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Abstract

Our aim is to introduce p-fundamentally nonexpansive mapping in modular function spaces

and prove some lemmas and fixed point existence results. Also, we provide an example to

support our results.
1. Introduction

Modular function spaces are the generalization of some class of Banach
spaces which attracts many analysts to work in this field. The concept of fixed
point in modular function spaces was introduced by Khamsi, Kozlowski and
Reich [6] in 1990. The existence and convergence theorems for fixed points for
nonexpansive type mappings in modular function space have been given by
many researchers ([2, 4, 5, 8]). In 2016, Moosaei [7] gave some Dbasic
properties and fixed point theorems for fundamentally nonexpansive
mappings in Banach spaces. It can be easily shown that nonexpansiveness
implies fundamentally nonexpansiveness but converse need not be true.

Example 1.1 [7]. Define a mapping 7 on [0, 4] as follows:
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Ty — 1 %fx#él
25 if x =4

forall x € [0, 4] Then T'is fundamentally nonexpansive but not nonexpansive.

Motivated by him, we introduced the concept of fundamentally nonexpansive

mappings in modular function spaces as p-fundamentally nonexpansive

mappings. In this paper, we prove basic properties and some fixed point

theorem for p-fundamentally nonexpansive mapping in context of function

modular p.

2. Preliminaries

Let Q be a nonempty set and X be a nontrivial c-algebra of subsets of Q.

Let P be a nontrivial 5-ring of subsets of Q which means that P is closed

under countable intersection, and finite union and differences. Suppose that
ENAeP forany E € P and A € X. Let us assume that there exists an

increasing sequence of sets K, € P such that Q = UK,,. By ¢ we denote the

linear space of all simple functions with support from P. Also M, denotes

the space of all extended measurable functions, i.e., all functions

f : Q — [~o, o] such that there exists a sequence
{g.} e |gnl <|f| and g,(w) > f(w) forall w € Q.
We define
M= & My | F)] < 0p—aeh

Definition 2.1 [9]. Let X be a vector space (R or C). A functional p is

called a modular if for arbitrary elements f, g € X, the following hold:
@ p(f)=0ef=0
1) p(of) = p(f) whenever |a| =1

(i) p(of +Bg) < p(f) + p(g) whenever o, p =20, a +p = 1.
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If we replace (iii) by
(v) p(af +Bg) < ap(f) + Bp(g) whenever o, B >0, o + B = 1.

Then modular p is called convex.

Definition 2.2 [9]. If p is convex modular in X, then the set defined by
Ly ={f e M:p(xf) > 0 ask — 0}

is called modular function space. Generally, the modular p is not subadditive

and therefore does not behave as a norm or a distance. However, the modular

function space L, can be equipped with an F-norm defined by

||f||p =inf{a>0:p(£j£oc}.

In the case p is convex modular

||f||p :inf{a>0:p(§jgl},

defines a norm on modular function space L, and it is called Luxemburge

norm.

Definition 2.3 [9]. Let p : M, — [0, ] be a nontrivial, convex and even

function. Then p is a regular convex function pseudo modular if
L. p(0) = 0;

2. p is monotone, ie., |f(w)|<|gw)| for any w e Q implies

p(f) < p(g), where f, g € M;

3. p is orthogonally sub-additive, i.e., p(fxays) < p(fxa +p(fxp)) for
any A, B e X suchthat ANB # ¢, [ € M;

4. p has Fatou property, ie., |f,w)|T|fw)| for weQ implies
p(fy) T p(f), where f e M.y;
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5. p is order continuous in ¢, i.e., g, € ¢ and | g,(w)|{ 0, then p(g,) { 0.

Definition 2.4. Let p be a regular convex pseudo modular. Then p is
regular convex function modular if p(f) = 0 implies f = 0 a.e. The class of

all nonzero regular convex function modular on €2 is denoted by fR.
Proposition 2.5 [9]. Let p € fR.
(@) L, is p-complete.
(i1) p-balls Bp(f, r)={ge L, : (f — g) < r} arep-closed.
@) If p(af,) = 0 for o > O then there exists a subsequence {g,} of {f,}
such that g, >0p—a.e. as n — oo

iv) p(f) < liminf,_,, p(f,,) whenever f, — fp—ae as n — . (Note:

this property is equivalent to the Fatou property.)
(v) Consider the set Lg =1{f € L, : p(f,-) is order continuous} and

E,={feL,: )\ ¢ Lg forany A > 0}.
0
Then we have Ep c Lp c Lp.

Lemma 2.6 [2]. Let p € R and satisfy (UUCI). Let {t,} < (0,1) be
bounded away from both 0 and 1. If there exists R > 0 such that
lim,,_., sup p(f,) < Rlim, ., supp(g,) < R and
lim, o, p(tpfy + (1= 1,) 8y) = R, then
lim,, e p(fy — &0) = 0.

