1 & \imath \equiv 3,4(\bmod 6) & 1 \leq \imath \leq \eta \\
\sigma\left(x_{\imath}\right)=0.2 & \imath \equiv 0,1(\bmod 6) & 1 \leq \imath \leq \eta \\
\sigma\left(x_{\imath}\right)=0.3 & \imath \equiv 2,5(\bmod 6) & 1 \leq \imath \leq \eta
\end{array}
$$

Subcase 1.1. $\eta=6 s, \xi \geq 1$

$$
\begin{aligned}
& \sigma\left(y_{\tau}\right)=0.1 \quad \tau \equiv 0,2(\bmod 3) \quad 1 \leq \tau \leq \frac{\eta m}{2} \\
& \sigma\left(z_{\kappa}\right)=0.1 \quad \kappa \equiv 1,2(\bmod 3) \quad 1 \leq \kappa \leq \frac{\eta m}{2} \\
& \sigma\left(z_{\kappa}\right)=0.1 \quad \kappa \equiv 0(\bmod 3) \quad 1 \leq \kappa \leq \frac{\eta m}{2}
\end{aligned}
$$

Subcase 1.2. $\eta=6 s+2, \xi \geq 1$

$$
\begin{aligned}
& \sigma\left(y_{\tau}\right)=0.1 \quad \tau \equiv 0,2(\bmod 3) \quad 1 \leq \tau \leq \frac{\eta m}{2}-1 \\
& \sigma\left(y_{\tau}\right)=0.2 \quad \tau \equiv 1(\bmod 3) \quad 1 \leq \tau \leq \frac{\eta m}{2}-1 \\
& \sigma\left(y_{\frac{\eta m}{2}}^{2}\right)=0.1
\end{aligned}
$$

Labeling of z_{κ} for $1 \leq \kappa \leq \frac{\eta m}{2}$ is same as in subcase 1.1.
Subcase 1.3. $\eta=6 s+4, \xi \geq 0$
Labeling of y_{τ} for $1 \leq \tau \leq \frac{\eta m}{2}-1$ is same as in subcase 1.2 and $\sigma\left(\frac{y_{\eta m}}{2}\right)=0.2$.

Labeling of z_{κ} for $1 \leq \kappa \leq \frac{\eta m}{2}-2$ is same as in subcase 1.1 $\sigma\left(z_{\frac{\eta m}{2}-1}\right)=0.1$ and $\sigma\left(z_{\frac{\eta m}{2}}\right)=0.2$.

Case 2. If $m \geq 2$

$$
\sigma\left(x_{\imath}\right)=0.3 \quad 1 \leq \mathfrak{\imath} \leq \eta
$$

Subcase 2.1. $\eta=6 \xi, \xi \geq 1$ and $m \geq 2$

$$
\begin{aligned}
& \sigma\left(z_{\kappa}\right)=0.1 \quad 1 \leq \kappa \leq\left(\frac{\eta m+\eta}{2}\right) \\
& \sigma\left(y_{\tau}\right)=0.2 \quad 1 \leq \tau \leq\left(\frac{\eta m+\eta}{2}\right) \\
& \sigma\left(z_{\kappa}\right)=0.3 \quad\left(\frac{\eta m+\eta}{2}\right)+1 \leq \kappa \leq\left(\frac{\eta m}{2}\right) \\
& \sigma\left(y_{\tau}\right)=0.3\left(\frac{\eta m+\eta}{2}\right)+1 \leq \tau \leq\left(\frac{\eta m}{2}\right) .
\end{aligned}
$$

Subcase 2.2. $\eta=6 \xi+2, \xi \geq 1$ and $m=3 \xi, \xi \geq 1$

$$
\begin{aligned}
& \sigma\left(z_{\kappa}\right)=0.1 \quad 1 \leq \kappa \leq\left(\frac{\eta m+\eta+1}{3}\right) \\
& \sigma\left(y_{\tau}\right)=0.2 \quad 1 \leq \tau \leq\left(\frac{\eta m+\eta+1}{3}\right) \\
& \sigma\left(z_{\kappa}\right)=0.3 \quad\left(\frac{\eta m+\eta+1}{3}\right)+1 \leq \kappa \leq\left(\frac{\eta m}{2}\right) \\
& \sigma\left(y_{\tau}\right)=0.3\left(\frac{\eta m+\eta+1}{3}\right)+1 \leq \tau \leq\left(\frac{\eta m}{2}\right) .
\end{aligned}
$$

