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Abstract 

In this calligraphy, two disparate arrangements of triples       ,,,,,,,,  etc. 

where in one of each module is a Pan-San number and in the other it is a Pan-San Comrade 

number composed with the condition that the multiplication of any two modules added with 

 12  Nkk  is again a square of an integer are explored. 

1. Introduction 

A Diophantine m-tuple with property  nD  is a set of positive integers 

 maaa ,,, 21   such that naa ji   is a perfect square for all ji   

belonging to the set  .,,2,1 m  In [1], Diophantus has previously 

investigated how to trace these and he create the rational quadruple with 
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property  .1D  In [2,3], the authors Fermat and Euler have exposed two 

separate integer quadruples with the similar property. For across-the-board 

appraisal of a variability of articles, one may refer [3-16]. In this 

communication, the measures of triples       ,,,,,,,,  etc where 

each segment is Pan-San and Pan-San Comrade numbers serene with the 

condition that the product of any two segments enhanced by  1,2  Nkk  

also a square of an integer are dissected. 

Hypothesize that 

NnCC knkn   ,, ,1,1  where 

   1,,12 ,2,1
2

,   NnkCCkC knknkn  

be two conflicting Pan-San numbers such that 2k  is a number with 

power raised to two.  

Let  be an additional positive integer that accomplishes the ensuing 

consequences 

22 ak   (1) 

22 bk    (2) 

The resolution of (1) and (2) provides the possibility of  by  






22 ba
 (3) 

The collaboration of (3) in (2) interprets the relationship in terms of  and 

 as  

  222 kba  (4) 

To achieve the necessary condition, let us generate the following linear 

expansions  

TXa   (5) 

TXb   (6) 
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The standard quadratic equation in X and T is projected by restoring the 

overhead values of a and b in (4) as below  

222 kTX   (7) 

Making a choice for the necessity of establishing (7) in the codes  

1, 0,0  TCX kn  

and enforcing these cryptographs in the previous held equations (5) and 

(6) vintages that  

 knCa ,  

 knCb ,  

The third element of conventional triple which pledge the assertion by 

swap the above appropriate outcomes of and in (3) is identified by  

knCk ,
22  

Hence, it is clinched that 

 knknkn CkCC ,
2

,1,1 2,,   is an integer triple with the property 

   .1,2  NkkD  Let  be the next positive integer together with the 

statements that  

22 ck   (8) 

22 dk    (9) 

Deducting (9) from (8), the substantial value of is determined by  






22 dc
 (10) 

The partnership of (9) and (10) construes the succeeding bond as  

  222 kdc  (11) 

Contemplate the fresh rectilinear modifications for c and d as  
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TXc   (12) 

TXd   (13) 

Reestablishing the above values of c and d in (11), the orthodox second 

degree equation is appraised by  

222 kTX   (14) 

Captivating 1, 0,,10   TCCX knkn  and imposing them in the 

expressions (12) and (13) produces the selections of c and d as 

  knkn CCc ,,1  

  knkn CCd ,,1  

 In sight of (10), the essential option of is calculated by  

 123 2
,,1   kCC knkn  

Hence,   123,2, 2
,,1,

2
,1  kCCCkC knknknkn  is a required triple in 

Pan-San numbers in which the product of two elements in the set added with 

a square is a number with exponent two.  

Now, pick to be some other integer that meets the following requirements  

22 ek   (15) 

22 fk   (16) 

By implementing a simple analysis in (15) and (16), it is interesting to 

emphasize that 






22 fe
 (17) 

Suppose that  

22 gk   (18) 

22 hk   (19) 
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where  0 Z   

Ensuing the erstwhile course in (18) and (19), the corresponding value of 

the factor  in the sequence is predicted by  






22 hg
 (20) 

Since the mission is to deliver the exact integer values for the criteria in 

the vital patterns, let us use the equivalent conversions  

  knknkn CCCe ,,1,1 32  

  knknkn CCCf ,,1,1 32  

  knknkn CCCg ,,1,1 762  

  knknkn CCCh ,,1,1 762  

and subsequently the elements with the requisite forms of triples by the 

relevant resource in the same structure as outlined above are analyzed by  

  knknkn CCC ,,1,1 472  

 46226 2
,,1,1   kCCC knknkn  

Accordingly,  

    ,123,2,,2,, 2
,,1,

2
,1,

2
,1  kCCCkCCkCC knknknknknknkn  

    ,2472,123,2 2
,,1,,1

2
,,1,

2   kCCCkCCCk knknknknknkn  

     knknknnknn CkCCCkCC ,1
2

,,11
2

,1 6,2472,12,3    

 4622 2
,,1   kCC knkn  

etc are shapes of triples concerning Pan-San sequence whereas the 

multiplication of two barebones upgraded by 2k  is a perfect square where is a 

natural number other than 1. Hence, the patterns of integer triples  

      ,,,,,,,,  etc in which the factors filling the above 

proclamation are assessed.  
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Elucidations in tabular form for the numerical replacements of 

the above patterns of triples are demarcated below. 

