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Abstract

A k-prime labeling of a graph G is an injective function f:V —{k k+1, k+2, ...,
k+|V| -1} for some positive integer k that induces a function f* : E(G) - N of the edges of
G defined by f*(uv) = ged (f(u), f(v)), Ve = uv € E(G) such that ged(f(w), f(v)) =1. A graph G

that admits k-prime labeling is called a k-prime graph. In this paper, we apply the definition of
k-prime labeling to certain classes of graphs Co,, U Ca,, GUtB,, GU Kj j,, GoP,, GoK; ,, and

GéFLn obtained through graph operations and have proved that they are k-prime. We have

further investigated the existence of such a labeling by discussion through various cases.

1. Introduction

A simple graph G of order p is said to be k-prime for some positive integer
k, if the vertices of the graph are labeled from %k to £+ p —1 such that the
labels of every adjacent vertices are relatively prime. Such a graph is called a
k-prime graph. Two integers a and b are said to be relatively prime, if their
greatest common divisor ged (a, b) is 1.

S. K. Vaidya and U. M. Prajapati [5] introduced the idea of k-prime
labeling and proved that every path graph P,, m > 1 is k-prime. We have
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studied the behaviour of certain cycle related graphs and proved that every
cycle graph C,, n > 3, tadpole graph T}, ,,, barycentric subdivision c,(C,)
of cycle C, and friendship graph F, admit k-prime labeling [3].

Furthermore, we investigated the results on tree related graphs such as Y-
tree, X-tree and extended to one point union of path graphs and proved that
they admit k-prime labeling [4].

In this paper, we concentrate our study on special families of graphs

obtained through certain graph operations.
2. Preliminaries

We now begin with few definitions.

Definition 2.1 [2]. Let G;(p;, q¢;) be a graph with vertex set V; and
edge set E; respectively. Let Go(ps, g9) be another graph with vertex set
V5 and edge set Eg respectively. The union of G; and Gy is a graph
G = G; UGy with vertexset V =V UV, and edge set £ = E; U Es.

Definition 2.2 [1]. If Gi(p;, ¢1) and Gg(pg, q2) are two connected
graphs then the graph obtained by superimposing any selected vertex of Gg

on any selected vertex of Gj is denoted by Gj 6 G,.

3. Main Results

3.1. Union of Graphs

Theorem 3.1.1. Union of two copies of even cycle C,,, is k-prime for all k

and n > 1.

Proof. Let G(V, E)=Cs, UCy,,. Let the vertex and edge set of Cy,, U Cy,,
be defined as V(G) = {v;, Uy, ..., Ugy, Uopi1, Vst and E(G) = {E; U Es}
where E; ={v;u;,; :1<i<2n-1}U{vjvy,} and Eg ={v;v;,; :2n+1<i<4n-1}
U {va+1v4,} From the above definition, it is clear that the graph Cy, U Cy,

has 4n vertices and 4n edges. See Figure 1. Define an injective function
f:V >k k+1,..., k+4n -1} as follows:
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Case 1. When 2n —1 is prime for k # O(mod (2n —1)) and k # (2n — 2)
(mod(2n —1)).

f))=k+i-1,1<i<4n

Case 2. When 2n —1 is not prime for & not a multiple factor of @ and b of
(2n —1), & # 0(mod (a — 1)) and k& # 0(mod (b — 1)).

f))=k+i-1<i<d4n

From the labeling pattern defined, it is easy to observe that the greatest

common divisor for every adjacent vertices are 1.

Therefore Cy,, U Cy,, is k-prime for £ > 1. o

Uln+3 U2n+4

-

Udn—1

Udn+1 Uin

Figure 1. Cy,, U Cy,,.

Lemma 3.1.1. Union of cycle graph C,, and t copies of Path graph P,, is

k-prime for n > 2, m >1 and k, t > 1.

Proof. Let G(V, E) = C,, UtP,,. Let the vertex and edge set of C,, U¢P,
be defined as V(G)={vy, vg, ..., v} Ut :1<a<m1<b<t} and
E(G) = E, UE, where E, ={vjv;;q :1<i<n-1}U{vu,} and
E, = {ugu3+1 :1<a<m-1,1<b <t} From the above definition, it is
clear that the graph C, U¢P, has n+tm vertices and n + m(t —1) edges.

Define an injective function f : V — {k, k+1, ..., k + n +tm —1} as follows:
Case 1. When n = 3, 5 and for odd &
fo;)=k+i-1,1<i<n
f@)=k+n+(®B-)m+a-1,1<a<ml<bs<t
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Case 2. When n = 0(mod 2) and for n > 4.

