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Abstract 

In this communication, we have characterized the sum of two general measures associated 

with two distributions with discrete random variables. One of these measures is logarithmic, 

while other contains the power of variables, named as J-divergence based on Renyi’s-Tsallis 

entropy measure and establish their validity as well as discuss their basic properties. To show 

the efficiency of proposed measure, we apply it to pattern recognition and fault detection. Some 

illustrative examples are given to support the findings and further exhibit their practicality and 

adequacy of measure between probability sets. 

1. Introduction 

The Shannon entropy [25] and Kullback-Leibler divergence [16] are the 

most significant and most generally utilized quantities in information theory. 

Many information-theoretic divergence measures between two probability 

distributions have been introduced and extensively studied [1], [8], [13], [16], 

[17], [18]. Because of their successful use, many attempts have been made to 

generalize them. It is known that their significant generalizations are the 

Renyi entropy and Renyi divergence [23], Tsallis entropy and Tsallis 

divergence [27], R-norm information measure and R-norm divergence [3] 

respectively. These quantities have many significant applications, for 
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example, in statistics, magnetic resonance image analysis, cost sensitive 

classification for medical diagnosis [24], pattern recognition [6], 

approximation of probability distributions [7], color image segmentation , 

signal processing [14], biology and economics, model validation, robust 

detection [22], quantum information theory [21] and industrial engineering 

etc. We can use divergence measures in fuzzy mathematics as fuzzy directed 

divergences and fuzzy entropies. Also, divergence measures in which we 

measure average ambiguity or difficulty in deciding whether a particular 

component has a place with a set or not. 

In the period of last few years, the literature on advances and 

applications of information and divergence measures between probability 

distributions has elongated measurably, still there is a scope that the better 

divergence measures can be created which will find applications in the 

variety of fields. Inspired by the above mentioned work, we introduce a new 

directed divergence that overcomes the previous difficulties and discuss the 

basic properties of this measure. A symmetric form of the new directed 

divergence is defined. The new generalized measure has graceful 

characteristics which are proven in the paper to depict the efficiency of the 

proposed measure. The proposed symmetric measure has been demonstrated 

by its applications in the context of pattern recognition and fault detection. 

The paper is sorted out as follows: In the section ‘Introduction’ we have 

presented the work done by earlier researchers in the field. In section 2, some 

required introductory out-comes of new directed divergence measure is 

introduced and its validity is set up. Section 3 recalls a new generalized J-

divergence measure and their properties with respect to relative information 

measure. In section 4, few applications for proposed symmetric divergence 

measure are introduced and a numerical example is presented to illustrate 

applications of pattern recognition and fault detection has been examined to 

determine the possible fault suffered by any machine. The performance of 

proposed symmetric measure is contrasted with some other existing 

measures in section 5. At last, the paper is finished with Concluding Remarks 

in segment 6. 

In the following section, we review the generalization of Shannon entropy 

[25] and Kullback-Leibler [16] information maesure. 
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2. Preliminaries 

Let     2,1;,,2,1,0:,,
121   

kekpeeeeE
k

p ppkk   be set 

of k-complete probability distributions. For any probability distributions 

  ,,,, 21 kkeeeE    Shannon [25] defined an entropy as: 

     




k

p

pp eeEH

1

.log  (2.1) 

All through this paper, it is assumed (0) log (0) = 0 and all logarithms are to 

the base 2. 

Corresponding to (2.1), for any ,, kFE   Kullback and Leibler [16] 

defined a divergence measure as: 
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It is well known that  FED LK ,  is nonnegative, additive but not 

symmetric [17]. To obtain symmetric measure, one can define 

       













k

p
p

p
pp

LKLK

f

e
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.log,,,  (2.3) 

which is called the J divergence [18]. Clearly, LKD   and J divergences share 

most of their properties. It should be noted that  FED LK ,  is undefined if  

0pf  and .0pe  This means that distribution E has to be absolutely 

continuous [17] with respect to distribution F for  FED LK ,  to be defined. 

Similarly, J requires that E and F be absolutely continuous with respect to 

each other. This is one of the problems with these divergence measures. 

In the next section, we present the idea of J-divergence based on Renyi’s-

Tsallis entropy for the probability distributions we will give basic properties 

of this measure and for illustration, we provide some applications in fault 

detection and pattern recognition in section 4. 
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3. A new Generalized J-Divergence Measure 

For some   .,,, 21 kkeeeE    Recently, Litegebe and Satish [28] 

define a new information measure as : 
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The quantity (3.1) introduced a joint representation of Renyi's-Tsallis entropy 

of order  and second case is well-known Shannon entropy [25]. 

