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Abstract 

Work piece is grown in popularity as a cost-effective and thing replacement to cutting. 

Obviously, due to the technical difficulties involved, accurate estimation of the layer thickness 

formed during severe turning is challenging. As a result, it is currently the subject of a huge 

amount of study. The objective of this work is to examine the current state of optimization 

strategies for predicting layer thickness in a difficult turn. It is divided into three sections: a 

layer thickness prediction model, cutting parameters, work piece characteristics, and cutting 

tool characteristics. The properties of hard turning and layer thickness are first discussed, 

followed by a framework of optimization strategies. The three important areas are then 

thoroughly examined. Finally, the conclusions are reached. 
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Introduction 

Manufacturers face increasingly difficult expectations as demand for 

product individuality grows, along with improving amount and variety, 

reducing production cycle, and, very importantly, reducing retail prices [1]. 

During latest days, significant advances have been made in the processing 

characteristics of tough metals. Grinding large components versus tougher 

substances has a number of advantages, including major cost reductions. 

Greater production levels, enhanced surface condition, and avoidance for 

defects due to differential cut temperatures [2]. Work piece is a 

manufacturing technique that uses 45-65 HRC strength components 

(Rockwell scale). It‟s a manufacturing technique that provides substances 

with a 45-65 HRC roughness. Because of the various Rockwell ratings, 

substance‟s roughness can be defined as HRC, HRB, and etc.) Separate pieces 

of exceptional strength and hardness are used to turn them. Polycrystalline 

cubic boron nitride (CBN) and ceramic work piece are commonly used [3]. 

Several metal cutting methods employ that production of gears, motors, 

steels, overhead cams, equipment, and machine edges ease of fabrication and 

wear resistance requirements [4]. Work piece can cut production costs by up 

to 30 times in the manufacturing of difficult products [5]. Conventional 

machining varies to standard cutting operation for smooth surfaces in a 

number of approaches, along with the thickness of the item, the layer 

thickness, a work piece required, as well as the processor mechanics. Because 

hardened steels are considered complicated components in hard turning, 

caution must be exercised while selecting appropriate reaction conditions that 

often have a narrow set of possible values. If the wrong process parameters 

are chosen, the work piece‟s surface quality will suffer, as will equipment 

usage, measurement precision, separating strength. 
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Figure 1. Hard turning. 

Rough turning, heat treatment, and grinding are the most popular 

methods for machining hardened steels. Faster cycle times, enhanced system 

adjustability, improved work piece rates, acceptable layer thickness, and 

reduced external risk are all potential benefits. Hard machining was 

developed as a possible replacement to conventional grinding (Figure 1). 

Optimization Techniques 

Because of their major impact here to total price of the goods, 

conventional machining optimization approaches have piqued the interest of 

numerous academics. In addition, as the number of processing factors grows, 

the number of tests necessary grows as well. Hard turning, like most 

machining processes, requires a high level of specificity; this means that a 

different model is needed for Depending on the purpose, the feed stock, as 

well as the operating environment. 

A. Layer Thickness (Surface Roughness) Prediction Model 

Roughness of the surface plays a crucial influence in the manufactured 

element‟s structural features. Understanding how work piece layer thickness 

is generated can help improve the quality of the work piece‟s surface [8]. 

Departures from the standard material‟s centreline are commonly referred to 

as “layer thickness.” The course of development of variations from multiple 

patterns results in the thin films of a work item. 
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Figure 2. Surface form deviations. 

The advancement form and particle output are primarily linked to 

Variance Type 1 (grossness), as shown in Figure 2. Hard turning is the 

primary cause of Deviation Type 2 (waviness). Figure 2. Deviations in surface 

shape. Circularity and waviness of work piece surface morphology is mostly 

induced by homogeneities in work piece material. Variance Type 3 (contour 

distortion), which is usually linked to smoothness, is caused by incorrect 

configurations and cutting parameters displacement. The hard turning 

cutting mechanism is mostly based on numerical simulation [19], it is based 

on the mathematical surface and organization study discussed before. 