Subcase 2.3. $\eta=6 \xi+2, \xi \geq 1$ and $m=3 \xi+1, \xi \geq 1$

$$
\begin{aligned}
& \sigma\left(z_{\kappa}\right)=0.1 \quad 1 \leq \kappa \leq\left(\frac{\eta m+\eta-1}{3}\right) \\
& \sigma\left(y_{\tau}\right)=0.2 \quad 1 \leq \tau \leq\left(\frac{\eta m+\eta-1}{3}\right) \\
& \sigma\left(z_{\kappa}\right)=0.3 \quad\left(\frac{\eta m+\eta-1}{3}\right)+1 \leq \kappa \leq\left(\frac{\eta m}{2}\right) \\
& \sigma\left(y_{\tau}\right)=0.3\left(\frac{\eta m+\eta-1}{3}\right)+1 \leq \tau \leq\left(\frac{\eta m}{2}\right) .
\end{aligned}
$$

Subcase 2.4. $\eta=6 \xi+2, \xi \geq 1$ and $m=3 \xi+2, \xi \geq 1$
labeling of y_{τ} and $z_{\mathrm{\kappa}}$ is same as in subcase 2.1
Subcase 2.5. $\eta=6 \xi+4, \xi \geq 1$ and $m=3 \xi, \xi \geq 1$
labeling of y_{τ} and z_{κ} is same as in subcase 2.3
Subcase 2.6. $\eta=6 \xi+2, \xi \geq 1$ and $m=3 \xi+1, \xi \geq 1$
labeling of y_{τ} and z_{κ} is same as in subcase 2.2
Subcase 2.7. $\eta=6 \xi+2, \xi \geq 1$ and $m=3 \xi+2, \xi \geq 1$
labeling of y_{τ} and z_{κ} is same as in subcase 2.1
Taking $\frac{p}{3}=\delta, v_{\sigma}[\mathrm{l}]$ and $\varepsilon_{\mu}[\mathrm{r}]$, where $\mathrm{t} \in\left\{\frac{r}{10}, r \in Z_{4}-\{0\}\right\}$ is shown in the table below.

Table 2. $v_{\sigma}(\mathrm{r})$ and $\varepsilon_{\mu}(\mathrm{l})$ for $S^{\prime}\left(C_{2 \eta}[m] A\right)$.

Value of η and m	$v_{\sigma}[0.1]$	$v_{\sigma}[0.2]$	$v_{\sigma}[0.3]$	$\varepsilon_{\mu}[0.1]$	$\varepsilon_{\mu}[0.2]$	$\varepsilon_{\mu}[0.3]$
$\begin{aligned} & \eta=6 \xi, \xi \geq 1 \\ & m \geq 1, m \geq 1 \end{aligned}$	δ	δ	δ	δ	δ	δ
$\eta=6 \xi+2, \xi \geq 1$ (or) $\begin{aligned} & \eta=6 \xi+4, \xi \geq 0 \\ & m=3 \xi+2, \xi \geq 0 \end{aligned}$	δ	δ	δ	δ	δ	δ
$\begin{aligned} & \eta=6 \xi+2, \xi \geq 1 \\ & m=3 \xi+1, \xi \geq 0 \end{aligned}$	$\delta-\frac{1}{3}$	$\delta-\frac{1}{3}$	$\delta+\frac{2}{3}$	$\delta-\frac{1}{3}$	$\delta-\frac{1}{3}$	$\delta+\frac{2}{3}$
$\begin{gathered} \eta=6 \xi+4, \xi \geq 0 \\ m=3 \xi, \xi \geq 1 \end{gathered}$	$\delta-\frac{1}{3}$	$\delta-\frac{1}{3}$	$\delta+\frac{2}{3}$	$\delta-\frac{1}{3}$	$\delta-\frac{1}{3}$	$\delta+\frac{2}{3}$
$\begin{gathered} \eta=6 \xi+2, \xi \geq 1 \\ m=3 \xi, \xi \geq 1 \end{gathered}$	$\delta+\frac{1}{3}$	$\delta+\frac{1}{3}$	$\delta-\frac{2}{3}$	$\delta+\frac{1}{3}$	$\delta+\frac{1}{3}$	$\delta-\frac{2}{3}$
$\begin{aligned} & \eta=6 \xi+4, \xi \geq 0 \\ & m=3 \xi+1, \xi \geq 1 \end{aligned}$	$\delta+\frac{1}{3}$	$\delta+\frac{1}{3}$	$\delta-\frac{2}{3}$	$\delta+\frac{1}{3}$	$\delta+\frac{1}{3}$	$\delta-\frac{2}{3}$

It can be seen from the table 2 , that $\left|v_{\sigma}(1)-v_{\sigma}(\tau)\right| \leq 1$ and $\left|\varepsilon_{\mu}(\imath)-\varepsilon_{\mu}(\tau)\right| \leq 1$, where $\imath \neq \tau \in\left\{\frac{r}{10}, r \in Z_{4}-\{0\}\right\}$. Thus, the theorem is established.

