

GENERALIZED FIXED POINT THEOREM FOR MULTI-VALUED CONTRACTIVE MAPPING IN CONE *b*-METRIC SPACE

RUPALI VERMA¹, QAZI AFTAB KABIR², M. S. CHAUHAN³ and RAJESH SHRIVASTAVA⁴

^{1,3}Department of Mathematics IEHE, Bhopal (Madhya Pradesh), India E-mail: rupali.varma1989@gmail.com dr.msc@rediffmail.com

²Department of Mathematics Saifia Science College Bhopal (Madhya Pradesh), India E-mail: qaziaftabkabir@gmail.com

⁴Department of Mathematics Govt. Science and Commerce College Benazir Bhopal (Madhya Pradesh), India E-mail: rajeshraju0101@rediffmail.com

Abstract

In this paper, we prove some fixed point results for multi-valued contractive mappings in cone b-metric space which is generalization of the fixed point theorems for contractive mappings in cone b-metric space. We conclude examples to support our main results. Hence, our results unify, generalize and complement the comparable results from the current literature.

1. Introduction

A very popular tool to solve existence of fixed point problems is the Banach Contraction Theorem [1] which plays an important role in several branches of mathematics. Bakhtin [2] gave the concept of b-metric spaces and by generalizing the famous Banach contraction principle in metric spaces

²⁰¹⁰ Mathematics Subject Classification: 47H10, 54H25.

Keywords: common fixed point; dislocated quasi b-metric space; self-mapping; generalized contraction condition.

Received November 2, 2019; Accepted November 22, 2019

826 R. VERMA, Q. A. KABIR, M. S. CHAUHAN and R. SHRIVASTAVA

proved the contraction mapping principle in *b*-metric spaces. Recently, the fixed point in non-convex analysis, especially in an ordered normed space, occupies a prominent place in many aspects (see [3-8]), the author defines an ordering by using a cone, which naturally induces a partial ordering in Banach spaces. Huang and Zhang [7] introduced cone metric spaces as a generalization of metric spaces. Moreover, some fixed point theorems were proved for contractive mappings expanding certain results of fixed points in metric spaces (see [9, 10, 11, 12 and 13]). Later some fixed point theorems for *b*-metric spaces were given by Xie and Wang [14]. Hussain and Shah [11] introduced cone *b*-metric spaces as a generalization of *b*-metric spaces. Throughout this paper, we have proved a generalization of fixed point theorem for multi-valued contractive mapping in cone *b*-metric space by using triangular inequality.

II. Preliminaries and Definitions

Definition 2.1 [5]. Let *E* be a real Banach space and *P* be a subset of *E*. By θ we denote zero element of *E*. The subset *P* of *E* is called a cone if and only if.

- (i) *P* is closed, nonempty and $P \neq \{\theta\}$;
- (ii) $a, b \in R, a, b \ge 0, x, y \in P \Longrightarrow ax + by \in P$;
- (iii) $P \cup (-P) = \{\theta\}.$

Definition 2.2 [13]. Let Z be a nonempty set. Suppose that a mapping $d: Z \times Z \to E$ satisfies.

(i) $\theta \preccurlyeq d(u, v)$ for all $u, v \in Z$ with $u \neq v$ and $d(u, v) = \theta$ if and only if u = v;

- (ii) d(u, v) = d(v, u) for all $u, v \in Z$;
- (iii) $d(u, v) \preccurlyeq [d(u, w) + d(w, v)]$ for all $u, v, w \in \mathbb{Z}$.

Then d is called a cone metric on Z and (Z, d) is called a cone metric space.

Definition 2.3 [8]. Let Z be a nonempty set and $r \ge 1$ be a given real number. A function $d: Z \times Z \to E$ is said to be a cone b-metric if the

following conditions hold.

- (i) $\theta \leq d(u, v)$ for all $u, v \in Z$ and $d(u, v) = \theta$ if only if u = v;
- (ii) d(u, v) = d(v, u) for all $u, v \in Z$;
- (iii) $d(u, w) \preccurlyeq r[d(u, v) + d(v, w)]$ for all $u, v, w \in Z$.

