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Abstract 

In this paper, we prove some fixed point results for multi-valued contractive mappings in 

cone b-metric space which is generalization of the fixed point theorems for contractive mappings 

in cone b-metric space. We conclude examples to support our main results. Hence, our results 

unify, generalize and complement the comparable results from the current literature. 

1. Introduction 

A very popular tool to solve existence of fixed point problems is the 

Banach Contraction Theorem [1] which plays an important role in several 

branches of mathematics. Bakhtin [2] gave the concept of b-metric spaces and 

by generalizing the famous Banach contraction principle in metric spaces 
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proved the contraction mapping principle in b-metric spaces. Recently, the 

fixed point in non-convex analysis, especially in an ordered normed space, 

occupies a prominent place in many aspects (see [3-8]), the author defines an 

ordering by using a cone, which naturally induces a partial ordering in 

Banach spaces. Huang and Zhang [7] introduced cone metric spaces as a 

generalization of metric spaces. Moreover, some fixed point theorems were 

proved for contractive mappings expanding certain results of fixed points in 

metric spaces (see [9, 10, 11, 12 and 13]).  Later some fixed point theorems for 

b-metric spaces were given by Xie and Wang [14]. Hussain and Shah [11] 

introduced cone b-metric spaces as a generalization of b-metric spaces and 

cone metric spaces. Throughout this paper, we have proved a generalization 

of fixed point theorem for multi-valued contractive mapping in cone b-metric 

space by using triangular inequality. 

II. Preliminaries and Definitions 

Definition 2.1 [5].  Let E be a real Banach space and P be a subset of E.  

By  we denote zero element of E. The subset P of E is called a cone if and 

only if. 

(i) P is closed, nonempty and  ;P  

(ii) ;,,0,,, PbyaxPyxbaRba   

(iii)    .PP   

Definition 2.2 [13]. Let Z be a nonempty set. Suppose that a mapping 

EZZd :  satisfies. 

(i)  vud ,  for all Zvu ,  with vu   and   vud ,  if and only if 

;vu   

(ii)    uvdvud ,,   for all ;, Zvu   

(iii)       vwdwudvud ,,,   for all .,, Zwvu   

Then d is called a cone metric on Z and  dZ,  is called a cone metric 

space. 

Definition 2.3 [8]. Let Z be a nonempty set and 1r  be a given real 

number. A function EZZd :  is said to be a cone b-metric if the 
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following conditions hold. 

(i)  vud ,  for all Zvu ,  and   vud ,  if only if ;vu   

(ii)    uvdvud ,,   for all ;, Zvu   

(iii)       wvdvudrwud ,,,   for all .,, Zwvu   

The pair  dZ,  is called a cone b-metric space. 

Definition 2.4 [8]. Let  dZ,  be a cone b-metric space, Zz   and  nz  

be a sequence in Z, then 

(i)  nz  converges to z whenever, for every Ec   with ,c  there is a 

natural number N such that   czzd n ,  for all .Nn   We denote this by 

zZnn log  or  . nzzn  

(ii)  nz  is a Cauchy sequence whenever, for every Ec   with ,c  

there is a natural number N such that   czzd mn ,  for all ., Nmn   

(iii)  dZ,  is a complete cone b-metric space if every Cauchy sequence is 

convergent. 

Lemma 2.5 [8]. Let  dZ,  be a cone b-metric space. The following 

properties are often used while dealing with cone b-metric spaces in which the 

cone is not necessarily normal. 

(i) If vu  and ,wv  then ;wu   

(ii) If cu   for each ,int Pc   then ;u  

(iii) If cba   for each ,int Pc   then ;ba  

(iv) If   nn zzzd  ,  and ,nb  then ;zzn   

(v) If ,aa   where Pa    and ,10   then ;a  

(vi) If naPc  ,int  and ,na  then exists Nn 0  such that 

can   for all .0nn   

Theorem 2.6. Let  dZ,  be a complete cone b-metric space with 1k  

and let ZZR :  be a continuous mapping satisfying the contractive 
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condition 

 
       

   
.

,,

,,,,
, 1 RuvdRvud

RuvdRvvRvudRuud
RvRud




  

For all Zvu ,  and  .1,01   Then R has a unique fixed point in Z. 