Further, corresponding to (3.1), we define an inaccuracy measure as: 
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Remark 1. If pp fe   for ,,,2,1 kp  then (3.2) becomes (3.1). 

Further, second case in (3.2) is a Kerridge [15] inaccuracy measure. 

For some ,, kFE   corresponding to (3.1), we define a new symmetric 

divergence measure based on joint representation of Renyi’s-Tsallis 

divergence measure as: 
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Remark 2. For ,2  (3.3) becomes a generalization of Pearson’s chi-

square statistic the measure of discrepancy between two populations. 
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It might be noticed that (3.3) does not fulfill triangular property. 

However,  FEDsym ,  fulfills non-negativity, symmetricity and convexity 

property. This convexity property guarantees that in every situation, a local 

minimum will be global. For this, we need to prove the following lemmas: 

Lemma 2.1. Let  keeeE ,,, 21   and   .,, 21 kkfffF    Then, 

  0,  FEDsym  for  ,10   with the inequality if and only if ,pp fe   for 

.,,2,1 kp   

Proof: The inequality pursues by applying the Jensen inequality to the 

function  characterized by      ,0,1 xxx  and putting 
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and consequently 
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Changing pe  to pf  in (3.6) and (3.7), we have 
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Adding (3.6), (3.7), (3.8) and (3.9) we have 
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since 01    for .1   
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Let  ,1,0  then the function  is concave, and therefore we get 
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since ,01  
 for .10   It follows that 
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i.e.,   .0,  FEDsym  

The equality in (3.5) holds if and only if 
p
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f
 is constant, for ,,2,1 kp   

i.e., if and only if ,pp etf   for .,,2,1 kp   By summing over all 
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,,,2,1 kp   we get   


k

p

k

p pp etf
1 1

,  which implies that .1t  

Hence, ,pp fe   for .,,2,1 kp   Therefore, we conclude that 

  0,  FEDsym  if and only if ,pp fe   for .,,2,1 kp   

As     

 
k

p
p

p
ppsym f

e
feFED

1
,log,,1 which is due to the fact 

the measure (3.3) is a continuous function of . 

In the proof of the next lemma, we shall use the Jensen inequality which 

states that for a function    over a set I is said to be convex if for all choices 

of Ixxx k ,,, 21   and for all scalers k ,,, 21   such that 

 


k

p pp 1
,1,0  the following holds: 

  
 
















k

p

k

p

pppp xx

1 1

.   (3.14) 

and the inequality is reversed if  is a real concave function. The equality 

holds if and only if kxxx  21  or    is linear. 

Lemma 2.2. 
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is a convex function of E and F for  .1,0  

Proof. Associated with a random variable  ,,,, 21 kxxxX   let us 

consider r distributions 
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Now, let there be r numbers r ,,, 21   such that 
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will be convex if T is greater than zero for  .1,0  
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Using Jensen’s inequality for  ,1,0  we have 

       
























r

t

ptt

r

t

ptt xexe

11

,  (3.21) 

        ,1

1 1

1

1 1



 





 

  




























 p

k

p

r

t

pttp

k

p

r

t

ptt fxefxe  (3.22) 

        ,

1 1 1

11
0  

  


















k

p

r

t

k

p

ppttpp fxefxe  (3.23) 

        ,11

1 1

1

1

1
0  

 






















r

t

k

p

pptt

k

p

pp fxefxe  (3.24) 

         
  


















k

p

r

t

k

p

ppttpp fxefxe

1 1 1

11
0 ,loglog  (3.25) 

since  log  is a concave function for  .,0   
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Changing pe  to pf  in (3.24) and (3.26) we have 
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and 
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adding (3.24), (3.26), (3.27) and (3.28) and multiplying both sides by 

,0
1

1
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 we get 



RATIKA KADIAN and SATISH KUMAR 

Advances and Applications in Mathematical Sciences, Volume 19, Issue 8, June 2020 

692 

      
 





















































r

t

k

p

ppt

k

p

pptt fxefxe

1 1

1

1

1

1
log

1
 

     











































 








2log

1

1

1

1
k

p

ppt

k

p

ppt exfexf  

     





































 











k

p

pp

k

p

pp fxefxe

1

1
0

1

1
01

log
1

 

      .2log

1

1
0

1

1
0





































 








k

p

pp

k

p

pp exfexf  (3.29) 

Using (3.19), we get 
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Therefore,  FEDsym ,  is a convex function of E. This completes the proof of 

lemma (2.2). 