The pair (Z, d) is called a cone *b*-metric space.

Definition 2.4 [8]. Let (Z, d) be a cone *b*-metric space, $z \in Z$ and $\{z_n\}$ be a sequence in Z, then

(i) $\{z_n\}$ converges to z whenever, for every $c \in E$ with $\theta \ll c$, there is a natural number N such that $d(z_n, z) \ll c$ for all $n \geq N$. We denote this by $\log_{n\to\infty} Z_n = z$ or $z_n \to z(n \to \infty)$.

(ii) $\{z_n\}$ is a Cauchy sequence whenever, for every $c \in E$ with $\theta \ll c$, there is a natural number N such that $d(z_n, z_m) \ll c$ for all $n, m \ge N$.

(iii) (Z, d) is a complete cone *b*-metric space if every Cauchy sequence is convergent.

Lemma 2.5 [8]. Let (Z, d) be a cone b-metric space. The following properties are often used while dealing with cone b-metric spaces in which the cone is not necessarily normal.

- (i) If $u \preccurlyeq v$ and $v \preccurlyeq w$, then $u \ll w$;
- (ii) If $\theta \preccurlyeq u \ll c$ for each $c \in int P$, then $u = \theta$;
- (iii) If $a \preccurlyeq b + c$ for each $c \in int P$, then $a \preccurlyeq b$;
- (iv) If $\theta \preccurlyeq d(z_n, z) \preccurlyeq z_n$ and $b_n \rightarrow \theta$, then $z_n \rightarrow z$;
- (v) If $a \leq \lambda a$, where $a \in P$ and $0 < \lambda < 1$, then $a = \theta$;

(vi) If $c \in int P$, $\theta \preccurlyeq a_n$ and $a_n \rightarrow \theta$, then exists $n_0 \in N$ such that $a_n \ll c$ for all $n > n_0$.

Theorem 2.6. Let (Z, d) be a complete cone b-metric space with $k \ge 1$ and let $R: Z \to Z$ be a continuous mapping satisfying the contractive

condition

$$d(Ru, Rv) \le \psi_1 \frac{d(u, Ru)d(u, Rv) + (v, Rv)d(v, Ru)}{d(u, Rv) + d(v, Ru)}.$$

For all $u, v \in Z$ and $\psi_1 \in [0, 1]$. Then R has a unique fixed point in Z.

III. Main Results

Theorem 3.1. Let (Z, d) be a complete cone b-metric space with $k \ge 1$ and let $R: Z \to Z$ be a continuous mapping satisfying the contractive condition

$$d(Ru, Rv) \leq \psi_1 \frac{d(u, Ru)d(u, Rv) + d(v, Rv)d(v, Ru)}{d(u, Rv) + d(v, Ru)} + \psi_2 \frac{[d(Ru, v) + d(u, v)][1 + d(v, Rv)]}{1 + d(u, v)} + \psi_3 d(u, v).$$
(1)

For all and $u, v \in Z$ then $\psi_1, \psi_2, \psi_3 \in [0, 1]$ with $k(2\psi_1 + \psi_2 + \psi_3) < 1$ then *R* has a unique fixed point in *Z*.

Proof. Let z_0 be an arbitrary point in Z. Define a sequence $\{z_n\}$ in Z such that $z_1 = R(z_0), z_1 = R(z_1), \ldots$ Replace u by z_{n-1} and v by z_n in (1), we have

$$\begin{split} d(Z_n, Z_{n+1}) &= d(Rz_{n-1}, Rz_n) \\ &\leq \psi_1 \, \frac{d(z_{n-1}, Rz_{n-1})d(z_{n-1}, Rz_n) + d(z_n, Rz_n)d(z_n, Rz_{n-1})}{d(z_{n-1}, Rz_n) + d(z_n, Rz_{n-1})} \\ &+ \psi_2 \, \frac{[d(Rz_{n-1}, z_n) + d(z_{n-1}, z_n)][1 + d(z_n, Rz_n)]}{1 + d(z_{n-1}, z_n)} \\ &+ \psi_3 d(z_{n-1}, z_n) \\ &\leq \psi_1 \, \frac{d(z_{n-1}, z_n)d(z_{n-1}, z_{n+1}) + d(z_n, z_{n+1})d(z_n, z_n)}{d(z_{n-1}, z_{n+1}) + d(z_n, z_n)} \\ &+ \psi_2 \, \frac{[d(z_n, z_n) + d(z_{n-1}, z_n)][1 + d(z_n, z_{n+1})]}{1 + d(z_{n-1}, z_n)} \\ &+ \psi_3 d(z_{n-1}, z_n). \end{split}$$