Theorem 3. $S^{\prime}\left(C_{\eta}[a, d]\right)$ is fuzzy quotient-3 cordial graph.
Proof. Let $V\left(S^{\prime}\left(C_{\eta}[a, b]\right)\right)=\left\{x_{\imath}: 1 \leq \imath \leq \eta\right\} \cup\left\{y_{\tau}: 1 \leq \tau \leq \frac{\eta}{2}[2 a+(\eta-1) d]\right\}$ $\cup\left\{z_{\kappa}: 1 \leq \kappa \leq \frac{\eta}{2}[2 a+(\eta-1) d]\right\}$ and $E\left(S^{\prime}\left(C_{\eta}[a, b]\right)\right)=\left\{x_{1} x_{\imath+1}: 1 \leq \imath \leq \eta-1\right\}$
$\bigcup\left\{x_{1} x_{\eta}\right\} \cup\left\{x_{1} y_{\tau}: 1 \leq \mathrm{\imath} \leq \eta ;(\mathrm{l}-1) a+\frac{(\mathrm{l}-1)(\mathrm{l}-2) d}{2}+1 \leq \tau \leq \mathrm{\imath} a+\frac{(\mathrm{l}-1) d}{2}\right\}$
$\cup\left\{y_{\tau} z_{\tau}: 1 \leq \tau \leq \frac{\eta}{2}[2 a+(\eta-1) d]\right\} p=\eta[2 a+(\eta-1) d+1]=q$.
The following cases must be considered while defining
$\sigma: V\left(S^{\prime}\left(C_{\eta}[a, b]\right)\right) \rightarrow[0,1]$.

Taking $t=\frac{\eta}{2}[2 a+(\eta-1) d]$
Case 1. $\eta=3 \xi, \xi \geq 1$

Subcase 1.1. $a=3 \xi, \xi \geq 1$ and $r \geq 1$

$$
\begin{aligned}
& \sigma\left(x_{\imath}\right)=0.3 \quad 1 \leq \imath \leq \eta \\
& \sigma\left(y_{\tau}\right)=0.1 \quad 1 \leq \tau \leq \frac{p}{3} \\
& \sigma\left(y_{\tau}\right)=0.3 \quad \frac{p}{3}+1 \leq \tau \leq t \\
& \sigma\left(z_{\kappa}\right)=0.2 \quad 1 \leq \kappa \leq \frac{p}{3} \\
& \sigma\left(z_{\kappa}\right)=0.3 \quad \frac{p}{3}+1 \leq \kappa \leq t .
\end{aligned}
$$

Case 2. $\eta=3 \xi+1, \xi \geq 1$
Subcase 2.1. $a=3 \xi, \xi \geq 1$ and $d \geq 1$

$$
\begin{aligned}
& \sigma\left(x_{\imath}\right)=0.3 \quad 1 \leq \imath \leq \eta \\
& \sigma\left(y_{\tau}\right)=0.1 \quad 1 \leq \tau \leq \frac{p-1}{3} \\
& \sigma\left(y_{\tau}\right)=0.3 \quad \frac{p-1}{3}+1 \leq \tau \leq t \\
& \sigma\left(z_{\kappa}\right)=0.2 \quad 1 \leq \kappa \leq \frac{p-1}{3}
\end{aligned}
$$

$\sigma\left(z_{\kappa}\right)=0.3 \quad \frac{p-1}{3}+1 \leq \kappa \leq t$.
Subcase 2.2. $a=3 \xi+1, \xi \geq 0$ and $d \geq 1$
The labeling x_{1}, y_{τ} and z_{K} are same as in subcase 1.1.
Subcase 2.3. $a=3 \xi+2, \xi \geq 0$ and $d \geq 1$

$$
\begin{aligned}
& \sigma\left(x_{\mathrm{\imath}}\right)=0.3 \quad 1 \leq \imath \leq \eta \\
& \sigma\left(y_{\tau}\right)=0.1 \quad 1 \leq \tau \leq \frac{p+1}{3} \\
& \sigma\left(y_{\tau}\right)=0.3 \quad \frac{p+1}{3}+1 \leq \tau \leq t \\
& \sigma\left(z_{\kappa}\right)=0.2 \quad 1 \leq \kappa \leq \frac{p+1}{3} \\
& \sigma\left(z_{\mathrm{\kappa}}\right)=0.3 \quad \frac{p+1}{3}+1 \leq \kappa \leq t .
\end{aligned}
$$

Case 3. $\eta=3 \xi+2, \xi \geq 1$.
Subcase 3.1. $a=3 \xi+1, \xi \geq 1$ and $d=3 \xi+2, \xi \geq 0$ (or)
$a=3 \xi+1, \xi \geq 0$ and $d=3 \xi, \xi \geq 1$ (or) $a=3 \xi+2, \xi \geq 0$ and $d=3 \xi+1, \xi \geq 0$.