4. Application to Fault Detection Problem 

Now, we introduce the application in the context of fault detection 

problem of the proposed divergence measure. 

4.1. Case study of fault detection 

To remove any fault, its proper detection is necessary. Symptoms are the 

strong indicators of any fault, so major investigations starts from analyzing 

symptoms. But, since each time engineer/expert is not readily available then 

symptoms alone cannot be the guaranteed indicators of the detect the fault 

and thus uncertainty prevails. Therefore, coping up with the uncertainty is 

essential for proper detection of fault. One such way to deal with uncertainty 

in technical analysis is fuzzy set theory. This uncertain information can be 

expressed as fuzzy sets. Therefore, different researchers have considered 

different approaches to fuzzy sets and their applications in technical faults. 

Now, we present an illustrative example as an application of proposed 

symmetric divergence measure. 

Example 1. Consider an example of a factory where a machine is not 

functioning appropriately. Such break downs are normal in large factories 

because of which production of the factory gets affected. In this manner, it is 

always desirable to detect and correct the fault in such a machine at the 

earliest so that factory have not to suffer especially due to such break downs. 

We know that to fix a fault in a machine, an engineer relies upon the 

symptoms indicators by the machine. But sometimes the different faults in 

the machine have normal indications. In such a situation, the engineer needs 

to use its intuition to distinguish the part of the machine in which fault is 

located. Therefore, with the help of proposed symmetric measure, we try to 

fix the fault in the ill functioning machine. Broadly, we partition the machine 

into four parts denoted by  4321 ,,,   and a set of faults say 

 .,,,, 54321   Let the number of symptoms indicated by machine 

parts be five denoted by  .,,,, 54321   Characteristics symptoms 

for detect the faults are presented in Table 1 with lines speaking to symptoms 
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and columns speaking to faults. Table 2 exhibits the symptoms for every 

machine with lines speaking to machines and sections representing 

symptoms, every entry in the tables is given as fuzzy numbers. To identify 

each fault appropriately, we evaluate proposed symmetric divergence 

measure for detect the faults and all machines in context of symptoms. The 

process is repeated for all faults. Finally, we recommend the faults to the 

machine whose symptoms have lowest fuzzy divergence measure from 

machine’s symptoms. 

In this way, the proposed symmetric divergence measure  FEDsym ,  is 
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Table 1. Symptoms characteristics for faults. 

 1  2  3  4  5  

1  0.2 0.4 0.1 0.2 0.1 

2  0.60 0.02 0.25 0.02 0.11 

3  0.1 0.1 0.2 0.5 0.1 

4  0.30 0.12 0.26 0.21 0.11 

5  0.2 0.1 0.1 0.2 0.4 

Table 2. Symptoms characteristics for machine parts. 

 1  1  1  1  1  

1  0.3 0.2 0.1 0.1 0.3 

2  0.1 0.4 0.2 0.2 0.1 

3  0.6 0.1 0.1 0.1 0.1 

4  0.70 0.05 0.12 0.11 0.02 
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Detection Results for Proposed Symmetric Divergence Measure 

Table 3.  .3.0  

 1  2  3  4  5  

1  0.161 1.557 0.232 0.018 0.214 

2  0.282 1.361 0.396 0.053 0.116 

3  0.591 2.216 0.681 0.544 0.591 

4  1.362 3.096 1.502 1.357 1.415 

 Results  ,41    ,42    ,43    ,44   

Table 4.  .35.0  

 1  2  3  4  5  

1  1.886 3.591 1.993 1.713 1.944 

2  2.027 3.389 2.176 1.758 1.845 

3  2.418 4.371 2.546 2.349 2.418 

4  3.367 5.437 3.548 3.317 3.364 

Table 5.  .4.0  

 1  2  3  4  5  

1  3.817 5.872 3.968 3.611 3.878 

2  3.976 5.671 4.171 3.668 3.783 

3  4.467 6.781 4.640 4.370 4.467 

4  5.618 8.056 5.847 5.567 5.590 

 Results:  ,41    ,42    ,43    ,44   

Table 6.  .45.0  

 1  2  3  4  5  

1  4.292 5.754 4.428 4.147 4.324 

2  4.389 5.665 4.548 4.191 4.289 

3  4.765 6.363 4.914 4.678 4.765 

4  5.595 7.257 5.773 5.544 5.570 

 Results:  ,41    ,42    ,43    ,44   
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Table 7.  .5.0  

 1  2  3  4  5  

1  8.584 11.509 8.857 8.295 8.648 

2  8.778 11.331 9.097 8.383 8.578 

3  9.531 12.727 9.282 9.356 9.537 

4  11.191 14.515 11.546 11.088 11.139 

 Results:  ,41    ,42 

 

 ,43 

 

 ,34 

 

Table 8. Results of proposed symmetric divergence measure. 

