

DEMONSTRATION OF TWO DISPARATE STRUCTURES OF INTEGER TRIPLES CONCERNING PAN-SAN AND PAN-SAN COMRADE NUMBERS

P. SANDHYA and V. PANDICHELVI

Assistant Professor Department of Mathematics SRM Trichy Arts and Science College, Trichy, India (Affiliated to Bharathidasan University) E-mail: sandhyaprasad2684@gmail.com

Assistant Professor PG and Research Department of Mathematics Urumu Dhanalakshmi College, Trichy, India (Affiliated to Bharathidasan University) E-mail: mvpmahesh2017@gmail.com

Abstract

In this calligraphy, two disparate arrangements of triples { α , β , γ }, { β , γ , δ }, { γ , δ , ε } etc. where in one of each module is a Pan-San number and in the other it is a Pan-San Comrade number composed with the condition that the multiplication of any two modules added with $k^2k \in N - \{1\}$ is again a square of an integer are explored.

1. Introduction

A Diophantine *m*-tuple with property D(n) is a set of positive integers $\{a_1, a_2, ..., a_m\}$ such that $a_ia_j + n$ is a perfect square for all $i \neq j$ belonging to the set $\{1, 2, ..., m\}$. In [1], Diophantus has previously investigated how to trace these and he create the rational quadruple with 2020 Mathematics Subject Classification: 05C12.

Keywords: Pan-San sequence, Pan-San Comrade sequence, integer triples, Pellian equation Robotic arm.

Received December 21, 2021; Accepted January 19, 2022

property D(1). In [2,3], the authors Fermat and Euler have exposed two separate integer quadruples with the similar property. For across-the-board appraisal of a variability of articles, one may refer [3-16]. In this communication, the measures of triples { α , β , γ }, { β , γ , δ }, { γ , δ , ε } etc where each segment is Pan-San and Pan-San Comrade numbers serene with the condition that the product of any two segments enhanced by k^2 , $k \in N - \{1\}$ also a square of an integer are dissected.

Hypothesize that

$$\alpha = C_{n-1,k}, \ \beta = C_{n+1,k}, \ n \in N \text{ where}$$

$$C_{n,k} = 2(k^2 + 1)C_{n-1,k} - C_{n-2,k}, \ k, \ n \in N - \{1\}$$

be two conflicting Pan-San numbers such that $\alpha\beta + k^2$ is a number with power raised to two.

Let $\boldsymbol{\gamma}$ be an additional positive integer that accomplishes the ensuing consequences

$$\alpha\gamma + k^2 = a^2 \tag{1}$$

$$\beta \gamma + k^2 = b^2 \tag{2}$$

The resolution of (1) and (2) provides the possibility of γ by

$$\gamma = \frac{a^2 - b^2}{\alpha - \beta} \tag{3}$$

The collaboration of (3) in (2) interprets the relationship in terms of α and β as

$$\beta a^2 - \alpha b^2 = -k^2 (\alpha - \beta) \tag{4}$$

To achieve the necessary condition, let us generate the following linear expansions

$$a = X - \alpha T \tag{5}$$

$$b = X - \beta T \tag{6}$$

The standard quadratic equation in X and T is projected by restoring the overhead values of a and b in (4) as below

$$X^2 - \alpha \beta T^2 = k^2 \tag{7}$$

Making a choice for the necessity of establishing (7) in the codes

$$X_0 = C_{n,k}, T_0 = 1$$

and enforcing these cryptographs in the previous held equations (5) and (6) vintages that

$$a = C_{n,k} - \alpha$$
$$b = C_{n,k} - \beta$$

The third element of conventional triple which pledge the assertion by swap the above appropriate outcomes of and in (3) is identified by

$$\gamma = 2k^2 C_{n,k}$$

Hence, it is clinched that

 $\{C_{n-1,k}, C_{n-1,k}, 2k^2C_{n,k}\}$ is an integer triple with the property $D(k^2), k \in N - \{1\}$. Let δ be the next positive integer together with the statements that

