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Abstract 

Local convergence of high order methods for solving nonlinear equations defined on abstract 

spaces has been studied extensively by a plethora of authors. But this is not the case for semi-

local convergence of these methods which is certainly a more interesting case. A technique is 

developed based on majorizing sequences and the notion of restricted Lipschitz condition to 

provide a semi-local convergence analysis for the third convergent order Noor-Waseem method. 

Due to the generality of our technique it can be used on other high order methods. Numerical 

applications complete this article. 

1. Introduction 

In this article we are concerned with the task of finding a solution x  for 
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the nonlinear equation 

  .0x
 

(1.1) 

where, 21:  D  is a differentiable in the sense of Fréchet, 1  and 

2  stand for Banach spaces and 0D  is an open set. Throughout the 

article     010 :, xxxxB   and    010 :, xxxxB    

  for some .0  

A plethora of applications from applied as well as the theoretical 

disciplines can be reduced to determining the point .Dx   But this task is 

very difficult in general. Moreover, the closed form of x  is hard to find 

unless in special cases. This forces researchers and practitioners to resort to 

iterative approximations to .x  A plethora of such approximations can be 

found in the literature [1-13]. Among those the most use full are the high 

convergence order ones. We notice that many local convergence results exist 

for these methods relying on Taylor expansions and derivatives of order at 

least one higher than the order of the method. As an example consider the 

third order Noor-Waseen method [8] defined by 

   kkkk xxxyDx  1
,


   

 ,4 1
1 kkkk xAxx 
 

 
(1.2) 

where  .
3

2
3 k

kk
k y

yx
A  







 
  

The existence of derivatives up to fourth order has been assumed 

although derivatives of order two and above do not appear on method (1.2). 

Moreover, method (1.2) may converge even if derivatives other than the first 

do not exist. Consider the academic and motivational example: in the scalar 

case for .
2

3
,

2

1





D  

  ,0tf
 

(1.3) 

where 
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 









0. if0

0iflog 2345

t

ttttt
tf  

Then, notice that Dx  1  and 

  .222460log6 22  ttttf  

But then, the third derivative of f is unbounded on D. Therefore, 

convergence is not assured by the results in [8]. There are no uniqueness of 

x  results or error bounds on nnnnn xxxyxx   1,,  that can 

be computed. The same observations can be made for the local results of 

other methods [1-7, 9-13]. Hence, there is a need to develop results using 

conditions only on the first derivative that appears on these methods. These 

results should also provide the uniqueness of x  and the error bounds in 

advance. Moreover, they should be given for the more interesting semi-local 

case. It turns out that these objectives can be achieved not only for (1.2) but 

for other methods too in a similar way. This is the novelty and motivation of 

our article. That is to expand the applicability under weaker conditions for 

these methods. 

Majorizing sequences for method (1.2) are introduced and studied in 

Section 2. The semi-local convergence is given in Section 3 for method (1.2). 

Numerical applications appear in Section 4. Concluding remarks in Section 5 

complete this article. 

2. Majorizing Sequences 

Scalar sequences are developed that majorize method (1.2). Let 

0,0,0 10  LLL  and 0  be given constants. Define sequence  nt  

by 

 00 ,0 st  

 

 nn

nn
nn

st
L

tsL
st

2
6

1

2

0

2

1




  

     
 

.
12

2

10

11
11




 




n

nnnnnn
nn tL

tttttsL
ts

 

(2.1) 
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Next, we present convergence criteria for sequence  .nt  

Lemma 2.1. Suppose that for all ,2,1,0n  

  620  nn stL  and .110 ntL
 

 (2.2) 