Labeling x_{1}, y_{τ} and z_{κ} are same as in subcase 1.1.
Subcase 3.2. $a=3 \xi, \xi \geq 1$ and $d=3 \xi+1, \xi \geq 0$ (or)
$a=3 \xi+1, \xi \geq 0 \quad$ and $\quad d=3 \xi+2, \xi \geq 0 \quad$ (or) $\quad a=3 \xi+2, \xi \geq 0 \quad$ and $d=3 \xi, \xi \geq 1$.

Labeling x_{1}, y_{τ} and z_{κ} are same as in subcase 2.1.
Subcase 3.3. $a=2 \xi, \xi \geq 1$ and $d=3 \xi, \xi \geq 1$ (or)

$$
\begin{aligned}
& \quad a=3 \xi+1, \xi \geq 0 \quad \text { and } \quad d=3 \xi+1, \xi \geq 0 \quad \text { (or) } \quad a=3 \xi+2, \xi \geq 0 \quad \text { and } \\
& d=3 \xi+2, \xi \geq 0
\end{aligned}
$$

Labeling x_{1}, y_{τ} and z_{κ} are same as in subcase 2.3
Taking $\frac{p}{3}=\delta, v_{\sigma}[1]$ and $\varepsilon_{\mu}[\imath]$, where $\mathrm{v} \in\left\{\frac{r}{10}, r \in Z_{4}-\{0\}\right\}$ is shown in the table below.

Table 3. $v_{\sigma}(\imath)$ and $\varepsilon_{\mu}(l)$ for $S^{\prime}\left(C_{\eta}[a, d]\right)$.

Value of η and m	$v_{\sigma}[0.1]$	$v_{\sigma}[0.2]$	$v_{\sigma}[0.3]$	$\varepsilon_{\mu}[0.1]$	$\varepsilon_{\mu}[0.2]$	$\varepsilon_{\mu}[0.3]$
$\begin{gathered} \eta=3 \xi, \xi \geq 1 \\ a, d \geq 1 \end{gathered}$	δ	δ	δ	δ	δ	δ
$\begin{gathered} \eta=3 \xi+1, \xi \geq 1 \\ a=3 \xi, \xi \geq 1 \\ d \geq 1 \end{gathered}$	$\delta-\frac{1}{3}$	$\delta-\frac{1}{3}$	$\delta+\frac{2}{3}$	$\delta-\frac{1}{3}$	$\delta-\frac{1}{3}$	$\delta+\frac{2}{3}$
$\begin{gathered} \eta=3 \xi+1, \xi \geq 1 \\ a=3 \xi+1, \xi \geq 0 \\ d \geq 1 \end{gathered}$	δ	δ	δ	δ	δ	δ
$\begin{gathered} \eta=3 \xi+1, \xi \geq 1 \\ a=3 \xi+2, \xi \geq 0 \\ d \geq 1 \end{gathered}$	$\delta+\frac{1}{3}$	$\delta+\frac{1}{3}$	$\delta-\frac{2}{3}$	$\delta+\frac{1}{3}$	$\delta+\frac{1}{3}$	$\delta-\frac{2}{3}$
$\begin{gathered} \eta=3 \xi+2, \xi \geq 1 \\ a=3 \xi, \xi \geq 1 \\ d=3 \xi+2, \xi \geq 0 \end{gathered}$	δ	δ	δ	δ	δ	δ
$\begin{gathered} \eta=3 \xi+2, \xi \geq 1 \\ a=3 \xi+1, \xi \geq 0 \\ d=3 \xi, \xi \geq 1 \end{gathered}$	δ	δ	δ	δ	δ	δ
$\begin{aligned} & \eta=3 \xi+2, \xi \geq 1 \\ & a=3 \xi+2, \xi \geq 0 \end{aligned}$	δ	δ	δ	δ	δ	δ