Subcase 1. n —1 is prime

f))=k+i-1,1<i<nand k # 0(mod (n —1))

f@)=k+n+(®B-1m+a-1,1<a<ml<bs<t
Subcase 2. n —1 is not prime

f(v;)=k+i-1,1<i<n and k not @ multiple factor of (n —1)

f@)=k+n+(®B-m+a-1,1<a<ml<bs<t

From the labeling pattern defined, it is easy to observe that the greatest
common divisor for every adjacent vertices are 1.

Therefore C,, UtP,, is k-prime for £ > 1. o

Theorem 3.1.2. Let G be k-prime graph. Then there exists a class
G UtP,, of graphs that is k-prime for k > 1.

Proof. Let G(p, q) be a k-prime graph. Consider t copies of Path graph
P,  with vertex set {ulj :1<i<m,1<j<t} and edge set
{uijuzjﬂ :1<i<m-1,1<j <t} The union of G and t copies of Path graph
P, is Gy =GUtP, with vertex and edge set as Vi(Gy)=
VG U :1<i<m,1<j<t} and E(G)=EG)Uulu/ :1<i<m-1,
1 < j <t} respectively. From the above definition, it is clear that the graph
G, has p +tm vertices and q + m(t —1) edges. Define an injective function

g VNG) >k k+L,E+2, ..., k+p-LEk+p k+p+1,...,k+p+tm—1}
as follows:

g(va):f(va)’ Vg €V
gu)=k+p+(-Dm+i-1,1<i<m1<j<t

Now we have to prove that G; is k-prime. Given that G is k-prime, it is

enough to prove that for any edge wlul

U € E;, which is not in
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G, ged (g(u)), g(i ;) = 1.

The above labeling function induces a edge function g* : E(G;) > N
satistying the condition of k-prime labeling as g™ (w/u/,,)=ged (g(u)), g )

=ged(k+p+(-1)m+i-1Lk+p+(j—1)m+i)=1 since k+p+(j-1m+i-1

and k + p + (j —1)m + i are consecutive integers.

Hence there exist a class G U ¢P,, of graphs that admit k-prime labeling.

Therefore G UtP,, is k-prime for & > 1. o

Lemma 3.1.2. K; , UK ,, is k-prime for k >1 and n, m > 1.

Proof. Let Kj ,, : {x, uy, ug, ..., u,} be a star of order n+1 with x as
central vertex and let Kj ,, : {y, vy, Vg, ..., Uy, } be a star of order m +1 with
y as central vertex respectively. Let G(V, E) = K ,, UKj ,,. Let the vertex
set and edge set of Kj , UK;,, be defined as V(G)={x,u; :1<i<nj
Uiy, vj :1<j<mj and EG)={xy; :1<i<n} Ulyv; :1<j<mj From
the above definition, it is clear that the graph K; , UK; , has n+m+2

vertices and n + m edges. Let p be the largest prime from 2 < p < k+n and
let ¢ be the largest prime from 2+n+1<qg <k +n+m+1 respectively.

Define an injective function f : V — {k, k+1, ..., k+n+ m+1} as follows:

Casel. p =k

Subcase 1. When ¢ = &k + n + 1.
f(x) = p,
fw;))=p+i,1<i<n
fv)=q
fj)=p+n+j+1L,1<j<m

Subcase 2. When ¢ =k +n+m +1.
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f(x) = p,
flwj))=p+i,1<i<n
f¥) = q,

fj)=p+n+j,1<j<m
Subcase 3. When k+n+m+1=q+s,s >1.
f(x) = p,
flwj)=p+i,1<i<n
f(y) =aq,

p+n+j ifl1<j<m-s
flv;) =

ptn+j+1 if m-s+1<j<m
Case 2. p=Fk+n.
Subcase 1. When ¢ =k +n+m +1.
flx) =k+n=p,
flwj)=k+i-1,1<i<n
f)=qg=k+n+m+1,
fj)=k+n+j,1<j<m,
Subcase 2. When k+n+m+1=q+s,s >1.
f(x)=k+n=p,
flw;j)=k+i-1,1<i<n
f)=qg=k+n+m+1-s,

kR+n+j fl1<j<m-s

flvj) =

kR+n+j+1 if m-s+1<j<m
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Case3. k+n=p+r,r>1