Then, sequence  nt  is nondecreasing bounded from above by 
0

1

L
 and 

converges to its unique least upper bound .
1

,0
0








L
t  

Proof. It follows by (2.1) and (2.2) that .
1

0
0

1 L
tst nnn    Hence, 

we conclude .lim 
  ttnn  □ 

The second convergence result contains stronger criteria than (2.1) but 

which are easier to verify. Consider recurrent polynomials on the interval 

 1,0  by 

      ,1213
6

2 011   nnn
n ttt

L
Ltf   

         ,21213 1
0

12   nn
n ttLtttLtf   

   tt
L

LLttg 25
6

22 20
1   

and 

          .21313 2
02 tLttLtttLtg   

It follows by these definitions that 

        .2,30,
2

1,20 022
0

11 LtgLg
L

gLg   

The intermediate value theorem asserts that polynomials 1g  and 2g  

have zeros in the interval  .1,0  Denote by 1  and 2  the smallest such 

zeros. respectively. 

It turns out that these polynomials are related. 



ON THE SEMI-LOCAL CONVERGENCE OF A THIRD ORDER … 

Advances and Applications in Mathematical Sciences, Volume 21, Issue 11, September 2022 

6533 

Lemma 2.2. The following assertions hold 

(1) 
               tftfttgtftf nn

n
nn

11
1

1
1

11
1 ,  


  at .1t  

(2) 
         ,1

2
22

1  


n
nn ttgtftf  

      tftf nn
22

1   at .2t  

Proof. It follows by the definition of these polynomials in turn that: 

(1) 
           tftfftf nnnn

111
1

1
1    

    1213
6

2 110   nnn ttt
L

Lt   

      tfttt
L

Lt n
nnn 101 1213

6
2     

     ,1
1

1  n
n ttgtf  

and 

      tff nn
11

1 1   at ,1t  

since   .011 g  

(2)
               


1

0
12

1
2

1 21313 nnn
nn tLtttLtttLftf  

      1
2

2 n
n ttgtf  

and 

      tftf nn
22

1   as ,2t  

since   .022 g  □ 

Let 

 
 

 bac
tL

ttL
b

L

L
a ,max,0,

12

2
,

3
1

2

10

11

0











  

   .,max,,min 21210   

Lemma 2.3. Suppose 
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12,1 010  LtL
 

(2.3) 

and 

.10 00  Lc
 

 (2.4) 

Conditions (2.3) and (2.4) determine the smallness of . Then, sequence 

 nt  is nondecreasing, bounded from above by 





1
t  and converge to its 

unique least upper bound .
1

,0









t  The following error estimates also 

hold 

 n
nn ts0

 
(2.5) 

and 

  
.0 1

1  


n
nn st  (2.6) 

Proof. The following items shall be shown using induction 

 

 
,

2
6

1

2
0

0







kk

kk

st
L

tsL
 (2.7) 

      
 

 nn
n

nnnnnn ts
tL

tttttsL











10

11

12

2
0

 

(2.8) 

and 

.0 1 kkk tst  (2.9) 

These estimates hold for 0k  by (2.1), the choice of a, b, conditions (2.3) 

and (2.4). It follows that   110001 0,0 tstsst   

  ,00  ts  so .
11

1 2

1










 tt  Suppose ks0  

 


1
10, k

kk
k

k stt  and .
1

1 2

1




 



 tt

k

k  hold for all 

.nk   Then, evidently (2.7) holds if 

.0
1

1
2

1

1

6
2

11
0 



































k

kk
k L

L  

or 
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   01
tf

k  at .t   (2.10) 

Define function  1
f  on the interval  1,0  by 

     .lim 11 tftf
k

k
k


  

It follows by the definition of  1
f  and 

 1
k

f  that 

  
 

.1
12

01 



 t

L
tf  (2.11) 

Then, by Lemma 2.2 (1) and (2.11), estimate (2.10) holds if 

 
01

12
0 




t

L
 at .t  

But this is true by the right hand side of (2.4). Similarly, (2.8) holds if 

          
 

 ,
12

112

10
kk

k

kkkkkk ts
tL

tststsL







 

or 

     
 