$d=3 \xi+1, \xi \geq 0$						
$\begin{gathered} \eta=3 \xi+2, \xi \geq 1 \\ a=3 \xi, \xi \geq 1 \\ d=3 \xi+1, \xi \geq 0 \end{gathered}$	$\delta-\frac{1}{3}$	$\delta-\frac{1}{3}$	$\delta+\frac{2}{3}$	$\delta-\frac{1}{3}$	$\delta-\frac{1}{3}$	$\delta+\frac{2}{3}$
$\begin{aligned} & \eta=3 \xi+2, \xi \geq 1 \\ & a=3 \xi+1, \xi \geq 0 \\ & d=3 \xi+2, \xi \geq 0 \end{aligned}$	$\delta-\frac{1}{3}$	$\delta-\frac{1}{3}$	$\delta+\frac{2}{3}$	$\delta-\frac{1}{3}$	$\delta-\frac{1}{3}$	$\delta+\frac{2}{3}$
$\begin{gathered} \eta=3 \xi+2, \xi \geq 1 \\ a=3 \xi+2, \xi \geq 0 \\ d=3 \xi, \xi \geq 1 \end{gathered}$	$\delta-\frac{1}{3}$	$\delta-\frac{1}{3}$	$\delta+\frac{2}{3}$	$\delta-\frac{1}{3}$	$\delta-\frac{1}{3}$	$\delta+\frac{2}{3}$
$\begin{gathered} \eta=3 \xi+2, \xi \geq 1 \\ a=3 \xi, \xi \geq 1 \\ d=3 \xi, \xi \geq 1 \end{gathered}$	$\delta+\frac{1}{3}$	$\delta+\frac{1}{3}$	$\delta-\frac{2}{3}$	$\delta+\frac{1}{3}$	$\delta+\frac{1}{3}$	$\delta-\frac{2}{3}$
$\begin{aligned} & \eta=3 \xi+2, \xi \geq 1 \\ & a=3 \xi+1, \xi \geq 0 \\ & d=3 \xi+1, \xi \geq 0 \end{aligned}$	$\delta+\frac{1}{3}$	$\delta+\frac{1}{3}$	$\delta-\frac{2}{3}$	$\delta+\frac{1}{3}$	$\delta+\frac{1}{3}$	$\delta-\frac{2}{3}$
$\begin{aligned} & \eta=3 \xi+2, \xi \geq 1 \\ & a=3 \xi+2, \xi \geq 0 \\ & d=3 \xi+2, \xi \geq 0 \end{aligned}$	$\delta+\frac{1}{3}$	$\delta+\frac{1}{3}$	$\delta-\frac{2}{3}$	$\delta+\frac{1}{3}$	$\delta+\frac{1}{3}$	$\delta-\frac{2}{3}$

It can be seen from the table 2, that $\left|v_{\sigma}(1)-v_{\sigma}(\tau)\right| \leq 1$ and $\left|\varepsilon_{\mu}(\imath)-\varepsilon_{\mu}(\tau)\right| \leq 1$. Where $\imath \neq \tau \in\left\{\frac{r}{10}, r \in Z_{4}-\{0\}\right\}$. Thus, the theorem is established.

Theorem 4. $S^{\prime}\left(C_{\eta}[a, r]\right)$ is fuzzy quotient-3 cordial graph.
Proof. Let $V\left(S^{\prime}\left(C_{\eta}[a, r]\right)\right)=\left\{x_{\imath}: 1 \leq \imath \leq \eta\right\} \cup\left\{y_{\tau}: 1 \leq \tau \leq \frac{a\left(r^{n}-1\right)}{r-1}\right\}$
$\cup\left\{z_{\kappa}: 1 \leq \kappa \leq \frac{\alpha\left(r^{n}-1\right)}{r-1}\right\} \quad$ and $\quad E\left(S^{\prime}\left(C_{\eta}[a, r]\right)\right)=\left\{x_{\imath} x_{\imath+1}: 1 \leq \imath \leq \eta-1\right\}$
$\cup\left\{x_{\imath} x_{\eta}\right\} \cup\left\{x_{1} y_{\tau}: 1 \leq \imath \leq \eta ; \frac{a\left(r^{\imath-1}-1\right)}{r-1}+1 \leq \tau \leq \frac{a\left(r^{\eta}-1\right)}{r-1}\right\}$
$\cup\left\{y_{\tau} z_{\tau}: 1 \leq \tau \leq \frac{a\left(r^{\eta}-1\right)}{r-1}\right\} p=\eta+2 \frac{\alpha\left(r^{\eta}-1\right)}{r-1}=q^{\prime} ;$
The following cases must be considered while defining
$\sigma: V\left(S^{\prime}\left(C_{\eta}[a, r]\right)\right) \rightarrow[0,1]$.
Taking $t=\frac{\eta}{2}[2 a+(\eta-1) d]$
Case 1. $\eta=3 \xi, \xi \geq 1$
Subcase 1.1. $a=3 \xi, \xi \geq 1$ and $r \geq 1$

$$
\begin{aligned}
& \sigma\left(x_{\mathrm{\imath}}\right)=0.3 \quad 1 \leq \imath \leq \eta \\
& \sigma\left(y_{\tau}\right)=0.1 \quad 1 \leq \tau \leq \frac{p}{3} \\
& \sigma\left(y_{\tau}\right)=0.3 \quad \frac{p}{3}+1 \leq \tau \leq t \\
& \sigma\left(z_{\kappa}\right)=0.2 \quad 1 \leq \kappa \leq \frac{p}{3} \\
& \sigma\left(z_{\kappa}\right)=0.3 \quad \frac{p}{3}+1 \leq \kappa \leq t .
\end{aligned}
$$