Simulation results of conventional machining, on the other hand, are 

primarily used to investigate definite important factors that contribute to 

handling efficiency, like the effect of metal cutting material, tool diameter, 

work piece substance, and work piece on machined surface, grey surface, 

depth of cut, outer layer stress, and wear resistance [10]. Layer thickness 

formation mechanisms are rarely explored [11], hence they will not be 

discussed in this work. 

Finite element modelling ignores a lot of useful limitations, including 

slicing vibrations, instrument damage, and particle binding, despite the fact 

that it may quickly get many characteristics and is difficult to notice when 

spinning quickly. As a result, observations may not always match projections 

[12]. Although there is considerable evidence that production variables 

including work piece or metal cutting characteristics have a significant 

impact in layer thickness creation [13], their involvement in layer thickness 

mechanisms is unknown. It‟s challenging to create mathematical frameworks 

for conventional machining operations that are straightforward since there 
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are so many variables with intricate interconnections. 

As a result, optimization methods, also known as passive metrics in this 

article, are frequently used in research and development to gather more 

information on layer thickness states and efficiently evaluate it for online 

layer thickness prediction. Such approaches can anticipate layer thickness 

avoid dealing with the operation of conventional machining, resulting in 

increased speed and the ability to make real-time modifications [14]. To 

accomplish so, grinding quality can be evaluated using data like as 

disturbances, slicing pressures, visuals, direct charge, reducing temperature, 

noise pollution, noise, or work material [15]. Using edge detection from such 

data, a modelling approach may be established and developed. After that, the 

approach will be used to forecast the thickness of layers. 

When hard turning AISI H11 at varied degrees of workpiece hardness 

with a CBN tool, Response surface methodology (RSM) was utilized by Aouici 

et al. [41] to improve the reducing variable‟s impact (v, f, d) on Layer 

thickness and shear force components. The layer thickness and the density of 

the material are have the greatest influence on the cutting force components. 

Nevertheless, for either feed rate or material toughness, layer thickness was 

statistically significant. When dealing with AISI H11 metal, Dureja et al. [42] 

employed RSM to study how cutting factors effect flank wear and layer 

thickness. Speeds and material roughness were found to be the most major 

elements affecting Layer thickness, whereas speeds, surface roughness, and 

material roughness were found to be the most important factors causing edge 

erosion. 

B. Cutting Parameters 

Spindle parameters, rotational speed, and slice thickness are all 

important characteristics in conventional machining. These are essential for 

achieving excellent surface quality [16] and will result in the desired work 

piece surface roughness (i.e., satisfy the operational specifications). 

Algorithms that anticipate, are overly reliant on the most critical elements 

influencing mechanical characteristics and unable to arrive at the correct 

variables to use it, several studies have used ANOVA to compare all 

important implications for each system that makes [17]. Throughout the rest 
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of this study, cutting parameters refer to depth of cut (vc), input speed (f), 

and cut thickness (d) (ap). 

Cutting parameters were used as controlling factors by Pontes et al. [18] 

to forecast the layer thickness of turned AISI 52100 hardened steel. For layer 

thickness prediction, the variation of experimental-based strategy for 

generating radial basis function, artificial neural networks was already 

developed. The toolmaker‟s functional constraints are represented by the 

various cutting situations. They were able to collect development/certification 

information for an Artifical neural network with 720 instances by developing 

an experiment with 60 runs. According to their findings, the recommended 

radial basis function can achieve a relative standard accuracy of 0.388 

percent after with 36 learning samples. Khamel et al. [7] examined the 

impact of reducing variables on work piece, layer thickness, and reducing 

pressures when completing difficult spinning using a CBN machine, 60 HRC 

AISI 52100 core metal was machined. The merged impact of the depth of cut 

on technical specifications was investigated using ANOVA. The findings show 

that cutting parameters and material removal rate get a significant impact 

both layer thickness and cutting force. However, the layer thickness has a 

significant impact on depth of cut. 

