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Abstract 

Using the concept of q derivative operator and subordination principle we introduce and 

study new subclasses of analytic functions. We derive Fekete-Szegӧ inequalities for the 

functions belonging to the new subclasses. Some special cases of the established results are 

discussed.  

1. Introduction 

Let A represent the class of analytic functions  zf  of the form  

  






2k

k
kzazzf  (1) 

in the open unit disc  CzzU  :  and .1z  

The q calculus or quantum calculus is a generalization of the ordinary 

calculus without using the limit notation. The study of q calculus was 

initiated at the beginning of 19th century, it has many applications in the 

fields of special functions and many other areas. The q derivative operator is 

one of the tool used to explore many number of subclasses of analytic 
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functions, it plays significant role in the development of Geometric function 

theory. The application and usage of the q calculus was introduced by 

Jackson [10], [11]. Recently many researchers paid more attention to the area 

of q derivative operator and many new operators have been introduced and 

studied (refer [6], [7], [8], [9], [13], [16], [17], [20]).  

Some basic notations and definitions of q calculus which are used in this 

paper are provided below. The q derivative of the function  zf  is defined as  

 
   
 

 10,0,
1





 qz

zq

qzfzf
zfDq  (2) 

In view of equation (2) it is clear that if  zf  and  zg  are two functions, 

then  

        .zgDzfDzgzfD qqq   (3) 

Observe that as    ,,1 zfzfDq q    where  zf   is the ordinary 

derivative of the function  .zf  Further by (2) the q derivative of the function 

  ,kzzh   is as follows  

    1 k
qq zkzhD  (4) 

where  qk  is given as:  

   .10,
1

1





 q

q

q
k

k

q  (5) 

Note that as   ,,1 kkq q  
 therefore as    zhzhDq q  ,1  where 

 zh  denotes the ordinary derivative of the function  zh  with respect to z. 

The q derivative of the function  ,zf  given by equation (1) is defined as 

follows  

     




 

2

1 101

k

k
kqq qzakzfD  (6) 

where  qk  is given by (5).  
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For   Azf   and ,10  q  we define a new q derivative operator as 

follows.  

 
     






 













2

,,, 1

1

k

k
k

n
qn

ql za
l

kl
zzfD  (7) 

where  .0,0,, 0 NUNnl   Let  

      




 

2

,,, ,,,

k

k
kq

n
ql zaknlLzzfD  

where     
      n

q
q l

kl
knlL 














1

1
,,,  

It can be seen that as ,1q  by specializing the parameters the new q 

differential operator n
ql

D
,,, 

 reduces to various operators studied by Al-

oboudi [2], Catas [3], Cho and Srivastava [4], Latha and Shilpa [12], Maslina 

Darus and Rabha W Ibrahim [13], Salagean [14], Uralegaddi and Somanatha 

[18]. For example letting 0,,1   lq  we get Salagean operator and 

letting 0,1,1   lq  we get Al-oboudi operator.  

For the analytic functions  zf  and  zg  in U, we say that the function 

 zg  is subordinate to  zf  in U [15], and write    zfzg   if there exists a 

Schwarz function  ,z  which is analytic in with   00   and   1 z  

such that  

      ., Uzzfzg   (8) 

Let P denote the class of all functions  z  which are analytic U and 

univalent in and for which  z  is convex with   10   and    0 z  for 

all .Uz    

Now using the q derivative operator n
ql

D
,,, 

 and the concept of the 

subordination we introduce the new subclasses of analytic functions as 

follows.  
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Definition 1.1. A function  zf  belongs to the class  
n

qlR ,,,  if it 

satisfies the following subordination condition where and  

    zzfDn
ql  ,,,  (9) 

Where   Pz   and .10  q  

Definition 1.2. A function   Azf   belongs to the class  
n

qlN ,,,  if it 

satisfies the following subordination condition  

 
 

    zzfD
z

zf n
ql   ,,,1  (10) 

where   Pz   and .10,10  q   

Note that, for suitable choices of parameters the new classes  
n

qlR ,,,  

and  
n

qlN ,,,  reduces to the classes  qR  and  qN  studied in [1] 

respectively.  

2. Main Results 

The Fekete-Szegӧ problem [5] is to obtain the coefficient estimates for the 

second and third coefficients of functions belonging to class of analytic 

functions with a specific geometric properties. Now we find the Fekete-Szegӧ 

inequalities for functions belonging to the classes  
n

qlR ,,,  and 

 .,,, 
n

qlN   

The following lemma is necessary to prove our main results.  

Lemma 2.1 [19]. Let    





1
,1

k

k
k Uzzczp  be a function with 

positive real part in and  is a complex number, then  

 .12;1max22
12  cc  (11) 

The result is sharp for the functions given by  
z

z
zp






1

1
 and 
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  .
1

1
2

2

z

z
zp




   

Theorem 2.1. Let   .1 2
21 PzBzBz    If  zf  given by (1) 

belongs to the class  
n

qlR ,,,  then  

      










1

212
23 ,1max

33,,, B

B

nlL

B
aa

qq

 

      

         











2

1

22,,,

33,,,

qq

qq

nlL

BnlL
  (12) 

where  is a complex number, and .10  q  The result is sharp.  

