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Abstract 

In this paper we introduce double fuzzy -continuous, double fuzzy -bicontinuous, double 

fuzzy  -continuous functions and study some of their properties in double fuzzy topological 

spaces. 
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1. Introduction 

Intuitionistic fuzzy sets were first introduced by Atanassov [1] in 1993, 

then Coker [2] introduced the notion of Intuitionistic fuzzy topological space 

in 1997. In 2005, Garcia and Rodabaugh [4] proved that the term 

intuitionistic is unsuitable in mathematics and applications and they 

introduced the name double for the term intuitionistic. In the past two 

decades many researchers [8, 9, 15] doing more applications on double fuzzy 

topological spaces. From 2011, El-Maghrabi and Mubarki [6] introduced and 

studied some properties of  -open sets and maps in topological spaces.  

2. Preliminaries 

Throughout this paper, X will be a non-empty set, I is the closed unit 

interval       1010 ,,1,0,1,0,1,0 IIII   and always .1  A 

fuzzy set  is quasi-coincident with a fuzzy set v denoted by qv
 
iff there 

exists Xx   such that     1 xvx  and otherwise they are not quasi-

coincident which denoted by .vq  The family of all fuzzy sets on X (resp. Y 

and Z) is denoted by X
I  (resp. Y

I  and .
Z

I  By 0  and ,1  we denote the 

smallest and the largest fuzzy sets on X. For a fuzzy set    xIx
X

 1,  

denotes its complement. For ,, 0IXx   a fuzzy point x  is defined by 

  yx r  if yx   for all other   .0, yxy r  
All other notations are standard 

notations of fuzzy set theory. 

Definition 2.1 [12]. A double fuzzy topology  


 ,  on X is a pair of 

maps ,:, II
X




 which satisfies the following properties: 

1.    


1  for each .
X

I  

2.       2111 
 
and      2121 


 for each 

., 21
X

I  

3.    iiii    
and    iiii 






 for each 

.,  iI
X

i  
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The triplet  


 ,,X  is called a double fuzzy topological space (briefly, 

dfts). A fuzzy set is called an  -,  fuzzy open (briefly  -,  fo) set if 

    and   


,  is called an  -,  fuzzy closed (briefly  -,  fc) set 

iff 1  is an  -,  fo set. 

Definition 2.2 [5]. Let  


 ,,X  be a dfts. Then double fuzzy interior 

and double fuzzy closure operators are defined from 
XX

IIII  10  as 

follows:         ,,,|,,
,





 iIiI

X  

        ,1,1,|,,
,





 iIiC

X  

where ,0Ii   and 1I  such that .1i  

Definition 2.3 [11]. Let  


 ,,X  be a dfts. Then for each 

,, 10 IIi   a fuzzy set ,
X

I  is said to be 

1.  -,  fuzzy regular open (briefly   froi -,   set if 

   .,,,,
,,

 


iiCI  

2.  -,  fuzzy regular closed (briefly  -,  frc) set iff 1  is  -,  fro 

set. 

Definition 2.4 [10]. Let  


 ,,X  be a dfts. Then for each 

,, 10 IIi   and for fuzzy set ,
X

I  we define the operators 



,

C

 
and 

XX
IIIII  


10

,
:  as follows  

    


,|,,
,

X
IiI

 
is an   froi ,  

    


,|,,
,

X
IiC

 
is an    ., froi   

Definition 2.5 [3, 6, 10]. Let  


 ,,X  be a dfts. Then for each 

,, 10 IIi   a fuzzy set ,
X

I  is said to be  
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1.  -,  fuzzy open (briefly  -,  f  set if  .,,
,

 


iI  

2.  -,  fuzzy pre open (resp.  -,  fuzzy semi open) (briefly   fpoi -,   

(resp.   fsoi -,   set if     


,,,,
,,

iiCI  (resp. 

    


,,,,
,,

iiIC  

3.  -,  fuzzy  pre open (resp.  -,  fuzzy  semi open,  -,  fuzzy        

b open,  -,  fuzzy Z open [14] and  -,  fuzzy e open) (briefly       

  pofi  -,  (resp.       fZoifboisofi -,,-,,-,   and   feoi -,   set if 

    


,,,,
,,

iiCI  (resp.    ,,,,,
,,

 


iiIC

          ,,,,,,,,,,,,
,,,,,,

 


iICiiCIiiIC

 

     


,,,,,
,,

iiCIi  and     



,,,

,,,, IiiIC

   .,,,,
,

 


iiC  

4.  -,  fuzzy  pre closed (resp.  -,  fuzzy pre closed,  -,  fuzzy semi 

closed,  -,  fuzzy  semi closed,  -,  fuzzy b closed,  -,  fuzzy Z closed 

and  -,  fuzzy e closed) (briefly   pci  -,  (resp. 

          Zcfifbciscfkifscifpci -,,-,,-,,-,,-,   and   feci -,   set if 1  

is an   pofi  -,  (resp.         fZoifboifsoifpoi -,,-,,-,,-,   and   .-, feoi   

Definition 2.6 [10, 14]. Let  


 ,,X  be a dfts. Then for each

10 , IIi   and for fuzzy set ,
X

I  we define the operators 



,

PC

(resp. 
 ,

CZ

 
and 

 ,
Ce

 
and 




,
PI

 
(resp. 

 ,
ZI

 
and 


XX

IIIIeI 


1
,

0:  as follows: 



,

PI

 
(resp. 

