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Abstract 

In this study, we show some fixed point theorems for multivalued mappings in complete 

fuzzy metric spaces. 

1. Introduction 

The concept of fuzzy sets was introduced by Zadeh [19] in 1965. Kramosil 

and Michalek [11] introduced the concept of fuzzy metric space and modified 

by George and Veeramani [4]. Kubiaczyk and Sushil Sharma [12] introduced 

the notion of multivalued mappings for fuzzy metric space in the sense of 

Kramosil and Michalek [11] and extended the result of Grabiec [5]. 

Romaguera [17] introduced Hausdorff fuzzy metric on a set of nonempty 

closed and bounded subsets of a given fuzzy metric space. Kiany [10] et al. 

proved fixed point theorems for multivalued fuzzy contraction maps in fuzzy 
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metric spaces and obtained generalization of Banach contraction theorem in 

fuzzy metric spaces. In this study, we show some fixed point theorems for 

multivalued mappings in complete fuzzy metric spaces. 

2. Preliminaries 

Definition 2.1. A 3-tuple ),,( MX  is said to be fuzzy metric space if X 

is an arbitrary set, * is a continuous t-norm and M is a fuzzy set on 

),0(2 X  satisfying the following conditions for each Xwvu ,,  and 

0, sr  

(1) 0),,( svuM  

(2) 1),,( svuM  for all vus  0  

(3) ),,(),,( suvMsvuM   

(4) ),,(),,(),,( rswuMrwvMsvuM   

(5) ]1,0[),0(:.),,( vuM  is continuous, 

(6) .1),,(lim  svuMt  

Example 2.2. Let ),( dX  be a metric space. Define abba   (or 

},min{ baba  ) and for all Xvu ,  and .
),(

),,(,0
vuds

s
svuMs


  

Then ),,( MX  is a fuzzy metric space. We call this fuzzy metric space 

M induced by the metric d as the standard fuzzy metric. 

Definition 2.3. Let ),,( MX  be a fuzzy metric space. 

A sequence }{ nu  in X is said to be Cauchy sequence if 

  1,,lim 


suuM npn
n

 for all 0s  and .0p  

A sequence }{ nu  in X converges to u in X if   1,,lim 


suuM n
n

 for all 

.0s  

A fuzzy metric space ),,( MX  is said to be complete if and only if every 

Cauchy sequence in X is convergent to a point in it. 
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Lemma 2.4 [18]. Let  nu  be a sequence in a fuzzy metric space ),,( MX  

with the condition (6). If there exists a number )1,0(q  such that 

   suuMqsuuM nnnn ,,,, 112    for all 0s  and ...,,3,2,1n  then 

 nu  is a Cauchy sequence in X. 

Lemma 2.5 [18]. Let ),,( MX  be a fuzzy metric space. If there exists a 

number )1,0(q  such that ),,(),,( svuMqsvuM   for all Xvu ,  and 

,0s  then .vu   

Definition 2.6. Let ),,( MX  be a fuzzy metric space and )(XCB  is the 

collection of all nonempty closed and bounded subsets of X. Define a function 

M  on ),0()()(  XCBXCB  by  ),,,(infmin),,( sBaMsBAM
Aa




   

),,(inf sbAM
Bb




 for all )(, XCBBA   and ,0s  where ),,( sBaM  

}.:),,({sup BbsbaM   Clearly M  is metric on .)(XCB  

Remark 2.7. Obviously ),,(),,( sBxMsBAM 
   whenever .Ax   

3. Main Results 

Theorem 3.1. Take a complete fuzzy metric space ),,( MX  with 

continuous t-norm   defined by },{min baba   and )(: XCBXT   is a 

multivalued mapping satisfying the following condition for all Xyx ,  and 

.0t  

 ),,(),,,(),,(),,,(min),,( tTxyMtTyyMtTxxMtyxMqtTyTxM 
   

 (3.1.1) 

where .)1,0(q  Then T has a unique fixed point. 

Proof of theorem 3.1. Let Xx 0  

Choose Xx 1  such that 01 Txx   

Continuing this process we get 1 nn Txx  
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   qtTxTxMqtxxM nnnn ,,,, 11    

     ,,,,,,,,min{ 111 tTxxMtTxxMtxxM nnnnnn





   

 tTxxM nn ,, 1
  

        txxMtxxMtxxMtxxM nnnnnnnn ,,,,,,,,,,min 111    

       1,,,,,,,,min 111 txxMtxxMtxxM nnnnnn    

   txxMtxxM nnnn ,,,, 11    

Therefore,      txxMtxxMqtxxM nnnnnn ,,,,,, 111    

Hence    ,,,,, 11 txxMqtxxM nnnn    for each 0t  

Therefore by Lemma 2.4,  nx  is a Cauchy sequence in X. 