,
12

13

10






k

kk

tL

tsL
 

or 

    ,02
1

1
213

2

0 





k
k LtL  

or 
   02

tf
k  at .2t

 
(2.12) 

Define function  2
f  on the interval  1,0  by 

     .lim 22 tftf
k

k 
   

By the definition of 
 2
k

f  and  ,2
f  we get 

   .1
1

2 01













 t

L
tf  

Bence, (2.12) holds, if 
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.01
1

0 




t

L
 

But this holds by the right hand side of (2.4). It then also follows from 

(2.1) that (2.9) holds. The induction for assertions (2.7) and (2.8) is completed. 

Hence, we deduce .lim 
  tttkk  □ 

3. Semi-local Convergence 

The conditions (H) are needed: 

Assume: 

(H1) There exists 0,0  Dx  such that    12
1

0 , TTLx    and 

    .0
1

0  
xx   

(H2) There exists 00 L  such that for each Dx   

       .000
1

0 xzLxzx     

Define .
1

,
0

01 D
L

xUD 







  

(H3) There exist 0,0 1  LL  such that for each 1, Dwu   

       ,0
1

0 wuLwux     

and 

    .1
1

0 Lux     

(H4) Conditions of Lemma 2.1 or Lemma 2.3 hold 

and 

(H5)   .,0 DtxU   

Then, the following semi-local result for method (1.2) can be shown under 

conditions H. 

Theorem 3.1. Assume conditions H. Then, iteration  nx  given by 
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method (1.2) is well defined in  ,,0
txU  remains in  txU ,0  for each 

,2,1,0n  and converges to a solution x  of equation   0xF  in 

 .,0
txU  Moreover, the following assertions hold 

,nnnn tsxy 
 

 (3.1) 

 nnnn styx   11  (3.2) 

and 

.nn ttxx    (3.3) 

Proof. By condition (H1) and (2.1), 

    .000
1

000 tsxxxy 
   

Hence, (3.1) holds for 0n  and  .,00
 txUy  Let  .,0

 txUu  Using 

condition (h1) we get 

       ,10000
1

 
tLxuLxuu   

so the Banach lemma on linear invertible operators [10] assures that   1 u  

exists and 

    .
1

1

00
0

1

xzL
xu


  

 

(3.4) 

We can write by method (1.2) 

   kkkk xxyx  1
1


    

 kk xA 14   

     kkkk xAxy  11
4 


 

     kkkk xxAy  114
 

 

       .4
11

kkkkkk xxAxAy   
 

(3.5) 
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Some estimates are needed assuming (3.1) and (3.2) for all nk   

   k
kk

k y
yx

x  






 


3

2
34  

        kk
kk

k yx
yx

x  






 


3

2
3  

so by (H2) and (H3) 

      k
kk

kk y
yx

xx  






 
 

3

2
34

1
 

kk
kk

k xyL
yx

xL 



3

2
3  

 ;22 kkkk tsLxyL   (3.6) 

     0
1

0 44 xAx k   
 

     0
1

0 3

2
3

4

1
x

yx
x kk  







 




 

       0
1

0 xxx k  


 

 000 3

2

4

1
xyx

yx
L k

kk 


  

 0
00

0 3

2

4

1
xy

xyxx
L k

kk 


  

   kkk sst
L

 2
3

1

4
0  

  ,12
6
0  kk st

L
 

so 

 
 

.