Machine Parts  = 0.3 = 0.35  = 0.4  = 0.45  = 0.5 

1  4  4  4  4  4  

2  4  4  4  4  4  

3  4  4  4  4  4  

4  4  4  4  4  4  

5. Comparisons with other Existing Measures 

In this section, we compare the performance of proposed symmetric 

measure with different measures. Firstly, we consider the symmetric 

divergence measure corresponding to Renyi’s [23] which is given by 
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where  .10   

Presently, we conclude the above example using (5.1) for various values of 

parameters. 
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Table 9.  .1.0  

 1  2  3  4  5  

1  1.248 1.017 0.713 1.590 1.248 

2  1.401 1.028 0.866 1.743 1.401 

3  2.674 1.457 2.139 3.017 2.674 

4  5.103 3.754 3.931 3.710 5.103 

 Results:  ,31    ,32 

 

 ,23 

 

 ,44 

 

Table 10.  .2.0  

 1  2  3  4  5  

1  3.016 0.486 2.643 3.255 3.016 

2  3.152 0.622 2.779 3.391 3.152 

3  4.284 1.754 3.911 4.523 4.284 

4  6.443  2.457 3.119 4.336 6.44 

 Results:  ,21    ,22    ,23    ,24 

 

Table 11.  .3.0  

 1  2  3  4  5  

1  5.285 4.036 5.101 5.403 5.285 

2  5.404 4.155 5.220 5.522 5.404 

3  6.394 5.146 6.210 6.512 6.394 

4  8.284 5.461 6.102 6.740 8.284 

 Results:  ,21    ,22 

 

 ,23 

 

 ,24 
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Table 12.  .4.0  

 1  2  3  4  5  

1  8.304 8.611 8.349 8.275 8.304 

2  8.406 8.713 8.451 8.377 8.406 

3  9.255 9.562 9.300 9.226 9.255 

4  10.874 9.625 9.701 9.621 10.874 

 Results:  ,41    ,42    ,43    ,44   

On investigating the Tables 9-12, we see that machine part 1  is 

recommended for fault 3  and 4  in Tables 9 and 12 respectively. At long 

last, Tables 10 and 11 recommend detection for fault 2  for machine part .1  

Now, we proceed above example using new measure of probabilistic 

symmetric divergence corresponding to Tsallis [27] and Havdra Charvat [10] 

is 
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Solving above example using equation (5.2), we get following tables. 

Table 13.  .1.0  

 1  2  3  4  5  

1  5.047 5.113 5.114 5.046 5.020 

2  5.013 5.249 5.070 5.058 5.094 

3  5.089 5.041 5.159 5.043 5.089 

4  5.140 5.042 5.198 5.070 5.152 

 Results:  ,51    ,12    ,23    ,24   
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Table 14.  .2.0  

 1  2  3  4  5  

1  5.784 5.878 5.886 5.783 5.745 

2  5.734 6.070 5.818 5.800 5.855 

3  5.848 5.774 5.949 5.780 5.848 

4  5.926 5.778 6.003 5.819 5.947 

 Results:  ,51    ,11    ,21    ,21   

Table 15.  .2.0  

 1  2  3  4  5  

1  6.759 6.878 6.899 6.758 6.708 

2  6.694 7.120 6.802 6.779 6.854 

3  6.845 6.744 6.974 6.754 6.845 

4  6.952 6.751 7.042 6.807 6.987 

 Results:  ,51    ,11    ,21    ,21   

Table 16.  .4.0  

 1  2  3  4  5  

1  8.935 8.994 9.009 8.935 8.909 

2  8.902 9.124 8.957 8.945 8.984 

3  8.980 8.927 9.046 8.933 8.980 

4  9.039 8.932 9.080 8.960 9.067 

 Results:  ,51    ,11    ,21    ,21   

On breaking down the Tables 13-16, we see that machine parts 321 ,,   

and 4  are recommended for faults 215 ,,   and 2  respectively. 

