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Abstract

One of the more recent measures of centrality in social network analysis is the normalized
harmonic centrality. A variant of the closeness centrality, harmonic centrality sums the inverse
of the geodesic distances of each node to other nodes where it is 0 if there is no path from one

node to another. It is then normalized by dividing it by m —1, where m is the number of nodes

of the graph. In this paper, we present notions regarding the harmonic centrality of some

important classes of graphs.

1. Introduction

In graph theory and social network analysis, the notion of centrality is
based on the importance of a node in a graph. In 1978, Freeman [3]
expounded on the concept of centrality being an important attribute of social
networks and its characteristics relate to other important properties and
processes. Rodrigues [6], however, discussed centrality as not having a formal
definition and may not be unique. A street corner in an urban network may

be considered central when it is the most accessed part of the map. While in a
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social network, a celebrity or politician is considered central because she can
easily share information with her millions of followers with a simple click of a
button. Since there is no agreed upon definition of centrality, several

measures have been proposed, each with its strengths and qualities.

The most common measures of centrality include degree centrality,
closeness centrality, betweenness centrality, eigenvector centrality, and Page
Rank centrality. Wasserman and Faust [2] categorized these measures
according to whether they are for non-directional relations or directional
relations. Some authors classified them according to whether they are degree-

based or shortest path-based types of centrality measures.

One of the more recent measures of centrality is Harmonic Centrality.
Introduced in 2000 by Marchiori and Latora [4], it is a variant of closeness
centrality. While closeness centrality of a vertex u is defined as the reciprocal
of the average length of the shortest path between u and all other vertices in
G, harmonic centrality reverses this and measures the sum of the reciprocals
of the distances of u from each vertex in G. It was invented to solve the
problem of dealing with unconnected graphs by equating the reciprocal to 0 if
there is no path from one node to another. The harmonic centrality is
normalized by dividing it by m —1, where m is the number of nodes in the
graph. For related works with closeness and betweenness centrality of some
graph families, see [1], [5], and [7].

In this paper, we present notions regarding the harmonic centrality of
some important classes of graphs.
2. Preliminaries
For formality, we provide some definitions of the main concepts discussed
in this paper.

Definition 2.1 (Harmonic Centrality of a Graph). Let G = (V(G), E(G))
be a nontrivial graph of order m. If u € V(G), then the harmonic centrality of

vertex u is given by the expression

Holu) - 2o
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where Rg(u) = zuixﬁ is the sum of the reciprocals of the shortest

distances d(u,x) in G between vertices u and x, for all x # u, with

1
d(x, u)

= 0 in case there is no path from u to x in G.

el
AN

Figure 1. A caterpillar graph G with u € V(G), where Hg(u) = %

Definition 2.2 (Harmonic Number H,,).

The n-th harmonic number H,, is the sum of the reciprocals of the first n

natural numbers, that is

)
w
|~

k=1

In this paper, the harmonic centrality of some special graphs such as path

P, cycle C,, fan F,,, wheel W,,, complete bipartite graph K,, ,, ladder
L,,, crown Cr,, prism Y,,, star S,,, book B,,, and helm graph H,, are

derived. Each graph considered is simple, finite, and undirected.

The path P, of order m is a graph with distinct vertices q, as, ..., a,,
and edges aag, asas, ..., @p,_1Q,,. The cycle C,, of order m > 3 is a graph
with distinct vertices qq, ao, ..., q,, and edges aya9, A90s3, ..., Qy_1Q, Cmdy-
amal. The fan F,, of order m +1, where m > 3, is formed by adjoining one
vertex u, to each vertex of path P, = [y, uo, ..., 4,,]. Figure 2 shows the

skeletal graph for path, cycle, and fan graphs.

The wheel graph W,, of order m +1, m > 3, formed by adjoining one

vertex u, to each vertex of cycle C,, =[u, us, ..., u,,]. The complete
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bipartite graph K,, , where both m, n > 2, V(K,, ,)={u, ug, ..., U}
Ufvr, v, .., )y (K ) ={wvj 11<i<m,1<j<nf. The ladder L,, of
order 2m, formed as the Cartesian product of a path graph P, =

[t, us, ..., u,,] with the path graph P, =[vy, vy3]. Figure 3 shows the

skeletal diagrams for a wheel, complete bipartite graph, and a ladder graph.

Us Uy
o—-0—20- - 0—=0 Um—1 U1
Uy U U3 Um—1 Um ..

Um 1

(b)

Wi U2 U3 U4 Um
(a)

()
Figure 2. (a) Path P,, (b) Cycle C,,, and (c) Fan F,,.