III. Main Results 

Theorem 3.1. Let  dZ,  be a complete cone b-metric space with 1k  

and let ZZR :  be a continuous mapping satisfying the contractive 

condition 

 
       

   RuvdRvud

RuvdRvvdRvudRuud
RvRud

,,

,,,,
, 1 


  

       
 

 .,
,1

,1,,
32 vud

vud

RvvdvudvRud





  (1) 

For all and Zvu ,  then  1,0,, 321   with   12 321 k  

then R has a unique fixed point in Z. 

Proof.  Let 0z  be an arbitrary point in Z. Define a sequence  nz  in Z 

such that     .,, 1101 zRzzRz   Replace u by 1nz  and v by nz  in (1), 

we have 

   nnnn RzRzdZZd ,, 11    

       
   11

1111
1 ,,

,,,,










nnnn

nnnnnnnn

RzzdRzzd

RzzdRzzdRzzdRzzd
 

       
 nn

nnnnnn

zzd

RzzdzzdzRzd

,1

,1,,

1

11
2








  

 nn zzd ,13   

       
   nnnn

nnnnnnnn

zzdzzd

zzdzzdzzdzzd

,,

,,,,

11

1111
1 






  

      
 nn

nnnnnn

zzd

zzdzzdzzd

,1

,1,,

1

11
2








  

 .,13 nn zzd   
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Using triangular inequality 

             
    11

111111
1 ,,

,,,,,,










nnnn

nnnnnnnnnnnn

zzdzzdk

zzdzzdkzzdzzdzzdkzzd

 

      
  

 nn
nn

nnnnnn zzd
zzdk

zzdzzdzzd
,

,1

,1,,
13

1

11
2 



 



  

    111 ,,   nnnn zzdzzd  

    nnnn zzdzzd ,, 112    

 .,13 nn zzd   

Therefore  

   nnnn zzdzzd ,
1

, 1
1

321
1  


  

 nn zzhd ,1  (2) 

Where   121
1 321

1

321 



 kash  we have 

   .,, 121   nnnn zzhdzzd  

By (2) we get,  

 

   .,, 12
2

1   nnnn zzdhzzd  

Continue this process, we get 

   .,, 01 zzdhzzd n
n

nn   

Since .0,10  nhnash  Thus  nz  is cone b-metric space in Z 

such that    .limlim 1 uzzTuT nn    Thus u is a fixed point of R. 

Uniqueness. 

Let Uu   is a fixed point of R then by (1), 
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   RuRuduud ,,   

       
   uuduud

uuduuduuduud

,,

,,,,
1 


  

       
 uud

uuduuduud

,1

,1,,
2 


  

 uud ,3  

   .,321 uud  

Which is true only if   ,0, uud  since   120 321  k and 

  .0, uud  Thus   0, uud  if Z is a fixed point of R then we have,  

     .,,, 2 vudRvRudvud   

Which gives   ,0, uud  since 10 2   and   .0, uud  Thus fixed point 

of R is unique. 

Example 3.2. Let  .1,0Z  Define  ZZd :  by  

  .,
22

vuvuvud   

For all ., Zvu   Define   .
4

,
uv

vuF   

Example 3.3. Let Z and   2,,,,,,  EutsrqpZ  and 

  0,:,  vuvup  is a cone in E.  Define EXZd :  as follows  

  Zzuud  ,0,  

     36,6,,  pqdqpd  

           qrdrqdrsdsrdprdrpd ,,,,,,   

       ptdtpdqsdsqd ,,,,   

     6,1,,  pudupd  

           rudurdqtdtqdpudupd ,,,,,,   

       tudutdsudusd ,,,,   

 .42,7  

Then  dZd ,  is a complete cone b-metric space. 
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IV. Conclusion 

Hence in this paper we have proved a fixed point theorem for multi-

valued contractive mapping in cone b-metric space by using triangular 

inequality, which is generalization and extension of the results due to Azam 

and Mehmood [15], Chu and Huang [5] and Kutbi and Karapinar [16]. 

V. Future Scope 

Fixed point for multivalued contractive mapping in   Cone b-metric space 

is an interesting concept. There is scope to examine the applicability of this 

space in different branches to study. 
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