2
2

1

1

0
0

1

kk

k

st
L

xA



   (3.7) 

Hence, by (2.1) and (3.5)-(3.7), we have 
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   

 
kk

kk

kkkk
kk st

st
L

tstsL
yx 




  1

0
1

2
2

1

2
 

and 

0101 xyyxxx kkkk    

.101


  tttsst kkkk  

Hence,    txUxk ,01  and (3.2) holds for .0n  Hence, iterate 1ky  is 

well defined (by (3.4) for .1 kxu  It follows from method (1.2) that 

       kkkk xxxx    11  

     kkkkk xxAxx   11 4

1
  

   ,
4

1
1 kkkk xxAb    

where     

1

0
1 .dxxxb kkkk   We need an estimate: 

     






 
 

1

0
1 3

2
344 k

kk
kkkkk y

yx
dxxxAb   

     






 
 

1

0
1 3

2
3 kk

kkk
yx

dxxx   

      

1

0
1 .kkkk ydxxx   

So, 

     















 


1

0
1

1
0 3

2
3

4

1
dxx

yx
xLxx kk

kk
kk  

  kkkkkk xxdyxxxL 



  1

1

0
1  
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      ,2
2 11 kkkkkk ttttts
L

   (3.8) 

      
  11

10

11
11 12

2





 




 kk

k

kkkkkk
kk ts

tL

tttttsL
xy  

and 

011101 xxxyxy kkkk    

.10111


  tsttts kkkk  

These computations complete the induction for (3.1) and (3.2). Sequence 

 kt  is fundamental as convergent. Then, so is  kx  (in a Banach space .1T  

Hence, there exists    txUx ,0  
such that .lim 

  xxx kkk  
Then, by 

letting k
 
in (3.8) we get   ,0xF  where we also used the continuity 

of F. □ 

Remark 3.2. The limit point t  can be replaced by 
0

1

L
 and 





1
 given 

in closed form in (h5) under the conditions of Lemma 2.1 and Lemma 2.3, 

respectively. 

The uniqueness of the solution result follows. 

Proposition 3.3. Assume: 

(1) There exists element   DxUx 
00,  for some 00   which is a 

simple solution for equation   .0x  

(2) Condition (H2) holds. 

(3) There exists 01   such that 

  .1
2 10
0 

L
  (3.9) 

Define  ., 12  xUDD   Then, the element 
x  is the only solution of 

equation   0x  in the set .2D  

Proof. Assume there exists 2Du   satisfying   .0u  Define linear 
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operator   
 

1

0
.dtuxtuM   Then, in view of (H2) and (3.9), we 

obtain in turn 

            1

0
000

1
0 1 dxxxuLxMx   

  .1
2 10
0 

L
 

Therefore, operator M is invertible. Hence, also using the identity 

     ,0   xuMxu   we deduce that .  xu  □ 

Remark 3.4. Notice that not all conditions (H) are used in Proposition 

3.3. But if they were used, then we can certainly set .0
 t  

4. Numerical Experiment 

We verify the conditions of Lemma 2.1 for an example in this section. 

Example 4.1. Let us consider a scalar function  defined on the set 

 suUD  1,0  for  1,0s  by 

  .3 sxx   

Choose 2   and .10 u  Then, we obtain the estimates ,
3

1 s
   

       2
0

2
0

1
0 uxuxu     

  00000 2 uxuuxuxux   

    ,321 00 uxsuxs   

so ,30 sL   

       221
0 xyxyu     

  xyuuxuyxyxy  000 2  

  xyuuxuy  000 2  
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,
1

122
11

000
xy

L
xy

LL


















  

for each Dyx ,,   and so .
1

12
0










L
L  

         xyuuxuyxyu  
000

1
0 2  

    ,22211 xysxyss   

for each Dyx ,,   so   .2
2

1 sL   Then, for 95.0s  we have 

Table 1. Sequence (2.1) and condition (2.2). 

n 1 2 3 4 5 6 

1nt  0.0183 0.0193 0.0193 0.0193 0.0193 0.0193 

ns  0.0167 0.0193 0.0193 0.0193 0.0193 0.0193 

 nn stL 20   0.0683 0.1169 0.1189 0.1189 0.1189 0.1189 

10 ntL  0.0376 0.396 0.0396 0.0396 0.0396 0.0396 

Hence, the conditions of Lemma 2.1 hold. 
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