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Abstract

In this study, we show some fixed point theorems for multivalued mappings in complete

fuzzy metric spaces.

1. Introduction

The concept of fuzzy sets was introduced by Zadeh [19] in 1965. Kramosil
and Michalek [11] introduced the concept of fuzzy metric space and modified
by George and Veeramani [4]. Kubiaczyk and Sushil Sharma [12] introduced
the notion of multivalued mappings for fuzzy metric space in the sense of
Kramosil and Michalek [11] and extended the result of Grabiec [5].
Romaguera [17] introduced Hausdorff fuzzy metric on a set of nonempty
closed and bounded subsets of a given fuzzy metric space. Kiany [10] et al.
proved fixed point theorems for multivalued fuzzy contraction maps in fuzzy
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metric spaces and obtained generalization of Banach contraction theorem in
fuzzy metric spaces. In this study, we show some fixed point theorems for
multivalued mappings in complete fuzzy metric spaces.

2. Preliminaries

Definition 2.1. A 3-tuple (X, M, *) is said to be fuzzy metric space if X
is an arbitrary set, * is a continuous ¢-norm and M is a fuzzy set on
X2 x (0, ©) satisfying the following conditions for each w, v, w e X and

r,s>0
1) M(u, v, s) >0
Q) M, v,s)=1foralls >0 u="uv
) M(u, v, s) = M(v, u, s)
4 M@, v, s)* M, w, r) < M(u, w, s+r)
(5) M(u, v, .): (0, ©) — [0, 1] is continuous,
6) lim,_,,, M(u, v, s) = 1.
Example 2.2. Let (X,d) be a metric space. Define a*b=ab (or

a *b =min{a, b}) and for all u, v € X and s > 0, M(u, v, s) :m.

Then (X, M, *) is a fuzzy metric space. We call this fuzzy metric space
M induced by the metric d as the standard fuzzy metric.
Definition 2.3. Let (X, M, %) be a fuzzy metric space.

A sequence {u,} in X 1is said to be Cauchy sequence if

lim M(uy. p, ty, s) =1 forall s >0 and p > 0.
n—0

A sequence {u,} in X converges to v in X if lim M(u,, u, s) =1 for all
n—o0

s> 0.

A fuzzy metric space (X, M, *) is said to be complete if and only if every

Cauchy sequence in X is convergent to a point in it.
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Lemma 2.4 [18]. Let {u,} be a sequence in a fuzzy metric space (X, M, *)
with the condition (6). If there exists a number q < (0,1) such that
M (g Uns1s G5) = M(upq, uy, s) for all >0 and n=1,23, .., then

{u,} is a Cauchy sequence in X.

Lemma 2.5 [18]. Let (X, M, *) be a fuzzy metric space. If there exists a
number q € (0,1) such that M(u, v, gs) = M(u, v, s) for all u,ve X and

s> 0, then u = v.

Definition 2.6. Let (X, M, *) be a fuzzy metric space and CB(X) is the
collection of all nonempty closed and bounded subsets of X. Define a function

My on CB(X)x CB(X) x (0,0) by My(A, B, s) = min{in£ Mv(a, B, s),
ae

;ng MY(A, b,s)} for all A, BeCB(X) and s >0, where M"(a, B, s)

(S

= sup{M(a, b, s) : b € B}. Clearly My is metric on CB(X).

Remark 2.7. Obviously My (A, B, s) < Mv(x, B, s) whenever x € A.

3. Main Results

Theorem 3.1. Take a complete fuzzy metric space (X, M, *) with
continuous t-norm * defined by a *b = min{a, b} and T : X - CB(X) is a
multivalued mapping satisfying the following condition for all x, y € X and
t>0.

My(Tx, Ty, qt) > min{M(x, y, t), M" (x, Tx, t) * M" (y, Ty, t), M" (y, Tx, t)}

(3.1.1)

where g € (0, 1). Then T has a unique fixed point.
Proof of theorem 3.1. Let xj € X
Choose x; € X such that x; € T

Continuing this process we get x,, € Tx,,_1
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M(x, %541, qt) = My(Txyy, Ty, qt)
> min{M(x,, 1, X, t), MY (%,,_1, T,_1, t) * MY (x,,, Tx,,, t),
MY (x,, Ty, 0}
> min{M(x,,_1, %y, t); M(xp_1, X, £) % M(xy, X1, 1), My, 2, 1))
= min{M(x, 1, 2, £), M(xy1, %5 £) * M(xy, X1, ), 1}
= M(xp 1, %, t) % M2y, X1, 2)
Therefore, M(x,,, .1, qt) = M(x,_q1, x,,, t) * M(x,,, X,,1, t)
Hence M(x,,, x,.1, qt) > M(x,,_1, x,,, t), for each ¢ > 0
Therefore by Lemma 2.4, {x,,} is a Cauchy sequence in X.
Since X is complete, sequence {x,} converges to a point x € X
Now,
MY (x,.1, Tx, qt) = My(Tx,, Tx, qt)
> min{M(x,,, x, t), M" (x, Tx,, t) * M (x, Tx, t), M" (x, Tx,, t)}
> min{M(x,,, x, t), M(x,, %1, t)* M" (x, Tx, t), M(x, x,,1, t)
Taking limit as n — o« we get
MY (x, Tx, gt) > min{M(x, x, t), M(x, x, t) * M" (x, Tx, t), M(x, x, t)
= min{l, 1 * MY (x, Tx, t), 1}
= minf{l, MY (x, Tx, t)}
= MY (x, Tx, t)
Hence MY (x, Tx, qt) > M" (x, Tk, t), for each t > 0