The crown graph Cr,, of order 2m with V(Cr,)={w,us,...,u,}
U{vy, vg, ..., v, } and whose edges are formed by adjoining u; to v; whenever
i # j. The prism graph Y,,, of order 2m with m 2> 3, formed as the
Cartesian product of a cycle graph C,, = [iy, ug, ..., u,,] with the path graph
P, = [v;, vg]. The star graph S,,, of order m + 1, m > 1, formed by adjoining
m isolated vertices u;, 1 <i < m, to a single vertex u,. Figure 4 shows the

skeletal diagrams for a crown, prism, and star graph.

WUy UgVp Um-1U1 Uy Uy

Uv2 U2 Up—1V2 U2

(c)

Figure 3. (a) Wheel graph W,,, (b) Complete bipartite graph K, ,, and
(c) Ladder L,,.
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Figure 4. (a) Crown Cr,,, (b) Prism graph Y,,, and (c) Star S,),.

UV UV

U1V Uz v2

(a)

Figure 5. (a) Book B,,, and (b) Helm graph H,,.

The book graph B,, of order 2(m + 1), formed as the Cartesian product of
a star graph S,, (with center vertex u) with path graph P, = [v;, vg]. The
helm graph H,,, m > 3, is obtained by adjoining a pendant vertex at each
node of the m-ordered cycle of wheel W,,, with vertices V(H,,) = [ug, 1,
s Uy JU [vg, U9, ..., v, ] Figure 5 shows the skeletal diagrams for a book

graph and a helm graph.
3. Main Results

In this section, we present some properties of harmonic centrality and
their application to some graph families. Graphs considered in this paper are
the path P, cycle C,,, fan F,,, wheel W,,, complete bipartite graph K,, ,

ladder L

m» crown Cry,,, prism Y,,, star S,,, book B,,, and helm graph H,,.

Theorem 3.1. Let G be a nontrivial graph. Then each u € V(G) satisfies
0<Hgw) <1.

Proof. Let u € V(G), then the vertex set V(G) can be partitioned into
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three subsets, namely, () Ng(u), (i) V(G)\ N[u], and (iii) the singleton

vertex u.

(i) For the open neighborhood Ng(u),
Rew) = D 1 deg u
dg(u, x)

(i) For V(G)\ N[u], there will be two cases. Case 1, if V(G)\ N[u]# 0,

then this case is the same with the first partition and we obtain

Rgu) degu
m-1_ m-1

m-1
He(w) = —molog

For Case 2, if V(G)\ N[u] # 0, then,
Ro= 3 Gun® )
xeNg(u) xeV(GNNglu]
< degg(u, x)+1[m -1 - deg g(u)]
=m-1
Thus, from this case we obtain

Holw) = Re) mol_

< =1
1 m-—1

(111) To complete graph G, we consider the singleton vertex u. Note that

Hg(u) = 0 wherever u is not adjacent to any vertex in G.
Thus, combining these cases we get 0 < Hg(w) <1, for all u € V(G). .

Theorem 38.2. Let G be a nontrivial graph of order m and let u € V(G).
Then Hg(w) =1 if and only if degg(u) = m —1.

1 1
Proof. If Hg() =1 then m-1 erNG[u] d(x, u) =1 and Re(w) =
1 .
er Nelu d(x, ) =m—1. This result can only happen whenever

deg(u) = m — 1, which means that vertex u is adjacent and has a distance of 1
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with all other vertices in G.

Assuming that deg(u) = m — 1, then there exists at least one vertex x of G

not adjacent to u. For each x € V(G) \ Ng[u], we have ﬁ <1

Now, Rg(u) = Z m * Z ]dG(L1‘> x)

xeNg[u] xeV(G)\Nglu

< deg ()(u, x) +1[m —1 —deg g (u)]

=m-1. =

Thus, Rg(w)<m—1 sothat Hg(u)——=—=

RG(u) = 1.
m-1

Corollary 3.3. Let G be a nontrivial connected graph of order m. Then
Hg(w) =1 for every u e V(G) if and only if G =K,,, where K, is the

complete graph of order m.