Subcase 1.2. $a=3 \xi+1, \xi \geq 0$ and $r=3 \xi, \xi \geq 1$ (or) $r=3 \xi+2, \xi \geq 0$

$$
\begin{aligned}
& \sigma\left(x_{\imath}\right)=0.3 \quad 1 \leq \imath \leq \eta \\
& \sigma\left(y_{\tau}\right)=0.1 \quad 1 \leq \tau \leq \frac{p+1}{3} \\
& \sigma\left(y_{\tau}\right)=0.3 \quad \frac{p+1}{3}+1 \leq \tau \leq t
\end{aligned}
$$

$$
\begin{aligned}
& \sigma\left(z_{\mathrm{\kappa}}\right)=0.2 \quad 1 \leq \kappa \leq \frac{p+1}{3} \\
& \sigma\left(z_{\kappa}\right)=0.3 \quad \frac{p+1}{3}+1 \leq \kappa \leq t .
\end{aligned}
$$

Subcase 1.3. $a=3 \xi+1, \xi \geq 0$ and $r=3 \xi+1, \xi \geq 0$
Labeling x_{\imath}, y_{τ} and $z_{\mathrm{\kappa}}$ are same as in subcase 1.1.
Subcase 1.4. $a=3 \xi+2, \xi \geq 0$ and $r=3 \xi, \xi \geq 1$ (or) $r=3 \xi+2, \xi \geq 0$

$$
\begin{aligned}
& \sigma\left(x_{\mathrm{\imath}}\right)=0.3 \quad 1 \leq \imath \leq \eta \\
& \sigma\left(y_{\tau}\right)=0.1 \quad 1 \leq \tau \leq \frac{p-1}{3} \\
& \sigma\left(y_{\tau}\right)=0.3 \quad \frac{p-1}{3}+1 \leq \tau \leq t \\
& \sigma\left(z_{\mathrm{K}}\right)=0.2 \quad 1 \leq \kappa \leq \frac{p-1}{3} \\
& \sigma\left(z_{\mathrm{K}}\right)=0.3 \quad \frac{p-1}{3}+1 \leq \kappa \leq t .
\end{aligned}
$$

Subcase 1.5. $a=3 \xi+2, \xi \geq 0$ and $r=3 \xi+1, \xi \geq 0$
Labeling x_{1}, y_{τ} and z_{κ} are same as in subcase 1.1
Case 2. $\eta=3 \xi+1, \xi \geq 1$.
Subcase 2.1. $a=3 \xi, \xi \geq 1$ and $r \geq 1$
Labeling x_{1}, y_{τ} and z_{κ} are same as in subcase 1.4.
Subcase 2.2. $a=3 \xi+1, \xi \geq 0$ and $r=3 \xi, \xi \geq 1$ (or) $r=3 \xi+1, \xi \geq 0$
Labeling x_{\imath}, y_{τ} and z_{κ} are same as in subcase 1.1.
Subcase 2.3. $a=3 \xi+1, \xi \geq 0$ and $r=3 \xi+2, \xi \geq 0$
Labeling x_{1}, y_{τ} and z_{κ} are same as in subcase 1.4.
Subcase 2.4. $a=3 \xi+2, \xi \geq 0$ and $r=3 \xi, \xi \geq 1$ (or) $r=3 \xi+1, \xi \geq 0$

Labeling x_{1}, y_{τ} and z_{κ} are same as in subcase 1.2.
Subcase 2.5. $a=3 \xi+2, \xi \geq 0$ and $r=3 \xi+2, \xi \geq 0$
Labeling x_{\imath}, y_{τ} and z_{κ} are same as in subcase 1.4
Case 3. $\eta=3 \xi+2, \xi \geq 1$.
Subcase 3.1. $a=3 \xi, \xi \geq 1$ and $r \geq 1$.
Labeling x_{1}, y_{τ} and z_{κ} are same as in subcase 1.2.
Subcase 3.2. $a=3 \xi+1, \xi \geq 0$ and $r=3 \xi, \xi \geq 1$ (or) $r=3 \xi+2, \xi \geq 0$
Labeling x_{\imath}, y_{τ} and z_{κ} are same as in subcase 1.4.
Subcase 3.3. $a=3 \xi+1, \xi \geq 0$ and $r=3 \xi+1, \xi \geq 0$
Labeling x_{1}, y_{τ} and z_{κ} are same as in subcase 1.1.
Subcase 3.4. $a=3 \xi+2, \xi \geq 0$ and $r=3 \xi, \xi \geq 1$ (or) $r=3 \xi+2, \xi \geq 0$
Labeling x_{1}, y_{τ} and z_{κ} are same as in subcase 1.1.
Subcase 3.5. $a=3 \xi+2, \xi \geq 0$ and $r=3 \xi+1, \xi \geq 0$
Labeling x_{\imath}, y_{τ} and z_{κ} are same as in subcase 1.4.
Taking $\frac{p}{3}=\delta, v_{\sigma}[1]$ and $\varepsilon_{\mu}[\imath]$, where $\mathrm{v} \in\left\{\frac{r}{10}, r \in Z_{4}-\{0\}\right\}$ is shown in the table below.