The sequence {t,} < (0,1) is said to be bounded away from O if there exists
a > 0 such that t, > a for all n € N. Similarly the sequence {t,} = (0,1) is
said to be bounded away from 1 if there exists b <1 such that t, < b for all
nelN

Lemma 2.7. Let {f,} and {g,} be two bounded real sequences. Then
1. lim,,_,,, sup max {f,,, g,} = max {lim,,_,, sup f,,, im,_,,, sup g,,}
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2. let h, =a,f, +(1-a,)g, with o, < [0, 1] convergent to a real number

a € [0, 1] Then lim,,_,, suph, < alim, ,,supf, + (1 - a)lim,_,, sup g,.
Lemma 2.8 [1]. Assume that L, be modular function space. Let p satisfy
the Fatou property. Let C be a nonempty p-closed convex subset of L, and {ful
be a sequence in L, with a finite asymptotic radius relative to C. If p-satisfies
the (UUCI)-condition, then all the minimizing sequences of T are modular-

convergent, having the same p-limit.

3. Main Results

In this section, firstly we define p-fundamentally nonexpansive mappings

in modular function spaces and then prove some lemmas and fixed point

existence results. Also, we provide an example in which the mapping T is
p-fundamentally nonexpansive mapping but not nonexpansive.
Definition 3.1. Let p € ® and D, be a nonempty p-bounded, p-closed,

p-convex subset of L,. Then T :D, — D, is said to be fundamentally

nonexpansive mapping if for each f, g € D,

p(T*f - T2) < p(If - 2).
Lemma 3.2. Let pe® and D, be a nonempty subset of L,. Let
T : D, - D, bea mapping. Then the following hold:
(1) If T is nonexpansive, then it is fundamentally nonexpansive.
1) If T is fundamentally nonexpansive with Fp(T) + ¢, then T is quasi-
nonexpansive.
Proof. (i) If T'is nonexpansive, then
p(T*f - Tg) < p(Tf - g),
which shows that T is fundamentally nonexpansive.
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(i) If T is fundamentally nonexpansive with F,(T)# ¢, then let
p e F,(T)

p(Tf-p)=p(Tf =T?p) = p(T*p - Tf) < p(Tp — f) = p(p - ),

hence p(Tf — p) < p(f — p). This proves that 7'is quasi-nonexpansive.
Lemma 3.3. Let pe R and D, be a nonempty p-bounded, p-closed,
p-convex subset of L,. Let T :D, - D, be fundamentally nonexpansive

mapping and Fy(T) # ¢, then F,(T) is closed and convex.

Proof. Suppose that {f,} is a sequence in F,(T') which p-converges to
some f € Dp.
p(fo =TF) = p(Tf, = TF) < p(Tfy — ) = p(f, = )
hmn—)oo sup p(fn - 77) = hmn—)oo sup p(fn - f)

By uniqueness of asymptotic center, Tf = f and hence f e Fp(T) which

shows that F,(T) is closed. Now, it remains to show that F, (T) is convex.

Let f, g € F,(T) and h = fre

2
p(f ~ Th) = p(Tf — Th) < p(Tf ~ h) = p(f — h) = p(f‘Tg) 3.1)
p(g - Th) = p(T%g — Th) < p(Tg — h) = p(g — h) = p(ng (3.2)
Also,
p(f—h)= p(f_ng, p(g—-h)= p(f_Tg)- (3.3)

p£ = 25552 ) = p(G 07 =)+ 5 p(F = Th) < o7 =)+ S p(F ~ Th)
() 1515
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p(g— h+2Thj = p@p(g—h%%p(g—Th)j < %p(g—h)+%p(g—Th)

{5 5) o 15)
Therefore,

p(f—Tg)S%p(f_h+2Th)+%p(h+2Th_gj Orp(f;g) < p(f_ h+2Thj

We conclude that

p(f _h +2Th) = p(%p(f - Th)+%p(f - h)) - p(f_—gj- (3.4)

2
Using (3.1), (3.3), (3.4) and Lemma 2.6, p(h — Th) = 0 and hence h € F,(T)

which implies that F,(7') is convex.

Lemma 3.4. Let pe R and D, be a nonempty p-bounded, p-closed,
p-convex subset of L,. Let T :D, — D, be fundamentally nonexpansive
mapping, then F,(T') is nonempty.

Proof. By Lemma 2.8, the asymptotic center of a sequence in D,

particularly, the approximate fixed point for T'is in D,. Let A({f,}) = f. We
show that f e F,(T).

p(fu = TF) = p(T°f, = Tf) < p(Tfy ~ f) = p(f ~ )
lim,, o sup p(fy = Tf) < lim, o, sup p(f,, = ).
As asymptotic center is unique, 7f = f and hence f € Fp(T). This shows
that F,(T') is nonempty. o
Theorem 3.5. Let p € Rand D, be a nonempty p-bounded, p-closed, p-
convex subset of Lp. Let T : Dp - Dp be fundamentally nonexpansive

mapping and T(D,) be p-bounded, p-convex. Define a sequence {Tf,} in
T(D,) by f € D, and
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Tf,.1 = MT2f, + (1 = W)Tf, forall n e N,
where ) € (0,1). Then F,(T) # ¢ if and only if lim,,_,, p(T?f, - Tf,) = 0.

