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Abstract 

In the present study, we propose the Laplace decomposition method for the analytical 

solution of second-order one-dimensional linear hyperbolic telegraph equation which was 

formulated by using Ohm’s law. Four examples have been illustrated to check the efficiency, 

accuracy and convergence of this method. The obtained results ensure that LDM is an easy, 

accurate and reliable mathematical technique for solving a wide class of partial differential 

equations in various fields.  

1. Introduction 

Linear and nonlinear partial differential equations have a wide range of 

applications in the field of science and engineering such as fluid dynamics, 

condense matter, plasma physics, quantum field theory, particle physics, 

chemical kinematics, biology, solid-state physics, aerospace, cosmic-ray 

transport and so on. Therefore, solutions of these differential equations are 

essential for perceives different physical phenomena. Hyperbolic partial 

differential equations are used for modeling many important phenomena’s 
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such as the vibrations of structures (e.g. machines, buildings, and beams) also 

the basis for fundamental equations of atomic physics and frequently used in 

signal analysis for transmission and propagation of electrical signals in a 

cable transmission line as well as in wave phenomena [1].  

Telegraph equation is a hyperbolic partial differential equation that is 

mostly used in modeling radio frequencies, random walk theory, 

electromagnetic waves, voltage and current on transmission lines, oceanic 

diffusion etc. It has features of both diffusion and wave motion. Telegraph 

equation is used for modeling mixture between diffusion and wave 

propagation by establishing a term that accounts for effect of finite velocity 

on standard heat or mass transport equation [2]. Telegraph equation is more 

appropriate than ordinary diffusion equation in modeling reaction diffusion 

for such branches of sciences and also a better model for describing certain 

fluid flow problem involving suspensions as compare to heat equation [3]. 

Telegraph equation is come across in the study of pulsating blood flow in 

arteries and in one-dimensional random motion of bugs along a hedge [4]. It 

also appears in propagation of acoustic waves in Darcy-type porous media [5]. 

For the transport of energetic charged particles in turbulent magnetic fields 

such as low-energy cosmic rays in the solar wind, the telegraph equation is 

the better alternative to diffusion equation [6]. In recent years many 

researchers paid attention to the analysis and implementation of stable 

methods for analytic and numerical solution of telegraph equation. Akbar 

Mohebbi and Mehdi Dehghan apply a compact finite difference 

approximation of fourth-order for discretizing spatial derivative of telegraph 

equation and collocation method for time component [7]. R. K. Mohanty, Jain 

and Arora have developed an unconditionally stable alternating direction 

implicit method for the linear hyperbolic equation in two and three space 

dimensions. [8, 9]. S. Yousefi applied Legendre multiwavelet galerkin method 

for solving the telegraph equation [10]. Radu Cascaval and coworkers’ study 

fractional telegraph equation for better understanding of anomalous diffusion 

process observed in blood flow experiments [11]. For the study of telegraph 

equation, interpolating scaling functions used by M. Lakestani and B. Saray 

[12], M. Datar and K. Takale used variational iteration method [13], NHPM 

is adopted by J. Biazar and M. Eslami, [14], dual reciprocity boundary 

integral equation method was applied by M. Dehghan and A. Ghesmati [15] 
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and so on. In this paper, we employed the Laplace decomposition method [16, 

17].  

The outline of this paper is as follows, Introduction is given in session 1, 

in session 2 LDM is explained, applications are given in session 3 and 

conclusion is drawn in session 4.  

2. Laplace Decomposition Method [16] 

Consider general linear partial differential equation   

      nitxgtxtxu ,,2,1,,,,    (1) 

with initial conditions  

   tftu 1,0   and    .,0 2 tftux   

Where  ,
2

2

x


  is remaining linear operator and  txg ,  is source term. 