Subcase 1. When ¢ = k+n + 1.
fx)=p=k+n-r,

kR+i—-1 ifl1<i<n-r
flw) =

k+1 ifn-r+1<i<n
f)=a=k+n+l,
fOj))=k+n+j+1,1<j<m
Subcase 2. When ¢ = k+n+m +1.
fx)=p=k+n-r,

kR+i—-1 ifl<i<n-r
flw;) =

k+1 ifn-r+1<i<n
f)=qg=k+n+m+1,
fj)=k+n+j1<j<m.
Subcase 3. When k+n+m+1=qg+s,s>1.
fx)=p=k+n-r,

k+i-1 ifl1<i<n-r
f(w;) =

k+1 ifn-r+1<i<n
fO)=g=k+n+m+1-s,

k+n+j if1<j<m-s
flv;) =

kR+n+j+1 if m-s+1<j<m

From the labeling pattern defined in all the above cases, it is easy to

observe that the greatest common divisor for every adjacent vertices are 1.

Therefore K , U K p, is k-prime for & > 1.

Observation: For case 2,g=k+n+1 1s not possible because

p=k+n and g =k +n+1 are consecutive integers. The two consecutive
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integers which are prime are 2 and 3 only which is a contradiction since
n>1.

Remark 3.1.1. For larger values of £ and for smaller n, m, there may
occur only one prime number from & to &+ |V | —1. In such cases, the graph

does not satisfy k-prime labeling. o

Theorem 3.1.3. Let G be k-prime graph. Then there exists a class
G UK ,, of graphs that is k-prime for k, n > 1.

Proof. Let G(p, q) be a k-prime graph. Consider the star graph K,
with vertex set {u, u; : 1 <i < n} and edge set {uw; : 1 <i < n}. The union of
G and K;, is G =GUK;, with vertex and edge set as
Vi(G)=V(G)U{w, u; :1<i<n} and E|(G))=EG)U{uy; :1<i<n}
respectively. From the above definition, it is clear that the graph G; has
p+n+1 vertices and g +n edges. Let [ be the largest prime number from
k+p<l<k+p+n Define an injective function g:Vi(G))—

kyk+1L, k+2, ..., k+p-1,k+p, k+p+1,..., k+ p+n} as follows:
£(0;) = f0]) oy € V
Case 1. When £+ p =L
gw)=k+p=1
8W;) = flvj), Vvj e V
gu;))=k+p+i,1<j<n
Case 2. When I =k+p+n.
gw)=k+p+n=1
g(j) = f(vj), Vvj e V
gw)=k+p+i-1,1<i<n.

Case 3. When k+p+n=101+s,s>1.
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guw)y=l=k+p+n-r,k+p<Il<k+p+n
8W;) = flvj), Vvj e V

k+p+i-1 ifl<i<n-s
k+p+i+l ifn-s+1<i<n.

8(w;) ={

Now we have to prove that G; is k-prime. Given that G is k-prime, it is
enough to prove that for any edge ww; € E;, which is not in
G, ged (g(w), (1)) = 1.

The above labeling function induces a edge function g* : E(G;) - N
satisfying the condition of k-prime labeling as g"(uy;) = ged (g(u),
gw)=ged l,k+p+i-1)=1,Vuy; e Ef(1<i<n-s) and g (y))
=ged (g(w), g(v;)) =ged ([, k+ p+i+1)=1, Vuy; € Ey(n—s+1<i<n)

since [ is the largest prime integer.

Hence there exist a class G U K; ,, of graphs that admit k-prime labeling.
Therefore G U K ,, is k-prime for & > 1. o

3.2. Superimposing of Graphs

Lemma 3.2.1. K ,, 0 P, is k-prime for k 21 and n, m > 1.

Proof. Let K, : {u, vy, g, ..., U,} be a star of order n+1 with u as
central vertex and P, : {y;, ¥9, ..., ¥} be a path of order m respectively.
Let G(V,E)=K;, 6 P, be the graph obtained by superimposing the
central vertex u of K; , with pendant vertex y; of P,. See Figure 2. Let the

vertex and edge set of K; ,, 0 P, be defined as
VG)=1u, v :1<i<ntUly; :2<j<mj

E(G) = {wvi} Uy} Ulyjyjn c2<j<m-1}
From the above definition, it is clear that K; , 0 P, has n + m vertices

and n+ m —1 edges.