$$\beta\delta + k^2 = c^2 \tag{8}$$

$$\gamma \delta + k^2 = d^2 \tag{9}$$

Deducting (9) from (8), the substantial value of is determined by

$$\delta = \frac{c^2 - d^2}{\beta - \gamma} \tag{10}$$

The partnership of (9) and (10) construes the succeeding bond as

$$\gamma c^2 - \beta d^2 = -k^2 (\gamma - \delta) \tag{11}$$

Contemplate the fresh rectilinear modifications for c and d as

$$c = X + \beta T \tag{12}$$

$$d = X + \gamma T \tag{13}$$

Reestablishing the above values of c and d in (11), the orthodox second degree equation is appraised by

$$X^2 - \gamma \delta T^2 = k^2 \tag{14}$$

Captivating $X_0 = C_{n+1,k} - C_{n,k}$, $T_0 = 1$ and imposing them in the expressions (12) and (13) produces the selections of *c* and *d* as

$$c = C_{n+1,k} - C_{n,k} + \beta$$
$$d = C_{n+1,k} - C_{n,k} + \gamma$$

In sight of (10), the essential option of is calculated by

$$\delta = 3C_{n+1,k} + 2C_{n,k}(k^2 - 1)$$

Hence, $\{C_{n+1,k}, 2k^2C_{n,k}, 3C_{n+1,k} + 2C_{n,k}(k^2-1)\}$ is a required triple in Pan-San numbers in which the product of two elements in the set added with a square is a number with exponent two.

Now, pick to be some other integer that meets the following requirements

$$\gamma \varepsilon + k^2 = e^2 \tag{15}$$

$$\delta \varepsilon + k^2 = f^2 \tag{16}$$

By implementing a simple analysis in (15) and (16), it is interesting to emphasize that

$$\varepsilon = \frac{e^2 - f^2}{\gamma - \delta} \tag{17}$$

Suppose that

$$\delta \zeta + k^2 = g^2 \tag{18}$$

$$\varepsilon \zeta + k^2 = h^2 \tag{19}$$

where $\zeta \in Z - \{0\}$

Ensuing the erstwhile course in (18) and (19), the corresponding value of the factor ζ in the sequence is predicted by

$$\zeta = \frac{g^2 - h^2}{\delta - \varepsilon} \tag{20}$$

Since the mission is to deliver the exact integer values for the criteria in the vital patterns, let us use the equivalent conversions

$$e = C_{n-1,k} + 2C_{n+1,k} - 3C_{n,k} - \gamma$$

$$f = C_{n-1,k} + 2C_{n+1,k} - 3C_{n,k} - \delta$$

$$g = 2C_{n-1,k} + 6C_{n+1,k} - 7C_{n,k} + \gamma$$

$$h = 2C_{n-1,k} + 6C_{n+1,k} - 7C_{n,k} + \varepsilon$$

and subsequently the elements with the requisite forms of triples by the relevant resource in the same structure as outlined above are analyzed by

$$\varepsilon = 2C_{n-1,k} + 7C_{n+1,k} - 4C_{n,k} - \gamma$$

$$\zeta = 6C_{n-1,k} + 22C_{n+1,k} - 6C_{n,k}(k^2 - 4)$$

Accordingly,

$$\begin{aligned} &\{C_{n-k}, C_{n+1,k}, 2k^2C_{n,k}\}, \{C_{n-1,k}, 2k^2C_{n,k}, 3C_{n+1,k} + 2C_{n,k}(k^2 - 1)\}, \\ &\{2k^2C_{n,k}, 3C_{n+1,k} + 2C_{n,k}(k^2 - 1), 2C_{n-1,k} + 7C_{n,1,k} + 4C_{n,k}(k^2 - 2)\}, \\ &\{3C_{n+1}, 2C_{n,k}(k^2 - 1), 2C_{n-1} + 7C_{n+1,k} + 4C_{n,k}(k^2 - 2), 6C_{n-1,k} \\ &+ 22C_{n+1,k} + 6C_{n,k}(k^2 - 4)\} \end{aligned}$$

etc are shapes of triples concerning Pan-San sequence whereas the multiplication of two barebones upgraded by k^2 is a perfect square where is a natural number other than 1. Hence, the patterns of integer triples $\{\alpha, \beta, \gamma\}, \{\beta, \gamma, \delta\}, \{\gamma, \delta, \varepsilon\}$ etc in which the factors filling the above proclamation are assessed.