Taking Laplace transform of (1) w. r. t.  

           txutxgtutsutsus xxx ,,,0,0,2  LL  

 
   

     .,
1

,
1

,
222

21 txu
s

txg
ss

tf

s

tf
tsu xx LL   

Taking inverse Laplace transform  

            .,
1

,
1

,
2

1

2

1
21


















  txu
s

txg
s

txftftxu xxxx LLLL  (2) 

Consider solution of the equation (1) is in series form  

   .,,

0








i

n txutxu  (3) 

From equation (2) to (3)  

            .,
1

,
1

,

0
2

1

0
2

1
21
























 











i

nxx

j

xxn txu
s

txg
s

txftftxu LLLL  (4) 

Where  



S. S. HANDIBAG and R. M. WAYAL  

Advances and Applications in Mathematical Sciences, Volume 21, Issue 3, January 2022 

1560 

         ,,
1

,
2

1
210









  txg
s

txftftxu xx LL  

    ,3,2,1,0,,
1

,

0
2

1
1 




























 






 ntxu

s
txu

i

nxxn LL  (4) 

Based on the LDM solution of equation (1) is  

   ,,lim, txtxu n
n




 (5) 

where    .,,
0 


n

k
kn txutx  

3. Applications 

Example 1. Consider non homogeneous hyperbolic telegraph equation 

[18]  

    ,222 222 tt
xxttt etexxttuuuu    (6) 

with initial conditions  

  0,0 tu  and   .,0 2 t
x ettu   

By rearranging the terms of equation (6) we get,  

    .222 2122 uuuetettxxu ttt
t

xx    (7) 

Taking Laplace transform of equation (6) w. r. t. x 

     tutsutsus x ,0,0,2   

   ,
1

222
12 22

23
uuuL

s
tette

ss
tttx

tt 







   

     .
111

222
12

,
22

2

3

221

45
uuuL

ss
et

s
tette

ss
tsu tttx

tt 







   

Taking inverse Laplace transform with respect to x  
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    xtextette
xx

txu ttt 2222
34

22
!3!4

2,  












  

 ,
1
2

1








  uuuL

s
L tttxx  (8) 

LDM algorithm gives following recurrence relation:  

    ,
!2

222
!3!4

2,
2

22
34

0 


























  x

xtette
xx

txu tt   

    ,2,1,0,
1

,
1 1 12

1
1 








   














 nuuuL

s
Ltxu

i i i
nnnxxn ttt

 (9) 

By using above relation, few components of the series are: 

   













 
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











1

0

1

0

1
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1
1

1
,

iii

xx uuuL
s

Ltxu
ttt

 

    ,22
!2

246
!3!4

2
1 2
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2
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

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



























  tte

x
xtte

xx
L

s
L tt

xx  

     ,22
!4

2
!3

46
!5!6

2, 2
43

2
56

1 tte
xx

tte
xx

txu tt 


























   

 



























 















1

1

1

1

1
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1
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1
,

iii
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     2
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2
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2 46
!6

2
!5
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!7!8

2, tte
xx

tte
xx

txu tt 


























   

     2
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2
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2
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xx
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xx

txu tt 
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






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     2
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2
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2
!9

1030
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xx
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xx

txu tt 
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   
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     ,1030
!12

2
!11

1242
!13!14

2, 2
1211

2
1314

5 tte
xx

tte
xx

txu tt 


























    

and so on. In the same manner we can compute the remaining components of 

the series. In this case noise terms are obtained, therefore terms with 

opposite signs get cancelled. Hence solution of equation (6) is   

   43210, uuuuutxu  

   22, xxtetxu t    (10) 

which is exact solution of equation (6)  

 

Figure 1. (a) 3D visualization (b) contour plot of exact solution of equation (6) 

for 10  x  and .10  t   

Example 2. Consider non homogeneous telegraph equation [19]  

,sin248 xeuuuu t
xxttt

  (11) 