Proof. This follows from Theorem 3.2 since the degree of each vertex of a

complete graph is m —1. u

Theorem 3.4. For the path P, =[u, us, ..., u,,] of order m > 2, the

harmonic centrality of any vertex w;, 1 <1 < m, is given by

Zmill ifi=lori=m
Hp (u;)= -
Pm( ! Hi + Hyy ifl<i<m
m-1 ’
Proof. Consider a path P, =[uy, uo, ..., u,,] of order m > 2, then
1 1 m-11
Rp, (1) =Rp, () =145+t —==> " 2 =Hy .

m
1
RG(u)_Zlde(ui>uj)
j:

i—

- 1 S 1
+
= dp, (u;, uj) JZ_llde(ui, uj)
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_| 2 + 1 + +l+l+1+1+l+l+ + 1
Tli-1 -2 7732 2

3 m—1i
i-1 1 m—zl
= — + f—
Jj=1 / Jj=1 /
= Hi— + Hm
Thus,
() % ifi=lori=m
Hpm ui = ._ . u
Hoa+Hyi 1 icm
m-1
Theorem 3.5. For the cycle C,, =, ug, ..., Uy, w1}, the harmonic

centrality of any vertex u;, 1 <i < m is given by

m(Hm_l) lfmlsodd
+ i) if m is even
-2 m .

Proof. To prove this theorem, we need to consider the structure of a cycle

C,,. For when m is odd, a vertex u’s distances from each x will be the same

on both sides and R¢, (u;) can be computed as follows:

1 1 1
'Rcm(ul)— Z m—z 1+§+...+m —2Hm_1
xeV(Cy,) ™M

—_— 2
2
On the other hand, if m is even, then a vertex directly opposite u exists
and R¢, (u;) can be computed as follows:

1 1 1 1 2
RCm(ui)— Z m—z 1+§+...+m_1 +E _2+E
xeV(Cy,) o

2

Normalizing these two cases form the harmonic centrality of cycle graph
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C,. .

Theorem 3.6. For the fan graph F,, of order m +1, m > 2, formed by
adjoining one vertex ug to each vertex of path P, =[uy,us,...,u,], the

harmonic centrality of any vertex w; € V(F,,) is given by

1 ifi=0
Hp, (1) = ’”2;2 ifi=lori=m
m+3

. if 1<i<m.

Proof. Given that u, is adjacent to each vertex of path B, then by
Theorem 3.2, Hp (ug) = 1. For 1, u,, € V(F,), we have

1
RE, (w) = RE, () = Z T (@, %)
xeV(F,,) Tm P
1 1 1 1

= + + +oit
d(, uo) d(uy, ug)  d(u, u3) d(uy, um)

1 1
=1+1+ §+...+§

| ———
m—2 addends

2+%(m—2)

m+ 2
2

For u; € V(F,,), if 1 <i < m, let us consider uy we have
Re, (W)= ), m
xeV(F,,) Tm P

1 1 1 1
= + + +...+
d(ug, UO) d(ug, wy)  d(usg, us) d(us, um)

Advances and Applications in Mathematical Sciences, Volume 21, Issue 5, March 2022



2590 JOSE MARI E. ORTEGA and ROLITO G. EBALLE

1 1
=1+1+1+ §+...+§

| e ———
m—3 addends

3+%(m—3)

m+3
2

To normalize, we divide Rp_ (¥) by m because fan graph F,, has an

order of m + 1. L]

Theorem 3.7. For the wheel graph W,, of order m +1, m > 3, formed by
adjoining one vertex ug to each vertex of cycle C,, =[w,us,...,u,], the
harmonic centrality of any vertex u; € V(W,,) is given by

1 if i

Hy, () = {m +3 .
2m if1

Il
e}

IA

1 < m.

Proof. Given that uy is adjacent to each vertex of cycle C,,, then by

Theorem 3.2, Hy, (ug) = 1. For u; € V(F,), if 1 <i < m, we have
R, ()= Y )
xeV (W) Ym0

1 1 1 1
= + + o
d(u;, ug) — d(u;, w;y)  d(yy, ujyq) d(u;, uy,)

1 1
=1+1+4+1+ §+...+§
—_
m—3 addends
:3+%(m—3)
_m+3
2

We normalize the wheel harmonic centrality by dividing it my m since
W,, has m + 1 vertices. "
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Theorem 3.8. For the complete bipartite graph K, , where both
m,n =0, V(Km’ n) = {ug, ug, oy uy U vy, v, ..l, 0, ), E(Km n) =
{wjvj 11 <i<m,1<j<n}, the harmonic centrality of vertices u; and v; are
given by

m+2n -1 m+2n -1

HKm,n(ui) T 2m+n-1) and HKm,n(Uj) " 2Am+n-1)