Proof. If    ,,,,  
n

qlRzf  then in view of Definition (1.1) there is a 

Schwarz function  z  in U with   00   and   1 z  in U such that  

     .,,, zzfDn
ql   (13) 

We define the function  

 
 
 





 2

211
1

1
zpzp

z

z
zp  (14) 

Since  z  is a Schwarz function, we have    0 zp  and   .10 p  Let  

     
2

21,,, 1 zdzdzDzg n
ql  (15) 

Using equations (13), (14) and (15) we obtain  

 
 
  













1

1

zp

zp
zg  (16) 

Since  

 
  
















































3

21

3
1

3
2

2
1

21 422

1

1

1
zpp

p
pz

p
pzp

zp

zp
 (17) 

which yields  
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 
 










































 22

12

2
1

2111 4

1

22

1

2

1
1

1

1
zpB

p
pBzpB

zp

zp
 (18) 

Using equations (15) and (18) we obtain  

111 2

1
pBd   (19) 

.
4

1

22

1 2
12

2
1

212 pB
p

pBd 













  (20) 

A simple computation gives  

                 
2

32,,, 33,,,22,,,1 zanlLzanlLzfD qqqq
n

ql  

(21) 

Inequality (15), yields  

       21 22,,, anlLd qq  (22) 

       32 33,,, anlLd qq  (23) 

now comparing the coefficients of z and 2z  and simplifying we get  

      qqnlL

pB
a

22,,,2
11

2 
  (24) 

and  

             qqqq nlL

pBp
p

nlL

B
a

33,,,4233,,,2

2
12

2
1

2
1

3 


















  (25) 

hence 

      
 2

12
12

23 33,,,2
pp

nlL

B
aa

qq



  (26) 

where  

      

         


















2

1

1

2

22,,,

33,,,
1

2

1

qq

qq

nlL

BnlL

B

B
 (27) 
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Hence, by Lemma 2.1, the result follows.  

Note that, for suitable choices of parameters in Theorem 2.1 we get the 

following Corollary derived in [1].  

Corollary 2.1. Let   ,1 2
21 PzBzBz    with .01 B  If  zf  

given by (1) belongs to the class   qR  and  is a complex number, then  

 

 

  











 


2

1

1

212
23

2

3
,1max

3
q

q

q

B

B

BB
aa  (28) 

The result is sharp.  

Similarly, we can obtain upper bound for the Fekete-Szegӧ inequalities 

for functions belonging to the class  
n

qlglN ,,,  as follows.  

Theorem 2.2. Let   .1 2
21 PzBzBz    If  zf  given by (1) 

belongs to the class  
n

qlglN ,,,  then  

          






1

212
23 ,1max

33,,,1 B

B

nlL

B
aa

qq
 

         

          











2

1

22,,,1

33,,,1

qq

qq

nlL

nlLB
 (29) 

where  is a complex number, and .10  q  The result is sharp.  

Proof. If    ,,,,  
n

qlNzf  then in view of Definition (1.1) there is a 

Schwarz function  z  in U with   00   and   1 z  in U such that  

 
 

     .1 ,,, zzfD
z

zf n
ql    (30) 

We define the function  

 
 
 





 2

211
1

1
zpzp

z

z
zp  (31) 

Since  is a Schwarz function, we have    0 zp  and   .10 p  Let  



N. SHILPA  

Advances and Applications in Mathematical Sciences, Volume 21, Issue 4, February 2022 

2132 

   
 

    
2

21,,, 11 zdzdzfD
z

zf
zg n

ql  (32) 

using equations (30), (31) and (32) we obtain  

 
 
  













1

1

zp

zp
zg  (33) 

Since  

 
  
















































3

21

3
1

3
2

2
1

21 422

1

1

1
zpp

p
pz

p
pzp

zp

zp
 (34) 

which gives  

 
 










































 22

12

2
1

2111 4

1

22

1

2

1
1

1

1
zpB

p
pBzpB

zp

zp
 (35) 

using equations (32) and (35) we obtain  

111 2

1
pBd   (36) 

2
12

2
1

212 4

1

22

1
pB

p
pBd 














  (37) 

A computation gives  

 
 

     zfD
z

zf n
ql,,,1  

          zanlL qq 222,,,11   

           2
333,,,1 zanlL qq  (38) 

Inequality (32), yields  

          21 22,,,1 anlLd qq   (39) 

          32 33,,,1 anlLd qq   (40) 

or equivalently we get  



FEKETE-SZEGÖ INEQUALITIES FOR CERTAIN ANALYTIC … 

Advances and Applications in Mathematical Sciences, Volume 21, Issue 4, February 2022 

2133 

         


qqnlL

pB
a

22,,,12
11

2  (41) 

and  

          

















233,,,12

2
1

2
1

3
p

p
nlL

B
a

qq

 

         


qqnlL

pB

33,,,14

2
12  (42) 

hence  

         
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Hence, by applying Lemma 2.1, the result follows.  

Note that, for suitable choices of parameters in Theorem 2.2 we get the 

following Corollary derived in [1].  

Corollary 2.2. Let   ,1 2
21 PzBzBz    with .01 B  If  zf  

is given by (1) belongs to the class  qN  and  is a complex number, then  
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 The result is sharp.  
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