Advances and Applications in Mathematical Sciences, Volume 21, Issue 1, November 2021



292 G. VIJAYALAKSHMI and S. TERESA AROCKIAMARY

Let p be the largest prime such that & < p < & + n. Define an injective
function f: V > {k, k+1, k+2, ..., k+n+m—1} as follows:
Case 1. When kis p

fw) = p,

f;))=p+i,1<i<n

A
E

fyj)=p+n+j-1,2<j<
Case 2. When E+n isp
fw) = p,
fj))=k+i-1,1<i<n
fj)=k+n+j-1,2<j<m.
Case 3. When k+nis p+s,s>1
fw=p, k<p<k+n
fo;))=k+i-1,1<i<n-s
f;))=k+i,n—-s+1<i<n

fyj)=k+n+j-1,2<j<m

From the labeling pattern defined, it is easy to observe that the greatest
common divisor for every adjacent vertices are 1.

Therefore K; , 0 P, is k-prime for k& > 1. m

i':’{ = s —
- /‘ b2 Y3 Y4 Ym—1 UYm

Un
Figure 2. K; ,, 0 P,.

Theorem 3.2.1. Let G be k-prime graph. Then there exists a class G 6 P,
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of graphs that is k-prime for k > 1.

Proof. Let G(p, q) be a k-prime graph. Consider the path graph P, with
vertex set {y;:1<i<n} and edge set {y;y;:1<i<n-1}. Let
G; = G 6 P, be the graph obtained by superimposing one of the pendent
vertex of the path P, say y; on selected vertex v € V of G. See Figure 3. Let
the vertex and edge set of G; be defined as V;(G;) = V(G)U {y; : 2<i < n}
and E;(G;) = E(G)U{y;y;11 : 1 <i < n-1}. From the above definition, it is
clear that the graph G; has p + n —1 vertices and g + n — 1 edges. Define an
injective function g:V; > {k, k+1L, k+2, ..., k+p-1L k+p k+1,...,k

+p +n -2} as follows:
g(vl) = f(Ul), Vl)j eV
gly))=k+p+i-2,2<i<n

Now we have to prove that G; is k-prime. Given that G is k-prime, it is

enough to prove that for any edge y;y;,; € E;, which is not in
G, ged (8(y;), 8(y41)) = 1.

The above labeling function induces a edge function g* : E(G;) > N
satisfying the condition of k-prime labeling as
g (viyin)=ged (8(y;). (i) =ged (k+ p+i—2,k+ p+i=1)=1,Vy;y;y € By
since k+p+i—2 and k + p +1i —1 are consecutive integers.

Hence there exist a class G 6 P, of graphs that admit k-prime labeling.

Therefore G 0 P, is k-prime for all k. o

Figure 3. G 0 P,.
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Lemma 3.2.2. C, 6 Ky ,, is k-prime for k >1 and n, m > 2.

Proof. Let C, : {a;, as, ..., a@,} be the cycle graph of order n and
Ki i {0, by, by, ..., by} be a star graph of order m +1 respectively. Let
G(V, E) = C, 0 K ,, be the graph obtained by superimposing the vertex a,
of C,, with central vertex v of Kj ,. Let the vertices and edges of C,0K; ,,
be defined as V(G)=1a; :1<i<nfU{p;:1<j<m} and
EG) = {a;a; : 1 <i<n-1}U{oa,}U{a,b;}. From the above definition,
it is clear that the graph has n + m vertices and n + m edges. Let p be the
largest prime number such that k+n—-1< p < k+n+m—1 respectively.
Define an injective function f:V —{k, k+1, k+2, ..., k+n+m-1} as

follows:

Case 1. When kis p

flay) =k
fla;)=k+i,1<i<n-1
fOj)=k+n+j-1,1<j<m
Case 2. When k+n—-11sp
flay)=k+n-1=p
flaj))=k+i-1,1<i<n-1
fOj))=k+n+j-1,1<j<m.
Case 3. When k+n+m-—-11isp
fla,)=k+n+m-1=p
fla;)=k+i-1,1<i<n-1
fO;))=k+n+j-21<j<m
Case4.When k+n+m—-11s p+s,s>1
fla,)=p=k+n+m-1,

fla;)=k+i-1,1<i<n-1
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k+n+j-2 if1<j<m-s
f(b;) =

kR+n+j-1 ifm-s+1<j<m

From the labeling pattern defined, it is easy to observe that the greatest
common divisor for every adjacent vertices are 1.

Therefore C, 0 K ,, is k-prime for & > 1. o

Theorem 3.2.2. Let G be k-prime graph. Then there exists a class
G o K; ,, of graphs that is k-prime for k > 1.