k n   ,,    ,,    ,,    ,,  

2 2 {20, 1960, 1584} {1960, 1584, 7068} {1584, 7068, 15344} {7068, 15344, 43240} 

3 1 {3, 1197, 1080} {1197, 1080, 4551} {1080, 4551, 10065} {4551, 10065, 28152} 

1 1 {4, 4620, 4352} {4620, 4352, 17940} {4352, 17940, 39964} {17940, 39964, 111456} 

Remark. By smearing the identical technique as above, the following 

proposals of triples in which every component belong to Pan-San Comrade 

sequence such that the product of any two components enlarged by 2k  is a 

number with exponent two are designated. 

    ,123,2,2,, 2
,,1,

2
,1,

2
,1  kRRRkRRkRR knknknknknknkn  

    ,2472,123,2 2
,,1,1

2
,,1,

2   kRRRkRRRk knknknknknkn   

     knknknknknkn RkRRRkRR ,1
2

,,1,1
2

,,1 6,2472,123    

 4622 2
,,1   kRR knkn  

where   knknkn RRkR ,2,1
2

, 12   and ,,0 ,1,0 kRR kk   

 .1 Nk   

A limited number of numerical cases for the above sequences of 

triples are offered below. 

k n   ,,    ,,    ,,    ,,  

2 2 {12, 408, 560} {408, 560, 1924} {560, 1924, 4560} {1924, 4560, 12408} 

3 1 {3, 765, 864} {765, 864, 3255} {864, 3255, 7473} {3255, 7473, 20592} 

1 1 {4, 3596, 3840} {3596, 3840, 14868} {3840, 14868, 33820} {1468, 33820, 93536} 

Substantiation of the numerical examples is unveiled by the 

subsequent C program.  

#include<stdio.h>  

#include<conio.h> 

#include<math.h>  
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void main()  

{  

int ca,n,k;  

char ch;  

long long int C(int n, int k),a,b,c,d,e,f,int R(int n, int k);  

clrscr();  

do {  

printf("\nEnter the value of k and n\n");  

scanf("%d%d",&k,&n);  

printf("\nEnter your choice 1 or 2 for Pan-San or Pan-San Comrade  

Sequence\n");  

scanf("%d",&ca); 

switch (ca)  

{  

case 1:  

a=C(n-1,k);  

b=C(n+1,k);  

c=2*k*k*C(n,k);  

d=3*b+2*C(n,k)*(k*k-1); 

e=7*b+2*a+4*C(n,k)*(k*k*-2); 

f=6*a+22*b+6*C(n,k)*(k*k-4);  

break; 

case 2:  

a=R(n-1,k); 

b=R(n+1,k); 

c=2*k*k*R(n,k);  
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d=3*b+2*R(n,k)*(k*k+1);  

e=7*b+2*a+4*R(n,k)*(k*k+2);  

f=6*a+22*b+6*R(n,k)*(k*k*+4); 

break;  

}  

printf("\n(%lld,%lld,%lld),(%lld,%lld,%lld),(%lld,%lld,%lld),(%lld,%lld,%ll

d),... ",a,b,c,b,c,d,c,d,e,d,e,f);  

printf("\nDo you want to continue for different n and k (y/n)?\n"); 

 ch=getche();  

}while (ch=='y'||ch=='Y');  

getch();  

}  

long long int C(int n,int k)  

{ long long C[50],y;  

C[0]=0;  

C[1]=k;  

int i;  

for(i=2;i<=n;i++)  

C[i]=2*(k*k+1)*C[i-1]-C[i-2];  

y=C[i-1]; 

return y; 

} long long R(int n,int k) 

{  

long long R[50],y;  

R[0]=0; 

R[1]=k;  
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int i;  

for(i=2,i<=n;i++)  

R[i]=2*(k*k-1)*R[i-1]-R[i-2];  

y=R[i-1]; 

return y;  

}  

3. Conclusion 

In this script, two different patterns of triples entailing Pan-San and Pan-

San Comrade sequences whereas the multiplication of two basics raised by is 

a perfect square where  1 Nk  are engendered. It is concluded that one 

can study with some other features to look at various trends of Diophantine 

triples, quadruples, quintuples, etc. 
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