k	n	$\{\alpha, \beta, \gamma\}$	$\{\beta, \gamma, \delta\}$	{γ, δ, ε}	{δ, ε, ζ}
2	2	$\{20, 1960, 1584\}$	$\{1960, 1584, 7068\}$	$\{1584, 7068, 15344\}$	{7068, 15344, 43240}
3	1	{3, 1197, 1080}	$\{1197, 1080, 4551\}$	$\{1080, 4551, 10065\}$	$\{4551, 10065, 28152\}$
1	1	{4, 4620, 4352}	$\{4620, 4352, 17940\}$	$\{4352, 17940, 39964\}$	$\{17940, 39964, 111456\}$

Elucidations in tabular form for the numerical replacements of the above patterns of triples are demarcated below.

Remark. By smearing the identical technique as above, the following proposals of triples in which every component belong to Pan-San Comrade sequence such that the product of any two components enlarged by k^2 is a number with exponent two are designated.

$$\{R_{n-k}, R_{n+1,k}, 2k^2R_{n,k}\}, \{R_{n+1,k}2k^2R_{n,k}, 3R_{n+1,k} + 2R_{n,k}(k^2 + 1)\},$$

$$\{2k^2R_{n,k}, 3R_{n+1,k} + 2R_{n,k}(k^2 + 1), 2R_{n+1,k} + 7R_{n+1,k} + 4R_{n,k}(k^2 + 2)\},$$

$$\{3R_{n+1,k} + 2R_{n,k}(k^2 + 1), 2R_{n-1,k} + 7R_{n+1,k} + 4R_{n,k}(k^2 + 2), 6R_{n-1,k} + 22R_{n+1,k} + 6R_{n,k}(k^2 + 4)\}$$

where $R_{n,k} = 2(k^2 + 1)R_{n-1,k}R_{n-2,k}$ and $R_{0,k} = 0, R_{1,k} = k,$ $k \in N - \{1\}.$

A limited number of numerical cases for the above sequences of triples are offered below.

k	n	$\{\alpha, \beta, \gamma\}$	{β, γ, δ}	{γ, δ, ε}	{δ, ε, ζ}
2	2	{12, 408, 560}	$\{408, 560, 1924\}$	{560, 1924, 4560}	$\{1924, 4560, 12408\}$
3	1	{3, 765, 864}	$\{765, 864, 3255\}$	{864, 3255, 7473}	{3255, 7473, 20592}
1	1	{4, 3596, 3840}	{3596, 3840, 14868}	{3840, 14868, 33820}	$\{1468, 33820, 93536\}$

Substantiation of the numerical examples is unveiled by the subsequent C program.

#include<stdio.h>

#include<conio.h>

#include<math.h>

void main() { int ca,n,k; char ch; long long int C(int n, int k),a,b,c,d,e,f,int R(int n, int k); clrscr(); do { $printf("\nEnter the value of k and n\n");$ scanf("%d%d",&k,&n); printf("\nEnter your choice 1 or 2 for Pan-San or Pan-San Comrade Sequence n''; scanf("%d",&ca); switch (ca) { case 1: a=C(n-1,k);b=C(n+1,k);c=2*k*k*C(n,k); d=3*b+2*C(n,k)*(k*k-1); e=7*b+2*a+4*C(n,k)*(k*k*-2);f=6*a+22*b+6*C(n,k)*(k*k-4); break; case 2: a=R(n-1,k);b=R(n+1,k); c=2*k*k*R(n,k); Advances and Applications in Mathematical Sciences, Volume 21, Issue 7, May 2022

```
d=3*b+2*R(n,k)*(k*k+1);
```

```
e=7*b+2*a+4*R(n,k)*(k*k+2);
```

```
f=6*a+22*b+6*R(n,k)*(k*k*+4);
```

break;

}

```
printf("\nDo you want to continue for different n and k (y/n)?\n");
```

ch=getche();

```
}while (ch=='y' | |ch=='Y');
```

getch();

}

long long int C(int n,int k)

{ long long C[50],y;

C[0]=0;

C[1]=k;

int i;

```
for(i=2;i<=n;i++)
```

```
C[i]=2*(k*k+1)*C[i-1]-C[i-2];
```

y=C[i-1];

return y;