With initial conditions  

  0,0 tu  and   .,0 t
x etu   

Proceeding as before, few components of the series (3) are  

   ,sin23,0 xxetxu t    

  












  xx

x
etxu t sin22

!3
33,

3

1  



ANALYTICAL SOLUTIONS OF HYPERBOLIC TELEGRAPH … 

Advances and Applications in Mathematical Sciences, Volume 21, Issue 3, January 2022 

1563 

  












  xx

xx
etxu t sin22

!3
2

!5
39,

35

2  

  












  xx

xxx
etxu t sin22

!3
2

!5
2

!7
327,

357

3  

  












  xx

xxxx
etxu t sin22

!3
2

!5
2

!7
2

!9
381,

3579

4  

  












  xx

xxxxx
etxu t sin22

!3
2

!5
2

!7
2

!9
2

!11
3243,

357911

5  

and so on. Let n-term approximate solution for 10,5n  is 

  ,sin728
!11!9!7!5!3

729,
119753

5 





















  x

xxxxx
xetx t  

  .sin59048
!21!11!9!7!5!3

59049,
21119753

10 





















  x

xxxxxx
xetx t   

Then exact solution of equation (12) is  

    .sin,lim, xetxtxu t
n

n




  (12) 

 

Figure 2. (a) Periodic solution (b) contour plot of solution of equation (11) for 

2020  x  and .11  t  

Example 3. Consider homogeneous telegraph equation [13]  

uuuu tttxx  2  (13) 
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With initial conditions  

  tetu ,0  and   1,0 tux  

By using LDM few components of the series are 

  xetxu t  ,0  

 
!3

,
3

1
x

txu   

 
!5

,
5

2
x

txu   

 
!7

,
7

3
x

txu   

 
!9

,
9

4
x

txu   

By the same procedure rest of the components of the series are easily 

calculated and n-term approximate solution is:   

 
 

.
!12!9!7!5!3

,
129753







n

xxxxx
xetx

n
t

n   

Exact solution of Equation (13) is   

     .sinh,lim, xetxtxu t
n

n
 


 (14) 

 

Figure 3. 3D visualization (b) contour plot of solution of equation (13) for 

66  x  and .33  t  

Example 4. Consider non homogeneous telegraph equation with 
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different initial conditions [20]  

       ,sincossinsin22 xtxtuuuu xxttt   (15) 

with initial conditions 

  0,0 tu  and    .cos,0 ttux   

Proceeding as before, the first some components of the series are   

          xtxxttxu sincossinsin2,0   

          xxtxx
x

ttxu sinsin2sin
!3

cos4,
3

1 












  

         
























 xx

x
txx

xx
ttxu sin

!3
cos4sin

!3!5
sin8,

335

2  

         


























 xx

xx
txx

xxx
ttxu sin

!3!5
sin8sin

!3!5!7
cos16,

35357

3  

     










 xx

xxxx
ttxu sin

!3!5!7!9
sin32,

3579

4  

   










 xx

xxx
t sin

!3!5!7
cos16

357

 

     










 xx

xxxxx
ttxu sin

!3!5!7!9!11
cos64,

357911

5  

   










 xx

xxxx
t sin

!3!5!7!9
sin32

3579

 

and so on. In this case also noise terms occur, by cancelling the terms with 

opposite sign we get exact solution of equation (15) as follows: 

     .cossin, txtxu   (16) 
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Figure 4. (a) Periodic solution (b) contour plot of solution of equation (15) for  

.44,1515  tx   

4. Conclusion 

LDM has been successfully implemented to obtain the solutions of 

telegraph equation. Noise terms are occurring in examples 1 and 4, by 

cancelling the terms with the opposite signs, we get the exact solution and for 

the remaining examples, we get solutions in series form, which converge to 

the exact solution. 3D visualization and contour plots of solutions are shown 

in Figure 1-4. The obtained results guarantee that LDM is accurate, rapidly 

convergent, and easy to apply to linear as well as nonlinear partial and 

ordinary differential equations in the field of science and engineering.   
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