Table 4. $v_{\sigma}(\imath)$ and $\varepsilon_{\mu}(l)$ for $S^{\prime}\left(C_{\eta}[a, r]\right)$.

Value of η, a and r	$v_{\sigma}[0.1]$	$v_{\sigma}[0.2]$	$v_{\sigma}[0.3]$	$\varepsilon_{\mu}[0.1]$	$\varepsilon_{\mu}[0.2]$	$\varepsilon_{\mu}[0.3]$
$\eta=3 \xi, \xi \geq 1$	δ	δ	δ	δ	δ	δ
$a=3 \xi, \xi \geq 1$						
$r=3 \xi, \xi \geq 1$						
$r=3 \xi+2, \xi \geq 0$						
$\eta=3 \xi, \xi \geq 1$	δ	δ	δ	δ	δ	δ

Advances and Applications in Mathematical Sciences, Volume 22, Issue 1, November 2022

$\begin{gathered} a=3 \xi+1, \xi \geq 0 \\ a=3 \xi+2, \xi \geq 0 \\ r=3 \xi+1, \xi \geq 0 \end{gathered}$						
$\begin{gathered} \eta=3 \xi, \xi \geq 1 \\ a=3 \xi+1, \xi \geq 0 \\ r=3 \xi, \xi \geq 1 \\ r=3 \xi+2, \xi \geq 0 \end{gathered}$	$\delta+\frac{1}{3}$	$\delta+\frac{1}{3}$	$\delta-\frac{2}{3}$	$\delta+\frac{1}{3}$	$\delta+\frac{1}{3}$	$\delta-\frac{2}{3}$
$\begin{gathered} \eta=3 \xi, \xi \geq 1 \\ a=3 \xi+2, \xi \geq 0 \\ r=3 \xi, \xi \geq 1 \\ r=3 \xi+2, \xi \geq 0 \end{gathered}$	$\delta-\frac{1}{3}$	$\delta-\frac{1}{3}$	$\delta+\frac{2}{3}$	$\delta-\frac{1}{3}$	$\delta-\frac{1}{3}$	$\delta+\frac{2}{3}$
$\begin{gathered} \eta=3 \xi+1, \xi \geq 1 \\ a=3 \xi, \xi \geq 0 r \geq 1 \end{gathered}$	$\delta-\frac{1}{3}$	$\delta-\frac{1}{3}$	$\delta+\frac{2}{3}$	$\delta-\frac{1}{3}$	$\delta-\frac{1}{3}$	$\delta+\frac{2}{3}$
$\begin{gathered} \eta=3 \xi+1, \xi \geq 1 \\ a=3 \xi+1, \xi \geq 0 \\ r=3 \xi, \xi \geq 1 \\ r=3 \xi+1, \xi \geq 0 \end{gathered}$	δ	δ	δ	δ	δ	δ
$\begin{aligned} & \eta=3 \xi+1, \xi \geq 1 \\ & a=3 \xi+1, \xi \geq 0 \\ & a=3 \xi+2, \xi \geq 0 \\ & r=3 \xi+2, \xi \geq 0 \end{aligned}$	$\delta-\frac{1}{3}$	$\delta-\frac{1}{3}$	$\delta+\frac{2}{3}$	$\delta-\frac{1}{3}$	$\delta-\frac{1}{3}$	$\delta+\frac{2}{3}$
$\begin{aligned} & \eta=3 \xi+1, \xi \geq 1 \\ & a=3 \xi+1, \xi \geq 0 \\ & r=3 \xi+2, \xi \geq 1 \\ & r=3 \xi+1, \xi \geq 0 \end{aligned}$	$\delta+\frac{1}{3}$	$\delta+\frac{1}{3}$	$\delta-\frac{2}{3}$	$\delta+\frac{1}{3}$	$\delta+\frac{1}{3}$	$\delta-\frac{2}{3}$