Proof. Let p € F,(T). Then, using the convexity of p, we have

p(Tfps1 — p) = p(AT?f, + (1 = L)IF, — p)

p(MT2f,, — p + (1 - A)(Tf, - p))

IN

rp(T?f, - p)+ (1 = 2)p(Tf, - p)
}"p(Tfn - p) + (1 - l)p(Tfn - p)

IN

This implies that {p(7f, — p)} is non-negative decreasing sequence. Since
T(D,) is p-bounded and p-convex, therefore {7f, — p} lies in T(D,) and

hence p(Tf, — p) < . Therefore, {p(Tf, — p)} is convergent. Let
,}ifiop(Tf” -p)=R (3.5)
And
p(T*f, = p) = p(T*f, ~ Tp) < p(Tf,, - p)

lim p(T*f, - p) = R (3.6)
Lim p(Tf4 = p) = lim p(MT?f, — p)+ Q@ -M)(Tf, —p)) = R. (3.7

Using (3.5), (3.6), (3.7) and Lemma 2.6, lim,_,., p(Tf, — T%f,) = 0. Now, we

prove the converse part. Let 1, 7:D, — [0, ©) be p-type functions

corresponding to sequence {If,} and {T?f,}. We prove that for each
p € Dyi(Tp) < t(p).

p(T%f, —Tp) < p(Tf, - p) (3.8)
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Now,

p(T%f, — Tp) < w@)[p(T?f, — Tf,) + p(Tf, — Tp)]
< w@)(p(T2f, - Tfy) + w@) [p(Tf, - T%f,) + p(T*f, - Tp)])
< w(@)[A +w@)p(Tf, - T?f,) + w@)p(T*f, - Tp)]

(1 - @@2)p(T2f, - Tp) < w(@) + w@)p(TFy - Tf,)
(12, - Tp) < WL W@ iy 2
P (- @@)?)

p(T%, ~Tp) = 22 s p(tf, - T,) 3.9

From inequality (3.8) and (3.9),

(T2, = Tp) < max{p(Tf, - p). [ 22 p(TF, - 721,

Applying lim,_,, sup and Lemma 2.7,

T(Tp) < max{t(p), 0} (3.10)
Also,

p(Tfus1 = p) = P(MT?f, = )+ (1L = 1) (TF, - P))
< p(T%f, = p) + (1= Mp(Tf, - p)
Again from Lemma 2.6
©(p) < 27(p) + (1 = 1)e(p)
©(p) < T(p). (3.11)
Combining inequality (3.10) and (3.11),
©(Tp) < (Tp) < 1(p) < (p).
Let {g,} be as minimizing sequence of t. Then, lim,_,, t(g,) = r(D,).
According to inequality (3.11), t(7g,) < t(g,), which shows that {Tg,} is

minimizing sequence of t. Also, {T' 2gn} is a minimizing sequence.
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By Lemma 2.8, all the minimizing sequences are p-convergent to same limit

g. Therefore,
lim, ., p(g, - &) = lim,_,, p(Tg, — g) = lim,_,, p(T2gn -g)=0.

As p(T?g, -Tg) < p(Tg, - g), so, {T%g,} is also a minimizing

sequence. Since p-limit unique, therefore, Tg = g. Hence g € Fp(T).

Example 3.6. Let T : [0, 1] — [0, 1] be a mapping defined as:

1-f if0§f<%

Tf =
f+4 . ¢ 1. ,c
— =< f <1
5 5=/
Let f = % and g = % = 0.21. We have the following calculations:

195 _021+4, _ 87
1000 5 | 1000

p(Tf-Tg)=|Tf-Tg|=|1-

195 1.05 15

which shows that p(7Tf —Tg) > p(f — g). Therefore, T is not nonexpansive

mapping. Now, we prove that 7' is p-fundamentally nonexpansive mapping.

Case 1. If 0£f,g<%,then%£1—f§1.

p(T*f -Tg) = |T?f -Tg | =|TQA-f)-(1-9)|

1-f+4

y 1
5

o) o ftBe 1

p(If -g) = Tf gl =|1-f-g|>2.

Therefore,

p(T%f - Tg) < p(If - g).
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Case2.1f%3f,g£1

p(1?f - T) = | 727 - 1| - | 7(LE4)- (822

oy f+24 (g+4)|=| f—5g+4|
25

P -g)=|Tf-g|=| Lth-g| - 22221

Therefore,
p(T?f - Tg) < p(Tf - g).

Case3.1f0£f<%and%£g£1

P(Tzf—Tg)=|T2f—Tg|:|T(1_f)_(gg4j|

oy 1—};+4_(gg4)|:| 1—};—g|

p(Tf —g)=|Tf -g|=|1-f-g]|
Therefore,
p(T*f - Tg) < p(If - &).

Case 4. If%sfsland O£g<%

p(Tf - Tg) = | 7% - Tg|—|T(“4) (-9
f+24 f+25g-1, 1

- -g)| = 2EL <2

4

p(Tf - 8) = | Tf - g | = | f%‘*—glﬂ L-bged s 2.

5

Therefore,

p(T%f - Tg) < p(If - g).
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From all cases, we observed that T is a p-fundamentally nonexpansive

mapping.
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