Lalwani et al. [19] examined the impact of independent variables on 

friction coefficient and layer thickness in completing difficult machining of 

MDN250 metal. The findings reveal that the cutting parameter has a 

substantial impact on layer thickness. To optimize cutting parameters inside 

this conventional machining of AISI 4140 (51 HRC) utilizing tool steel wire 

cutters, Asiltürk and Akkuş [2] applied the Taguchi technique (Ra and Rz). 

Using statistical methodologies such as signal-to-noise ratio and analysis of 

variance, they discovered also that rotational speed will have the most major 

impact on layer thickness (Ra and Rz) at a 95 percent reliability level. The 

effects of cutting parameters on tool wear and layer thickness were examined 

by Saini et al. [24]. The level of significance of experimental data acquired 

during conventional machining of tempered AISI H-11 steel was evaluated by 

analysis of variance. 

Panda et al. [6] In EN31 steel conventional machining, the impact of slice 

thickness on material performance criteria (Ra, Rz, and Rt) was investigated. 

To number out which cutting factors had an impact on surface quality, 
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ANOVA was used. To forecast layer thickness, Pontes et al. [25] as input for 

Radial basis function networks, a collection comprising depth of cut acquired 

via Department of environment was used. Agrawal et al. [26] ran 39 

experiments to see how cutting parameters affected layer thickness in 

drought conditions, during rough machining an AISI 4340 metal component 

(hardened to 69 HRC). Bouacha et al. [27] employed cutting parameters as 

model parameters for response surface methodology calculations on layer 

thickness or depth of cut elements when rough machining strengthened AISI 

52100 bearing metal with a CBN tool (Fa, Fc, and Fp). To use the Taguchi 

method [28], reducing variables were employed as feed to an artificial neural 

network for layer thickness estimation in the conventional machining of AISI 

H13 steel with little material removal usage. Cutting parameters were used 

in a multiple regression model by Fnides et al. [29]. Analysis of variance was 

used to improve machining parameters such as cutting speed, velocity, and 

cut thickness. Das et al. [20] devoted slicing variables as feed to polynomial 

estimations of layer thickness in conventional machining. The cutting forces 

was improved using analysis of variance, also with important impact that 

cutting parameters, followed by cutting speed, is the most indicator to 

determine layer thickness. 

Layer thickness tests and a repeated measures experiment are used to 

establish the cutting parameters and layer thickness, respectively. Then, 

using Minitab 15 software, the experimental data of layer thickness (Ra) and 

cutting parameters are evaluated using ANOVA to discover the important 

factors. At a significance threshold of 0.05, the layer thickness ANOVA is 

calculated (95 percent confidence). The result represents the significance 

level of the relevant event (Cont. percent) in the ANOVA. For example, the 

primary contributions are for the interaction f 2 (40.70 percent), 21.96 

percent for CS, and 15.74 percent for f. The tool wear is vc, the process 

parameters is f, the slice thickness is ap, and the obtained output component 

is CS. 

Bouacha et al. [43] employed slicing variables as model parameters for 

response surface methodology  calculations of layer thickness or depth of cut 

components when rough machining reinforced AISI 52100 bearing metal with 

a CBN machine (Fa, Fc, and Fp). The Taguchi method was used to tough 

bend AISI H13 iron with little cutting fluid application, and the thickness of 
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the slice are being used as feed to an artificial neural network for process 

parameter prediction. Aouici et al. [44] While difficult machining AISI H11 

iron with 40, 45, and 50 HRC using CBN, an algorithm was created to 

estimate layer thickness and depth of cut components. After an ANOVA 

investigation of four factors, the terms with significant impacts on the layer 

thickness and depth of cut elements have been used in the resulting 

nonlinear designs. During severe turning, Bouacha et al. [45] used the 

response surface method to assess and anticipate mechanical characteristics 

and tool wear. The combined effect of slicing settings on layer thickness or 

cutting forces was investigated using ANOVA. 