Proof. Considering the specific structure of K,, , and the way the

partite sets {u, ug, ..., 4} and {v;, v, ...,v,} are arranged, for

u; € Vi(K,, ,), we have

1 1 1
e e TP DI s e KD D e e

yEVZ(Km,n) xEVl(Km,n)
1 1
= =i 0(3) )
_ m+2n-1
T 2m+n-1)

As for vj € Vo(K,, ), we have

1 1 L
i, ) = o g| 2 g, ) 2 i, (Vs )

erZ(Km, n) erl(Km, n)
1 1
- m[’"(n‘”(i)* ”)
_2m+2n-1 .
S 2m+n-1)°

Theorem 3.9. For the ladder graph L, of order 2m, formed as the
Cartesian product of a path graph P,, = [u, us, ..., u,,| with the path graph

P, = [vy, vg], the harmonic centrality of any vertex (u;, v;) given by
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! (2Hm,1+%) fori=1lori=m,1<j<2

2m —1
Hu, (s vj) = 177 1 1
[2 (Hioy + Hypo) + 54 g

[ — - i <j<
o 1 1} forl<i<m,1<j<2.

Proof. Considering the structure of a ladder graph, we can group the
vertices according the paths they belong to, that is, [(ug, v;), (ug, vy),

sy ( Um. Ul)] € ‘/1( ) and [(ul’ UZ)’ (u27 v2)7 sy ( Ums UZ)] < V2( ) so for

(111, v;) and (u,y,, v;) we have

R, (w, vj) = Rp, (U, v))

1
P dr,, ((ul,vl) x) " 2 dr,, ((w;, v1), x)

xeVi(Ly,) xeVa(Ly,)
= 1 + 1 +
d((ul’ Ul)’ (U’Z’ Ul)) d((ul’ Ul)’ (u3’ Ul))
1 1

T A, v1), W1y 12) (@, 1), (i 02))

—1+l+ +L+1+l+ + 1 +L
B 2 7 m-1 2 7 m-1 m
m-1
1 1
=22 m
k=1
1
_2Hm1+m

Asfor u;,1<i<m,

1 1
Ra(u) = Z dLm((ui’Uj)’x)+ Z dp,,, (i, vj), x)

xeVi(Ly,) xeVa(Ly,)

m

i-1
B 1
) JZ_:d m(vl)(uw %) Z A
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ZdL (Vz)(uw ' Z dLm(Vg)(uL’ u;)

=i+1

—L+L+ +1+1+1+1+l+1+ + 1
Sli-1 i-2 7732 2 3 7 m-i

+1+ 1 + +l+l +1l+=-+c+ 1
i o1-1 3 2 -1+1
- 1L 1 + +—+—+1+1+l+1+ + 1
Tli-1 i-2 3 2 2 3 7 m-—1
+ 1 1 + +—+l+1+1+l+l+ + 1
-1 1-2 3 2 2 3 7 m-i
+1+ 1
i m-i1+1
1 1
_2(Hi‘1+H’”‘i)+7+m—i+1
Thus, after normalizing we get
#ZH +L) fori=1lori=m,1<j<2
2m -1 m=1" 0y B s
HLm(uiavj)z 1 1 1

2m—1[2(Hi*1+H'"*i)+?+m—i+1

—1} for1<i<m,1<j<2

u

Theorem 3.10. For the crown graph Cr, of order 2m with
V(Cr,,)={w, ug, ..., up }U{vy, 09, ..., 0, and whose edges are formed by
adjoining u; to v; whenever i # j, the harmonic centrality of vertices u; and

v; is given by

Om -7
Hey, (1) = Hey, (v;) = om—6

Proof. Considering the structure of a crown graph Cr,,, the geodesic
distance of u; to other u’s is 2. While distance between wu; and v; is 3

whenever ¢ = j. On the other hand, u; is adjacent to v, whenever i # j.
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Thus,

Mo, () = He, (07) = 5o (5 0m =D+ 10m - 1)+

1 (9(m—1)+2)

“om-1 6
_ 9m -7 .
T 12m -6

Theorem 3.11. For the prism graph Y,,, of order 2m and with m = 3,
formed as the Cartesian product of a cycle graph C,, = [u, us, ..., U,,] with
the path graph P, = [vy, vy], the harmonic centrality of any vertex (u;, v; ), is

given by
2m1—1[4H”“1+Zj1))J if misodd,1<j<2
HY (u‘,U'): 2
m i Y 1 2 m+ 2 ) . .
om o1t Hm+m* - if miseven,1<j<2.