GENERALIZED FIXED POINT THEOREM FOR MULTI-VALUED... 829

Using triangular inequality

$$\leq \psi_1 \frac{d(z_{n-1}, z_n)k(d(z_{n-1}, z_n) + d(z_n, z_{n+1})) + d(z_n, z_{n+1})k(d(z_{n-1}, z_n) + d(z_n, z_{n+1}))}{k(d(z_{n-1}, z_n) + d(z_n, z_{n+1}))}$$

$$\begin{split} &+\psi_2 \frac{[d(z_n,z_n) + d(z_{n-1},z_n)][1 + d(z_n,z_{n+1})]}{1 + k(d(z_{n-1},z_n))} + \psi_3 d(z_{n-1},z_n) \\ &\leq \psi_1(d(z_{n-1},z_n) + d(z_n,z_{n+1})) \\ &+\psi_2(d(z_n,z_{n-1}) + d(z_{n+1},z_n)) \\ &+\psi_3 d(z_{n-1},z_n). \end{split}$$
 Therefore

$$d(z_n, z_{n+1}) \leq \frac{\psi_1 + \psi_2 + \psi_3}{1 - \psi_1} d(z_{n-1}, z_n)$$
$$= hd(z_{n-1}, z_n)$$
(2)

Where $h = \frac{\psi_1 + \psi_2 + \psi_3}{1 - \psi_1} < 1 \text{ as } k(2\psi_1 + \psi_2 + \psi_3) < 1$ we have

$$d(z_{n-1}, z_n) \le hd(z_{n-2}, z_{n-1})$$

By (2) we get,

$$d(z_n, z_{n+1}) \le h^2 d(z_{n-2}, z_{n-1}).$$

Continue this process, we get

$$d(z_n, z_{n+1}) \le h^n d(z_n, z_0).$$

Since $0 \le h < 1 as n \to \infty$, $h^n \to 0$. Thus $\{z_n\}$ is cone *b*-metric space in Z such that $T(u = \lim T(z_n) = \lim z_{n+1} = u$. Thus u is a fixed point of R.

Uniqueness.

Let $u \in U$ is a fixed point of *R* then by (1),

$$d(u, u) = d(Ru, Ru)$$

$$\leq \psi_1 \frac{d(u, u)d(u, u) + d(u, u)d(u, u)}{d(u, u) + d(u, u)}$$

$$+ \psi_2 \frac{[d(u, u) + d(u, u)][1 + d(u, u)]}{1 + d(u, u)}$$

$$+ \psi_3 d(u, u)$$

$$\leq (\psi_1 + \psi_2 + \psi_3)d(u, u).$$

Which is true only if d(u, u) = 0, since $0 \le k(2\psi_1 + \psi_2 + \psi_3) < 1$ and $d(u, u) \ge 0$. Thus $d(u, u) \ge 0$ if Z is a fixed point of R then we have,

$$d(u, v) = d(Ru, Rv) \le \psi_2 d(u, v).$$

Which gives $d(u, u) \ge 0$, since $0 \le \psi_2 < 1$ and $d(u, u) \ge 0$. Thus fixed point of *R* is unique.

Example 3.2. Let Z = [0, 1]. Define $d : Z \times Z \to \mathbb{R}^+$ by

$$d(u, v) = |u + v|^{2} + |u - v|^{2}.$$

For all $u, v \in \mathbb{Z}$. Define $F(u, v) = \frac{uv}{4}$.