R-norm symmetric divergence measure corresponding to Boekee and 

Lubbe [3] which is as follows: 
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Solving above example using equation (5.3), we obtain the following tables. 

Table 17.  .1.0  

 1  2  3  4  5  

1  0.701 0.703 0.697 0.706 0.694 

2  0.695 0.697 0.691 0.700 0.688 

3  0.694 0.696 0.690 0.698 0.687 

4  0.709 0.711  0.704 0.713 0.702 

 Results:  ,51    ,52    ,53    ,54   

Table 18.  .2.0   

 1  2  3  4  5  

1  0.778 0.782 0.767 0.788 0.761 

2  0.764 0.767 0.753 0.775 0.747 

3  0.760 0.765 0.751 0.770 0.764 

4  0.796 0.799 0.784 0.806 0.778 

 Results:  ,51    ,52    ,53    ,54   

Table 19.  .3.0  

 1  2  3  4  5  

1  1.346 1.352 1.329 1.360 1.321 

2  1.327 1.331 1.310 1.341 1.300 

3  1.321 1.327 1.305 1.335 0.996 

4  1.372 1.377 1.354 1.386 1.345 

 Results:  ,51    ,52    ,53    ,54   
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Table 20.  .4.0  

 1  2  3  4  5  

1  1.801 1.810 1.769 1.826 1.752 

2  1.767 1.775 1.735 1.792 1.718 

3  1.756 1.765 1.724 1.781 1.708 

4  1.847 1.855 1.814 1.872 1.798 

 Results:  ,51    ,52    ,53    ,54   

On breaking down the Tables 17-20, we see that each machine part 

321 ,,   and 4  is recommended for fault .5  

Now, we sum up the above example utilizing symmetric divergence 

measure corresponding to Lin [20] given as: 
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Table 21. Detection Result. 

 1  2  3  4  5  

1  0.675 1.557 1.762 0.672 0.300 

2  0.200 3.550 0.996 0.828 1.400 

3  1.334 0.571 2.321 0.644 1.334 

4  1.334 0.571 2.321 0.644 1.134 

 Results:  ,51    ,12    ,23    ,24   

From Table 21, we see that machine parts 321 ,,   and 4  are 

recommended for faults 215 ,,   and 4  respectively. 

Conclusion 

From the above discussion, it can be concluded that 
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1. Measure condition (4.1), proposes that 4  is right for all machine parts 

,,, 321   and 4  for different parametric quantities.  

2. Measure condition (5.1), suggest the fault 2  for machine part 1  but 

in other case fault 4  is recommend for machine part 1  for different values 

of parameters. 

3. Measure equation (5.2) suggests that 215 ,,   and 2  are correct for 

machine parts 321 ,,   and 4  respectively. 

4. Measure equation (5.3) suggests that 5  is correct for all machine 

parts 321 ,,   and 4  for different values of parameter . 

5. Measure equation (5.4) suggests that 215 ,,   and 2  are correct for 

machine parts 321 ,,   and 4  respectively. 

Correspondingly, symmetric divergence measure proposed by different 

researchers might be used to evaluate the above example. The results are 

summarized in the following Table 22. 

Table 22. Comparison of Results. 

Machine 

parts 

Proposed sym. 

Measure 

Lin Renyi Tsallis Boekee Boekee and 

Lubbe 

 1  4  5  either 

2 or 4  

5  5  

 2  4  1  4  1  5  

 3  4  2  either 

2 or 4  

2  5  

 4  4  2  4  2  5  

Discussion 

Above analysis shows that the performance of proposed symmetric 

measure equation (4.1) is more consistent when contrasted with equation 

(5.1), (5.2), (5.3) and (5.4). Because proposed measure gives consistent result 
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according to the sequence, while other comparative measures gave no 

consistency in any case. i.e., Renyi’s symmetric measure does not able to 

discriminate which fault either 2  or 4  is correct for machine part 1  and 

.3  Thus, based on above examination, we can say that determining a 

detection based on symptoms is a difficult task. Only some particular 

symptoms lead to some specific detection. A thorough analysis ought to be 

done to arrive at a conclusion. Aside from symptoms, engineer’s advice is also 

advisable to determine the detection. 