Since X is complete, sequence  nx  converges to a point  Xx   

Now, 

   qtTxTxMqtTxxM nn ,,,,1 
   

          tTxxMtTxxMtTxxMtxxM nnn ,,,,,,,,,,min    

          txxMtTxxMtxxMtxxM nnnn ,,,,,,,,,,min 11 


   

Taking limit as n  we get 

          txxMtTxxMtxxMtxxMqtTxxM ,,,,,,,,,,min,,    

}1),,,(1,1{min tTxxM  

 ),,(,1min tTxxM  

),,( tTxxM  

Hence ,),,(),,( tTxxMqtTxxM    for each 0t  

Therefore by Lemma 2.5, Txx   
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Thus x is a fixed point of T. 

Uniqueness: Let y be another fixed point of T. Then  

),,(),,( qtTyTxMqtyxM   

 ),,(),,,(),,(),,,(min tTxyMtTyyMtTxxMtyxM    

)},,(),,,(),,(),,,({min txyMtyyMtxxMtyxM   

)},,(,11),,,({min tyxMtyxM   

}1),,,({min tyxM  

.),,( tyxM  

Hence ),,,(),,( tyxMqtyxM   for each 0t  

Therefore by Lemma 2.5, xy   

Thus T has a unique fixed point. 

Theorem 3.2. Take a complete fuzzy metric space *),,( MX  and 

)(: XCBXT   a multivalued mapping satisfying the following condition 

for all Xyx ,  and 0t  

),,(),,,(),,,(),,,({min),,( tTxyMtTyyMtTxxMtyxMqtTyTxM 
   


),,(1

),,(),,(

tyxM

tTxyMtTxxM



 

 (3.2.1)  

where .)1,0(q  Then T has a unique fixed point. 

Proof of theorem 3.2. Let Xx 0  

Choose Xx 1  such that 01 Txx   

Continuing this process we get 1 nn Txx  

   qtTxTxMqtxxM nnnn ,,,, 11    

       ,,,,,,,,,min 11 tTxxMtTxxMtxxMM nnnnnn
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txxM

tTxxMtTxxM
tTxxM

nn

nnnn
nn ,,1

,,,,
,,

1

11,1
1















 

       ,,,,,,,,,,,min{ 111 txxMtxxMtxxMtxxM nnnnnnnn   

   
 


txxM

txxMtxxM

nn

nnnn

,,1

,,,,

1

1








 

       1,1,,,,,,,,,min 1111 txxMtxxMtxxM nnnnnn   

 txxM nn ,,1  

Hence    ,,,,, 11 txxMqtxxM nnnn    for each 0t  

Therefore by Lemma 2.4,  nx  is a Cauchy sequence in X. 

Since X is complete, sequence  nx  converges to a point Xx   

Now,    qtTxTxMqtTxxM nn ,,,,1 
   

       ,,,,,,,,,,,,min{ tTxxMtTxxMtTxxMtxxM nnn
    

   
   

 


txxM

tTxxMtTxxM

n

n

,,1

,,,,



 

 

        txxMtTxxMtxxMtxxM nnnn ,,,,,,,,,,,min 11 


  

   
 

}
,,1

,,,, 11

txxM

txxMtxxM

n

nnn



   

Taking limit as n  we get 

 ),,,(),,,(),,,(),,,(min),,( txxMtTxxMtxxMtxxMqtTxxM    

}
),,(1

),,(),,(

txxM

txxMtxxM




 

 ),,(,1min),,( tTxxMqtTxxM    

         ),,( tTxxM  

Hence ),,,(),,( tTxxMqtTxxM    for each .0t  Therefore by 

Lemma 2.5, .Txx   Thus x is a fixed point of T. 
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Uniqueness: 

Let Y be another fixed point of T. Then  

),,(),,( qtTyTxMqtyxM   

 ,),,(),,,(),,,(),,,(min tTxyMtTyyMtTxxMtyxM   

}
),,(1

),,(),,(

tyxM

tTxyMtTxxM



 

 

),,,(),,,(),,,(),,,({min txyMtyyMtxxMtyxM  

}
),,(1

),,(),,(

tyxM

txyMtxxM




 

  1,,,min tyxM  

 tyxM ,,  

Hence    ,,,,, tyxMqtyxM   for each .0t  Therefore by Lemma 2.5, 

.xy   Thus T has a unique fixed point. 

Theorem 3.3. Take a complete fuzzy metric space  *,, MX  and 

)(: XCBXT   a multivalued mapping satisfying the following condition 

for all Xyx ,  and 0t  

         ,,,,,,,,,,,,{min,, tTxyMtTyyMtTxxMtyxMqtTyTxM 
   

    
 


tyxM

tTxxMtTxyM

,,

,,1,,  
   (3.3.1) 

where .)1,0(q  Then T has a unique fixed point. 

Proof of theorem 3.3. Proof is similar. 
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