$\begin{gathered} \eta=3 \xi+2, \xi \geq 1 \\ a=3 \xi, \xi \geq 0 \\ r \geq 1 \end{gathered}$	$\delta+\frac{1}{3}$	$\delta+\frac{1}{3}$	$\delta-\frac{2}{3}$	$\delta+\frac{1}{3}$	$\delta+\frac{1}{3}$	$\delta-\frac{2}{3}$
$\begin{aligned} & \eta=3 \xi+1, \xi \geq 1 \\ & a=3 \xi+1, \xi \geq 0 \\ & r=3 \xi+1, \xi \geq 0 \end{aligned}$	δ	δ	δ	δ	δ	δ
$\begin{gathered} \eta=3 \xi+1, \xi \geq 1 \\ a=3 \xi+2, \xi \geq 0 \\ r=3 \xi, \xi \geq 1 \\ r=3 \xi+2, \xi \geq 0 \end{gathered}$	δ	δ	δ	δ	δ	δ
$\begin{gathered} \eta=3 \xi+1, \xi \geq 1 \\ a=3 \xi+1, \xi \geq 0 \\ r=3 \xi, \xi \geq 1 \\ r=3 \xi+2, \xi \geq 0 \end{gathered}$	$\delta-\frac{1}{3}$	$\delta-\frac{1}{3}$	$\delta+\frac{2}{3}$	$\delta-\frac{1}{3}$	$\delta-\frac{1}{3}$	$\delta+\frac{2}{3}$
$\begin{aligned} \eta & =3 \xi+1, \xi \geq 1 \\ a & =3 \xi+2, \xi \geq 0 \\ r & =3 \xi+1, \xi \geq 0 \end{aligned}$	$\delta-\frac{1}{3}$	$\delta-\frac{1}{3}$	$\delta+\frac{2}{3}$	$\delta-\frac{1}{3}$	$\delta-\frac{1}{3}$	$\delta+\frac{2}{3}$

It can be seen from the table 2, that $\left|v_{\sigma}(1)-v_{\sigma}(\tau)\right| \leq 1$ and $\left|\varepsilon_{\mu}(\imath)-\varepsilon_{\mu}(\tau)\right| \leq 1$. Where $\imath \neq \tau \in\left\{\frac{r}{10}, r \in Z_{4}-\{0\}\right\}$. Thus, the theorem is established.

4. Conclusion

The presence of fuzzy quotient 3 labelling on some subdivision graphs is discussed and established in this study. Our next step will be to investigate this concept in different graph families and identify applications for it.

References

[1] J. A. Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics 17 (2014), 60-62.
[2] I. Cahit, Cordial graphs-a weaker version of graceful and harmonious graphs, Ars Combinatoria 23 (1987), 201-207.
[3] M. Sundaram, R. Ponraj and S. Somasundaram, Product cordial labeling of graphs, Bull. Pure and Appl. Sci. (Math. and Stat.) E 23 (2004), 155-163.
[4] M. Sundaram, R. Ponraj and S. Somasundram, Total product cordial labeling of graphs, Bull. Pure Appl. Sci. Sect. E Math. Stat 25 (2006), 199-203.
[5] M. Sundaram, R. Ponraj and S. Somasundram, Some results on total product cordial labeling of graphs, J. Indian Acad. Math 28 (2006), 309-320.
[6] R. Ponraj, M. Sivakumar and M. Sundaram, K-Product cordial labeling of graphs, Int. J. Contemp. Math. Sciences 7(15) (2012), 733-742.
[7] P. Jeyanthi and A. Maheswari, 3-Product cordial labelling, SUT J. Math 48(12) (2012), 231-240.
[8] R. Ponraj, M. Sivakumar and M. Sundaram, On 4-product cordial graphs, Inter. J. Math. Archive 7 (2012), 2809-2814.
[9] M. Sivakumar, On 4-total product cordiality of some corona graphs, Internat. J. Math. Combin. 3 (2016), 99-106.
[10] R. Ponraj and M. M. Adaickalam, Quotient cordial labeling of some star related graphs, The Journal of the Indian Academy of Mathematics 37(2) (2015), 313-324.
[11] S. K. Vaidya and L. Bijukumar, Mean labeling in the context of some graph operations, International Journal of Algorithms, Computing and Mathematics 3(1) (2010), 1-8.
[12] S. K. Vaidya and L. Bijukumar, Some new families of mean graphs, Journal of Mathematics Research 2(3) (2010), 169.
[13] S. K. Vaidya and L. Bijukumar, New mean graphs, International J. Math. Combin 3 (2011), 107-113.
[14] P. Sumathi and J. S. Kumar, Fuzzy quotient-3 cordial labeling of star related graphsPaper I, Malaya Journal of Matematik 1 (2019), 79-82.