Proof. Considering the construction of a prism Y,, as a Cartesian
product of a cycle graph C,, = [y, us, ..., u,,] and a path graph P, = [v;, vs],
we can segregate the vertices according to the cycle they belong to. That is,
[(w, v), (g, v1), ..., (i, )] € i(Yy,)  and [(w, vo), (ug, v2), .. (4, U2)]
e Vo(Y,,), soif m is odd we have

1 1
Rinov)= D g s " 2 & D)

xeV1 (V) xeVo(Y)
1 1 1 1 1
_1+1+...+m_1 1 +1+§+—+ +m+1+m+1
2 2 2 2
m-1
! 2
24;E+2(7n+1j_1

Advances and Applications in Mathematical Sciences, Volume 21, Issue 5, March 2022



HARMONIC CENTRALITY IN SOME GRAPH FAMILIES 2595

w

m
:4Hm_4_m+1

Now, if m is even, we have

- 1 1
RYm(ui’ U]) B z de((u’i’ Ul)’ x) i Z de ((ui’ Ul)’ x)

xeVi(Yp) xeVa(Yy,)
1 1 1 1
=|1+1+-+ =+ +E + 1+§+§+"'+m+2
2 2
m-1
<! 1 1
Zk m+ 2 m
k=1 2 2
2 m+ 2
=4H
mt e m
2
Normalizing and consolidating these results we get
1 3-m . . .
2]’)1—]_{4H'n1+n1+1} 1fmlsodd,1£]£2
Hy, (4, v;) = 2 "
1 2 m+ 2 . . .
m4 %+m+2_ -, J if miseven,1<j<2.

Theorem 3.12. For the star graph S,,, of order m+1 with m >1,

formed by adjoining m isolated vertices u;, 1 <i < m, to a single vertex ug, the

harmonic centrality of any vertex u; is given by

1 fori =0
Hsm(ui) =im+1

<i<
. for1<i<m.

Proof. By theorem 3.2, HSm(uO) =1 since all other vertices are adjacent

to up. For 1 <i < m, u; has a geodesic distance of 1 to uy and %, otherwise,

thus we have

Advances and Applications in Mathematical Sciences, Volume 21, Issue 5, March 2022



2596 JOSE MARI E. ORTEGA and ROLITO G. EBALLE

i, (1) = 55 (15 (m =)

m-—1

2m

Theorem 3.13. For the book graph B,, of order 2(m +1), formed as the
Cartesian product of a star graph S, =[ug, uy, ..., W, | (With center vertex u
and order m +1) with path graph Py = [v, vy}, the harmonic centrality of

any vertex (u;, vj), 0 <i < m, 1< j <2, isgiven by

SmA2 e i—01<j<2
HB (u)= dm + 2
m M forl<i<m,1<j<2.
6(2m + 1) sts=mlsjs

Proof. For vertices (1, v;) and (ug, vg),

Hp (o, vj) = W[l(m 1)+ %(m)}

_3m+2
T 4m + 2

For vertices (u;,v;),1<i<m,1<j<2,
1 1 1
M, (1, 0)) = g | 20+ 5 (m) + 0 - 1)

T 2m+1

1 12+3m+2m-2) 5m+10
6 - 12m+6

_ 5(m +2)
- 6(2m+1)°
Theorem 3.14. For the helm graph H,,, of order 2m +1 with m > 3,

obtained by adjoining a pendant vertex to each node of the m-ordered cycle of

wheel W,,, with vertices V(H,,) = {ug, uy, ..., Uy} U{vy, vo, ..., vy}, the

harmonic centrality of any vertex u;, 0 < i <m and vj, 1 < j < m, is given by
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% for i =0
M, (W) =15, 1 15

<i<
Tom for1<i<m

Tm +17 .
)=l <j<
Hpy, (v;) { 51 for1<j<m
Proof. The distance of u, to the m-ordered u;’s is 1, while its distance to

So, Hpy, (up) = %(m(l) + m(%)) = % For

Do

the me-ordered uj’s is

u,1<i<m
1 1 1
Mg, () = g 40) + 5 (m = 1)+ 3 m - 3)|

_bm+15
T 12m

As for vj, 1< J < m, we have

Hy () = %[1+(%)3+%(m—1)+%(m—3)}

Tm 417
T 24m

4. Conclusion

Harmonic centrality is a useful metric for analyzing graph structures.
When compared to other centrality measures, harmonic centrality has the
advantage of considering disconnected graphs. We have derived expressions
for harmonic centrality of some graph families which are the basic
components of larger and more complex networks. This study is therefore

helpful for analyzing larger classes of graphs.
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