C. Work piece and Cutting Tool Characteristics 

Many criteria other than cutting parameters can be used to anticipate 

layer thickness more accurately and effectively along with obtaining more 

detailed condition information throughout difficult cutting operation. The 

work piece‟s substance and tool geometry qualities. Aouici et al. [5] studied 

work piece material has a consequence and work piece availability of layer 

thickness and depth of cut elements in tool wear of AISI H11 metal tempered 

to 40, 45, and 50 HRC using CBN 7020. Analysis of variance are devoted with 

multiple (laser power, rotational speed, tool geometry, and roughness) with 

multiple simultaneous conceptual frameworks. Machining preforming is 

affected by cutting speed and work piece roughness, whereas layer thickness 

is principally influenced by process parameters or tool geometry toughness. 

Chinchanikar and Choudhury [30] investigated the impact of tool 

geometry concrete strength and depth of cut upon that efficiency of tool steel 

tools, particularly conventional machining, layer thickness, and cutting force. 

The most significant parameters were determined using ANOVA, it indicated 

that layer thickness is consequence by input the thickness of the slice. Mia et 

al. [19] used tool wear, rotational speed, and steel beams as independent 

factors, while layer thickness (Ra) and average flash memory surface 

temperature have been used as variables. The effects of control factors were 

determined using ANOVA. They also used an ANN to predict bond strength 

in hardened EN 24T iron machining utilizing changing slicing rates, input 

levels, chipboard, or wet / high intensity greasing for data [31]. 

Azizi et al. [32] examine the impact of tool geometry and material 
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roughness the layer thickness or tool geometry while rough machining AISI 

52100 metal. The findings demonstrate the layer thickness is influenced by 

rotational speed, component toughness, and tool geometry, while slicing 

displacements are determined by cutting speed, work piece toughness, and 

rotational speed. The influence of work piece sharpness and tool rotational on 

layer thickness (Ra) in Analysis of variance was used to analyze tough 

bending, with the conclusions revealing the component toughness has a 

significant impact in layer thickness [33]. Many research have looked at the 

influence of cutting tool properties on workpiece layer thickness in addition to 

workpiece material characteristics [34]. 

Zel et al. [35] and Tang et al. [36] examine the impacts of developing 

advanced design, material hardening, rotational speed, and tool geometry on 

layer thickness or pressures with in completion rough AISI 52100 H13 metal 

using CBN. Multiple (toughness, surface design, rotational speed, and tool 

geometry) and multiple studies was examined using analysis of variance. In 

an estimation of Ra in the surface roughness of X40CrMoV5-1 steel using a 

CBN tool, Yurtkuran et al. [37] used slicing factors and finishing parameters. 

To discover their correlations, an efficiency research concerned with the study 

of signal-to-noise ratios was done. In predicting layer thickness and tool wear, 

Manivel and Gandhinathan [38] employed the instrument diameter and tool 

geometry as separate parameters. Analysis of variance and signal-to-noise 

ratios were used to optimize the independent variables. 

Ferreira et al. [41] examine the impact of tool geometry, rotational speed, 

including the use of standard and cross excellent mechanical properties on 

layer thickness while conventional machining AISI H13 metal. According to 

ANOVA, the inter clay instrument and input speed had the biggest influence 

on layer thickness. Singh and Rao [34] employed response surface methods to 

forecast layer thickness using tool wear, rotational speed, curvatures, and tip 

diameter as variables. The most critical component impacting layer thickness 

is the rotational speed, which is followed by edge radius, tool geometry, and 

blade angle. The most critical component impacting layer thickness is the 

rotational speed, which is accompanied by rake angle, tool rotational speed, 

and slope degree. 