Proof. Let G(p, q) be a k-prime. Let u € V be the vertex in G. Consider
the star graph K, with vertex set {v,x; :1<i<n} and edge set
{vx; :1<i<nj. Let Gy = G 0 Ky ,, be the graph obtained by superimposing
one of the vertex v of the star K , graph on selected vertex u € V of G. See
Figure 4. Let the vertex set and edge set of G; = G 60 K; ,, be defined as
Vi(G)) =V(G)U{x; : 1 <i <n} and E|(G;) = E(G)U {vx; : 1 <i < n}. From
the above definition, it is clear that the graph G; has p+ n vertices and
g +n edges respectively. Define an injective function g:V} —

Ry k+1L, k+2, ..., k+p-1L, k+p, k+p+1,..., k+ p+n-—1} as follows:
8W;) = flvj)vv; e V
f(u) = g(v) be the largest prime say .
Case 1. When [ = k.
g) =1
8;) = f(v;) Vv; € V(G)
glx;))=1l+p+i,1<i<n
Case2.When [ =k+p—1.

gv)=k+p-1=1
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8(;) = f(v;) Vv; € V(G)
glx;))=k+p+i,1<i<n

Case 3. When /[ =k +p+n-1.
g)=k+p+n-1=1

8(v;) = fvj) Yv; € V(G)
glx;))=k+p+i-1,1<i<n
Case 4. When k+ p+n—-1=1+s,s > 1.
gw)=Lk+p-1<i<k+p+n-1
gW;) = f(v;) Vv; € V(G)
gx;)=k+p+i-1,1<i<n-s
gx;)=k+p+i,n—-s+1<i<n.

Now we have to prove that G; is k-prime. Given that G is k-prime, it is

enough to prove that for any edge uwvx; € E; which is not in
G, ged (8(v), g(x;)) = 1.

The above labeling function induces the edge function g* : E(G;) > N
satisfying the condition of k-prime labeling as g*(vx;) = ged (g(v), g(x;))

=ged(l, k+p+i)=1Vox; e i1 <i<n-s) and g'(vx;) = ged (g(v),
g(x;)=ged(l,k+i-1)=1, Vux; e Ej(n—s+1<i<n) since [ is the
largest prime integer.

Hence there exist a class G 0 K, , of graphs that admit k-prime labeling.

Therefore G 0 Kj ,, is k-prime for all k. o
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Figure 4. G 0 Ky ,,.

Theorem 3.2.3. Let G be k-prime graph. Then there exists a class
G o Iy, of graphs that is k-prime for k+| V) | -1 as a largest prime and

k>1.

Proof. Let G(p, q) be a k-prime. Let u € V be the vertex in G whose
label is f(u)=1=k+ p+n—1 where [ is the largest prime number such
that K>l <k+ p+n-1. Consider the fan graph F , with vertex set
{xox; : 1 <i<n} and edge set {xpx; :1<i<ntU{xjx;;; :1<i<n-1}
Let Gy =G o F, ,, be the graph obtained by superimposing the vertex x; of
the fan Fj , graph on vertex u € V of G. Let the vertex set and edge set of
Gy =G o Fy,, be defined as Vi(Gy) = V(G)U lx; : 1 <i<n} and E(Gy)
=EG)U{xpx; :1<i<njU{xx;,; :1<i<n-1. From the above
definition, it is clear that the graph G; has p+n vertices and g +2n -1
edges. Define an injective function g:V, > {k k+1, k+2, ..., k+p—2,
k+p-1Lk+p k+p+1,....,k+p+n—-2k+ p+n-—1} as follows:

fw)=glxg)=1l=k+p+n-1.
gWj) = f(vj) Vvj e V
g8wy)=glxg)=l=k+p+n-1
glx;))=k+p+i—-2,1<i<n

Now we have to prove that G; is k-prime. Given that G is k-prime, it is
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enough to prove that for any edge xgx; € E;, which is not in

G, ged (ged (xp), g(x;)) = 1.

The above labeling function induces the edge function g* : E(G;) > N
satisfying the condition of k-prime labeling as g*(xpx;) = ged (g(xg),
gx;))=ged(Lk+p+i—-2)=1,Vxpx; e Ef1<i<n) and g (x;x;,1)
=ged (g(x;), g(xj11))=ged (k+p+i—2,k+p+i—1)=1,Vx;x; 1 €e E;(1<i<n)

since R+ p+i—2 and k+ p+i—1 are consecutive integers.

Hence there exist a class G 0 F, ,, of graphs that admit k-prime labeling.

Therefore G 6 Iy, is k-prime for all &. o

4. Conclusion

To study analogous results for different families of graphs on graph
operations that admits k-prime labeling is an open area of research.
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