5.1. Case study of pattern recognition 

In the present subsection, we give the application of proposed symmetric 

divergence measure in pattern recognition. In pattern recognition problem, 

we need to distinguish the pattern out of given patterns which resembles the 

most with the given pattern by looking at their features. The procedure is as 

under: 

Let there be k-known patterns k ,,, 21   with m respective 

classification .,,, 21 mLLL   The Patterns are represented by the k- 

probability distributions associated with discrete random variables 

 .,,, 321 kzzzzX   Given an unknown pattern   .,, 21 kkgggQ    

Our point is to characterize Q to one of the classes .,,, 21 mLLL   As per the 

principle of minimum divergence/discrimination information between 

probability distribution on a set of probability distributions, the way of 

assigning Q to 
tL  is described by 

  .,2,1,,minarg kpforQt p   

As indicated by this algorithm, the given pattern can be recognized so 

that the best class can be chosen. It is a practical application of minimum 

divergence measure rule to pattern recognition. 

Illustrative Example 2. Suppose  ,,, 321 zzzX   ba a finite set of 

random variables. Three known patterns 321 ,,   with classifications 

321 ,, LLL  respectively are given. Let 321 ,,   be represented by the 

following set of probability distributions 
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     ,1.0,,3.0,,6.0, 3211 zzz  

     ,4.0,,2.0,,4.0, 3212 zzz  

     .6.0,,1.0,,3.0, 3213 zzz  

Unknown pattern Q is given as pursues: 

     ,2.0,,5.0,,3.0, 321 zzzQ   

Our goal is to find one of the classes ,, 21 LL  and 3L  that Q belongs to. 

From formula (3.13), we can calculate the values of divergence measure 

  3,2,1,, tQPT t  for any  1,0  and are presented in Table as follows: 

Table 23. Computed numerical values of proposed probabilistic symmetric 

divergence measure   3,2,1,,  tQT t  for any  .1,0  

 4.0  5.0  6.0  7.0  8.0  9.0  

 QT ,1  1.078 3.142 6.142 10.819 20.061 45.383 

 QT ,2  0.668 2.574 5.293 9.667 18.206 43.445 

 QT ,3  0.919 2.976 5.926 10.678 19.952 47.321 

Hence, the unknown pattern is classified into class 2L  for different 

parametric values of . 

Comparison with other existing symmetric measures 

We currently demonstrate the effectiveness of proposed measure equation 

(4.1) by contrasting its performance and measure in literature through 

example 2. In the present comparison, we have considered Renyi [23], Tsallis 

[27], Boekee and Lubbe [3] and Lin [20] etc. 

The symmetric divergence measure corresponding to Renyi’s [23] which is 

given by 
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The symmetric divergence measure corresponding to Tsallis [27] is as 

follows: 
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R-norm symmetric divergence measure corresponding to Boekee and 

Lubbe [3] which is as follows: 
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The probability symmetric divergence measure corresponding to Lin [20] is 
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Computed values of symmetric divergence measure equation (4.1), equation 

(5.5), equation (5.6), equation (5.7) and equation (5.8) are presented in the 

Table 24.  

Table 24. Computed values of 



LBTRsym DDDD ,,, and .LD  

divergence measure 1  2  3  

 QD psym ,  1.078 0.668 0.919 

 QD pR ,  3.421 3.366 3.421 

 QD pT ,  6.817 6.841 7.083 

 QD pLB ,
  0.547 0.638 1.562 

 QD pL ,  0.483 0.207 0.324 

Thus, Table 24 shows a comparison of the classification result of the 

proposed symmetric measure with the ones of the existing symmetric 
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measures. From Table 24, we can know the proposed measure 
Rsym DD ,  and 

LD  that support the pattern 2  resembles the most with Q. While, 
TD  and 


LBD  support the pattern .1  Although, final classifications results 

 LRsym DDD ,,2
  and  


 LBT DD ,1  are distinguish in unknown pattern. 

6. Conclusions 

In this study, we have proposed J-divergence measure based on Renyi’s-

Tsallis entropy measure. Some of its basic properties are examined and 

comparison between proposed symmetric measure and some other existing 

measures also discussed. In addition to this, its efficiency is established 

utilizing an example on fault detection and pattern recognition. For fault 

detection problem in example 1 and pattern recognition problem in example, 

a correlation of results of existing measures is exhibiting in Table 22 and 24 

respectively. In future, we will utilize the symmetric divergence measure in 

another ways such as data mining and decision making. In addition, as this 

paper is just an applied result focus on the divergence measure for probability 

distributions. We shall attempt to design some softwares to preferably relies 

the initiated information measure in every day life. Meanwhile, we will also 

bring them into various fuzzy environment. 
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