} long long R(int n,int k)

```
{
```

long long R[50],y;

R[0]=0;

R[1]=k;

```
int i;
for(i=2,i<=n;i++)
R[i]=2*(k*k-1)*R[i-1]-R[i-2];
y=R[i-1];
return y;
}
```

3. Conclusion

In this script, two different patterns of triples entailing Pan-San and Pan-San Comrade sequences whereas the multiplication of two basics raised by is a perfect square where $k \in N - \{1\}$ are engendered. It is concluded that one can study with some other features to look at various trends of Diophantine triples, quadruples, quintuples, etc.

References

- I. G. Bashmakova, Diophantus of Alexandria, Arithmetics and the Book of Polygonal Numbers (1974), 85-86.
- [2] Beardon, F. Alan and M. N. Deshpande, Diophantine triples, The Mathematical Gazette 86(506) (2002), 258-261.
- [3] Bugeaud, Yann, Andrej Dujella and Maurice Mignotte, On the family of Diophantine triples $\{k 1, k + 1, 16k3 4k\}$. Glasgow Mathematical Journal 49(2) (2007), 333-344.
- [4] M. N. Deshpande, Families of Diophantine triplets, Bulletin of the Marathwada Mathematical Society 4 (2003), 19-21.
- [5] A. Dujella and V. Petričcević, Strong Diophantine triples, Experimental Mathematics 17(1) (2008), 83-89.
- [6] M. N. Deshpande, One interesting family of diophantine triplets, International Journal of Mathematical Education in Science and Technology 33(2) (2002), 253-256.
- [7] L. E. Dickson, Sum of cubes of numbers in arithmetical progression a square, Ch. XXI in History of the Theory of Numbers, Diophantine Analysis. Dover New York 2 (2005) 585-588.
- [8] Dujella, Andrej and Vinko Petričcević, Strong Diophantine triples, Experimental Mathematics 17(1) (2008), 83-89.
- [9] Fuchs, Clemens, Florian Luca and Laszlo Szalay, Diophantine triples with values in binary recurrences, Annali Della Scuola Normale Superiore di Pisa-Classe di Scienze 7(4) (2008), 579-608.

P. SANDHYA, V. PANDICHELVI

- [10] M. A. Gopalan and V. Geetha, Sequences of Diophantine triples, JP Journal of Mathematical Sciences 14(1) (2015), 27-39.
- [11] M. A. Gopalan, K. Geetha and Manju Somanath, Special Dio 3-tuples, Bulletin of Society for Mathematical Services and Standards 3(2) (2014), 41-45.
- [12] M. A. Gopalan, V. Sangeetha and Manju Somanath, Construction of the Diophantine Triple Involving Polygonal Numbers, Sch. J. Eng. Tech 2(1) (2014), 19-22.
- [13] Gupta Hansraj and K. Singh, On k-traid sequences, International Journal of Mathematics and Mathematical Sciences 8(4) (1985), 799-804.
- [14] He Bo, Florian Luca and Alain Togbé, Diophantine triples of Fibonacci numbers, Acta Arith 175 (2016), 57-70.
- [15] Luca, Florian and László Szalay, Fibonacci diophantine triples, Glasnik matematički 43(2) (2008), 253-264.
- [16] Luca Florian and László Szalay, Fibonacci diophantine triples, Glasnik Matematički 43(2) (2008), 253-264.
- [17] M. D. Matteson James, A collection of Diophantine problems with solutions, Washington, Artemas, Martin (1888).
- [18] V. Pandichelvi, Construction of the Diophantine triple involving polygonal numbers, Impact J. Sci. Tech 5(1) (2011), 07-11.
- [19] P. Sandhya and V. Pandichelvi, Invention of Four Novel Sequences and Their Properties, Journal of Xi'an Shiyou University, Natural Science Edition 17(06) (2021), 59-68.
- [20] V. Pandichelvi and P. Sivakamasundari, The sequence of diophantine triples involving half companion sequence and Pell Numbers, Int. J. Recent Sci. Res. 8(7) (2017), 18482-18484.

Advances and Applications in Mathematical Sciences, Volume 21, Issue 7, May 2022

3930