Azizi et al. [46] studied the impacts of tool geometry and material 

toughness upon layer thickness and tool material in the tough AISI 52100 
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steel. The findings reveal that layer thickness is influenced by rotational 

speed, component roughness, and tool geometry, while slicing displacements 

are influenced by tool geometry, component durability, and injection 

pressure. The effects of material firmness and rotational speeds upon 

machining parameters (Ra) during dry machining were explored using 

ANOVA, also with findings revealing that workpiece hardness has a 

significant impact on layer thickness. 

Azizi et al. [47] investigated the effect of process parameters on work 

material hardness in hard turning (cutting depth, flow rate, and cutting 

force) of AISI 52100 steel using Al2O3+TiC blended clay clipping using 

Taguchi‟s orthogonal array, ANOVA, and regression analysis. Taguchi‟s 

orthogonal array protects these instruments. Cutting force, flow velocity, and 

the hardness of the working piece all have an impact. 

Table 1. Arguments of Models in Hard Turning. 

Factors Models Response Authors 

Work 

material 

hardness, 

cutting 

parameters 

Response Surface 

Methods 

Cutting force, 

layer thickness 

T. Mabrouk et 

al. (2016) 

Cutting 

parameters 

Response Surface 

Methods 

Cutting force, 

layer thickness 

T. Mabrouk et 

al. (2018) 

Cutting 

parameters 

Random forest Cutting force, 

layer 

thickness, tool 

wear 

M. Price et al. 

(2017) 

Cutting 

parameters 

ANN layer thickness P. P. 

Balestrassi et 

al. (2018) 

Cutting 

parameters 

Multiple 

Regression Model 

layer thickness J.-F. Rigal et 

al. (2019) 
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Cutting 

parameters, 

tool 

geometry 

ANN Cutting force, 

layer thickness 

R. J. 

Thangaiah et 

al. (2019) 

Cutting 

parameters, 

tool 

geometry 

Response Surface 

Methods 

Cutting force, 

layer thickness 

A. Khellaf et 

al. (2020) 

Cutting 

parameters, 

tool 

geometry 

and cutting 

vibration 

Response Surface 

Methods 

layer thickness M. A. Yallese 

et al. (2018) 

Cutting 

parameters, 

cutting 

vibration 

Response Surface 

Methods 

layer thickness G. F. Batalha 

et al. (2020) 

Cutting 

parameters, 

cutting 

vibration 

HMM-SVM layer thickness N. K. Sahu et 

al. (2021) 

Cutting 

parameters, 

force, sound, 

vibration 

Multiple 

Regression Model 

Cutting force, 

layer 

thickness, tool 

wear 

H. Yurtkuran, 

et al. (2018) 

Cutting 

parameters, 

tool 

geometry 

ANN layer 

thickness, 

Productivity 

M. E. Korkmaz 

et al. (2019) 
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Conclusion 

An overview of optimization strategies for forecasting layer thickness in 

hard turning processes is presented in this paper. A lot of study has been 

done in the last several years, and there have been a lot of interesting 

outcomes. The following is a summary of the essential information about 

optimization strategies for layer thickness prediction in hard turning: The 

majority of the data used to forecast layer thickness in tool wear is dynamic, 

including machining variables, processing parameter, and workpiece 

toughness. As the references show, the hyper parameter for layer thickness 

prediction in hard turning are mostly determined by optimization methods. 

The methods analyses whether major elements influence this reaction, 

enabling polynomial models to be developed that include the components in 

question and their statistical significance. According to the studies cited, the 

majority of predictive models for layer thickness in models that are harder to 

convert are stable that only consider a few static characteristics. However, for 

a more accurate picture of layer thickness generation, must be incorporated. 

In addition, inter prediction has been more common for metal cutting layer 

thickness prediction. In addition to the layer thickness of the workpiece, it 

considers slicing strength, specific cutting, workpiece material as well as 

other aspects. 
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