Example 3.3. Let Z and $Z = \{p, q, r, s, t, u\}, E = \mathbb{R}^2$ and $p = \{(u, v) : u, v \ge 0\}$ is a cone in E. Define $d : Z \times X \to E$ as follows

$$d(u, u) \ge 0, \forall z \in Z$$

$$d(p, q) = d(q, p) = (6, 36)$$

$$d(p, r) = d(r, p) = d(r, s) = d(s, r) = d(q, r) = d(r, q)$$

$$= d(q, s) = d(s, q) = d(p, t) = d(t, p)$$

$$= d(p, u) = d(u, p) = (1, 6)$$

$$d(p, u) = d(u, p) = d(q, t) = d(t, q) = d(r, u) = d(u, r)$$

$$= d(s, u) = d(u, s) = d(t, u) = d(u, t)$$

$$= (7, 42).$$

Then d(Z, d) is a complete cone *b*-metric space.

GENERALIZED FIXED POINT THEOREM FOR MULTI-VALUED...831

IV. Conclusion

Hence in this paper we have proved a fixed point theorem for multivalued contractive mapping in cone b-metric space by using triangular inequality, which is generalization and extension of the results due to Azam and Mehmood [15], Chu and Huang [5] and Kutbi and Karapinar [16].

V. Future Scope

Fixed point for multivalued contractive mapping in Cone *b*-metric space is an interesting concept. There is scope to examine the applicability of this space in different branches to study.

Acknowledgements

The authors are thankful to editor and referees for their valuable comments and suggestions which helped to improve the paper quality.

Conflict of Interest

There is no conflict of interest.

References

- [1] S. Banach, Sur les operations dans les ensembles abstrait et leur application aux equations, Integrals. Fundam. Math. 3 (1922), 133-181.
- [2] I. A. Bakhtin, The contraction mapping principle in atmost metric spaces. Funct. Anal. Gos. Ped. Inst. Unianowsk 30 (1989), 26-37.
- [3] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Semin.Mat Fis. Univ. Modena 46, 263-276.
- [4] S-H. Cho, J-S. Bae, Common fixed point theorems for mappings satisfying property (E.A.) on cone metric space, Math. Comput. Model. 53 (2011), 945-951.
- [5] Z. Chu, X. Huang and X. Liu, New multivalued fixed point results in cone b-metric spaces; J. Nonlinear Sci. Appl. 9 (2016), 3504-3510.
- [6] K. Deimling, Nonlinear Functional Analysis. Springer, Berlin, (1985).
- [7] L-G. Huang and X. Zhang, Cone metric spaces and fixed point theorem of contractive mappings, J. Math. Anal. Appl. 332(2) (2007), 1468-1476.
- [8] N. Hussain and M. H. Shah, KKM mappings in cone b-metric spaces, a survey Nonlinear Anal. 4(7) (2011), 2591-2601.

832 R. VERMA, Q. A. KABIR, M. S. CHAUHAN and R. SHRIVASTAVA

- M. Boriceanu, M. Bota and A. Petrusel Multivalued fractals in b-metric spaces, Cent. Eur. J. Math. 8(2) (2010), 367-377.
- [10] M. Bota A. Molnar and V. Csaba, On Ekeland's variational principle in b-metric spaces, Fixed Point Theory 12 (2011), 21-28.
- [11] S. Jankovic, Z. Kadelburg and S. Radenovic, On cone metric spaces: a survey, Nonlinear Anal. 4(7) (2011), 2591-2601.
- [12] S. Rezapour and R. Hamlbarani, Some notes on the paper 'Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. 345 (2008), 719-724.
- [13] N. Sharma, Fixed point theorem in cone b-metric space using contractive mappings, Global journal of pure and applied mathematics 13(7) (2017), 2997-3004.
- [14] S. Xie, Y. Wang and L. Zhong, Some Fixed Point Theorems In b-metric spaces, Intr. Journal of pure and applied mathematics 10(4) (2016), 571-580.
- [15] A. Azam, N. Mehmood, J. Ahmed and S. Radenovic, Multivalued fixed point theorems in cone b-metric spaces, Journal of inequalities and applications (2013), 528-532.
- [16] M. A. Kutbi, E. Karapinar, J. Ahmad and A. Azam, Some fixed point results for multivalued mappings in b-metric spaces, Journal of inequalities and applications 126 (2014), 1-11.