Therefore by Lemma 2.5, x € Tx
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Thus x is a fixed point of 7.
Uniqueness: Let y be another fixed point of 7. Then
M(x, y, qt) = My(Tx, Ty, qt)
> min{M(x, y, t), M" (x, Tx, t) = M" (y, Ty, ©), M" (y, Tx, 1)}
> min{M(x, y, t), M(x, x, t) * M(y, y, t), M(y, x, t)}
=min{M(x, v, t), 1 *1, M(x, y, t)}
= min{M(x, y, t), 1}
= M(x, v, t).
Hence M(x, vy, qt) > M(x, vy, t), foreach ¢ > 0
Therefore by Lemma 2.5, y = x

Thus T has a unique fixed point.

Theorem 3.2. Take a complete fuzzy metric space (X, M,*) and
T : X > CB(X) a multivalued mapping satisfying the following condition
forall x,ye X and ¢t >0

My (Tx, Ty, qt) > min{M(x, y, t), M" (x, Tx, t), M"(y, Ty, t), M" (y, Tx, t)

MY (x, Tx, t) + MY (y, Tk, t)}
1+ M(x, vy, t)

(3.2.1)

where q € (0, 1). Then T has a unique fixed point.
Proof of theorem 3.2. Let x5 € X
Choose x; € X such that x; € Tk
Continuing this process we get x,, € Tx,
M(xp, Xps1, qt) = My(Tx,q, Txy, qt)

> min{M(M(x,,_1, x,,, t), Mv(xn_l, Tx,, t), Mv(xn, Tx,, t),
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Mv(xn_l,,Txn_l,t) + Mv(xn, Tx,_1,t)

MY (x, Txyq, 1) 1+ M(x,_q, xp, t) }
n—1» “*n»

2 min{M(xn—la Xns t)’ M(xn—l’ Xns t) M(xna Xn-1, t)a M(xn’ Xns t)’

M(x,,_q, x,,, t) + M(x,,, x,,, t)}
1+ M(xn_l, Xns t)

= min{M(x,_;, x,, t), M(x,_1, x,,, t), M(x,_1, Xp_1, t), 1, 1
= M(xn—l’ Xns t)

Hence M(x,,, x,,1, qt) = M(x,_1, x,, t), for each ¢ > 0
Therefore by Lemma 2.4, {x,,} is a Cauchy sequence in X.

Since X is complete, sequence {x, } converges to a point x € X
Now, MY (x,,1, T%, qt) = My(Tx,, Tk, qt)

> min{M(x,, x, t), M" (x,, Tx, t), M" (x, Tx, t), M" (x, Tx,, t),

MY (x,, Tx, t) + M (x, Tx, t)}
1+ M(x,, x, t)

> min{M(x,, x, t), M(x,,, X,.+1, ), Mv(x, Tx, t), M(x, x,,,1, t)

My, Xpi1, £) + M(x, 2pia, 8,
1+ M(x,, x, t)

Taking limit as n — o we get
MY (x, Tx, gt) = min{M(x, x, t), M(x, x, t), M" (x, Tx, t), M(x, x, t),

M(x, x, t) + M(x, x, t)}
1+ M(x, x, t)

MY (x, Tx, qt) > min{l, M" (x, Tx, t)}
= MY (x, Tx, t)

Hence Mv(x, Tx, qt) > Mv(x, Tx,t), for each ¢t > 0. Therefore by

Lemma 2.5, x € Tx. Thus x is a fixed point of T'.
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Uniqueness:
Let Y be another fixed point of 7. Then

M(x, y, qt) > My(Tx, Ty, qt)
> min{M(x, y, t), M" (x, Tx, t), MY (y, Ty, t), M" (y, Tx, t),

MY (x, Tx, t) + MY (, Tx, t)}
1+ M(x, vy, t)

> min{M(x, y, t), M(x, x, t), M(y, y, t), M(y, x, t),

M(x, x, t) + M(y, x, t)}
1+ M(x, y,t)

= min {M(x, y, t), 1}
= M(x, y, t)

Hence M(x, y, qt) > M(x, y, t), for each ¢ > 0. Therefore by Lemma 2.5,
vy = x. Thus T has a unique fixed point.

Theorem 38.3. Take a complete fuzzy metric space (X, M, *) and

T : X - CB(X) a multivalued mapping satisfying the following condition
forall x,ye X and t > 0

My(Tx, Ty, qt) > min{M(x, y, t), M" (x, Tx, t), M" (y, Ty, t), M" (y, Tx, t),

MY (y, Tx, t)[1 + MY (x, Tx, t)]
M(x, y, t)

L (3.3.0)

where q € (0,1). Then T has a unique fixed point.

Proof of theorem 3.3. Proof is similar.
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