 ,
ZI

 
and 

    


,|,,
,

X
IiIe

 
is an   pofi  -,  (resp.   fZoi -, 

 
and 

   



,

,-, PCfeoi (resp. 
 ,

ZC

 
and     


,|,,

,

X
IieC

 

is an   pcδfi -,   (resp.   fZci -, 
 
and    .-, feci   
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Definition 2.7 [14]. Let  


 ,,X  be a 0,, IiIdfts
X

  and 

 ,1I  is called an  -, i fuzzy -QZ  neighborhood of  XPx tt   if there 

exists an   fZoi -,   set 
X

I  such that qx t  and .  The family of all 

 -, i fuzzy -QZ  neighborhood of tx  is denoted by  .,,- ixQZ t  

Proposition 2.1 [14]. Let  


 ,,X  be a ,,,
X

Idfts   then 

1.     0,,0,0,,0
,,

 


iZCiZI

 
and     .1,,1,1,,1

,,
 


iZCiZI

 

2.     


,,1,,1
,,

iZCiZI

 
and    .,,1,,1

,,
 


iZIiZC  3. 

If   then     


,,,,
,,

iZIiZI  and 

   .,,,,
,,

 


iZCiZC  4. 

     .,,,,,,
,,,

 


iZCiZCiZC  5.   


,,
,

iZI

   .,,,,
,,

 


iZIiZI  6.      .,,,,,,
,,,

 


iZCiZCiZC  

7.      .,,,,,,
,,,

 


iZIiZIiI  

The operators   


,,
,

iI  and   


,,
,

isI  satisfy the above 

properties. 

Proposition 2.2 [14]. Let  


 ,,X  be a ,,,
X

Idfts   then 

1.      .,,,,,,
,,,

 


iCiCiZC  

2.       .,,,,,,
,,,

 


iIZiIiI  

Theorem 2.1 [14]. Let  


 ,,X  be a dfts, for each ,,
X

I  then the 

operator   



,

-, CZi

 
satisfies the following statements 

1.      .,,,,,,
,,,

 


iCZiiZCZC  

2. If  is   fZci -,   set then   .,,
,




iZC  

3. If  is   fZoi -,   set then q
 
iff  .,,

,
 


iqZC  
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Theorem 2.2 [14]. Let  


 ,,X
 
be a dfts, for each ,,

X
I  then the 

operator   



,

-, ZIi

 
satisfies the following statements 

1.      .,,,,,,
,,,

 


iIZiiZIZI  

2. If  is   fZoi -,   set then   .,,
,




iZI  

3. If   then    .,,,,
,,

 


iIZiZI  

4.     


,,1,,1
,,

iZCkiZI

 
and   


1,,1

,
iZC

  .,,
,




iCZ  

Definition 2.8 [13]. A function f from a  


 ,,Xdfts  to a  


 ,,Ydfts  

is called as double fuzzy continuous (resp. double fuzzy  pre continuous, 

double fuzzy  semi continuous, double fuzzy semi continuous [7], double 

fuzzy Z continuous and double fuzzy e continuous) (briefly ,DFCts  (resp. 

DFMCtsDFsCtssCtsDFpCtsDF ,,,   and DFeCts  function if  
1

f  is an 

  fci -,   (resp.         Zcfiscfiscfipcfi -,,-,,-,,-,   and   ecfi -,   set 

in X
I  for every   cfi -,   set 

Y
I  for all 0Ii   and .1I  

Definition 2.9 [13]. A fuzzy set  in a  


 ,,Xdfts  is called an  -, i

fuzzy dense (resp.  -, i fuzzy nowhere dense) if there exists no   foi -,   

(resp. non-zero   foi -,   set  in  


 ,,X  such that 1  (resp. 

 .,,
,

 


iC  

Lemma 2.1 [13]. For a  


 ,,Xdfts  every  -, i fuzzy dense set is

  .-, pofi   

3. A Double Fuzzy   Continuous Functions 

In this section we introduce the class of double fuzzy  continuous and 

double fuzzy   continuous functions and discuss about their properties.  
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Definition 3.1. A function f from a  


 ,,Xdfts  to a  


 ,,Ydfts  is 

called as double fuzzy Z continuous (resp. double fuzzy  continuous, double 

fuzzy pre continuous and double fuzzy b continuous) (briefly, ,DFZCts  (resp. 

DFpCtsCtsDF ,  and DFbCts  function if  
1

f  is an   cZfi -,   (resp. 

    cfpkicfki -,,-,   and   cfbki -,  set in X
I  for every   cfki -,  set 

Y
I  for 

all 0Ii   and .1I  

Theorem 3.1. Let    


 ,,,: XXf  be a mapping. 1. Every 

CtsDF   function is DFCts  (resp. tsCpDF 
 
and sCtsDF 

 
function. 2. Every 

DFCts  function is DFsCts  (resp. DFpCts
 

function. 3. Every pCtsDF   

function is tsDFeC  function. 4. Every sCtsDF   function is DFeCts  (resp. 

DFZCts
 
function. 5. Every DFpCts  function is DFZCts function. 6. Every 

DFsCts  function is DFbCts  function. 7. Every DFZCts  function is DFeCts

(resp. DFbCts
 
function. 

Proof. We prove only (i), the others are similar. Let  be a   foi -,   in 

.
Y

I  

By definition of  
1

CtsfDF  is   ofi  -,  in .
X

I  By Theorem 3.4 in 

[14],  
1

f  is   foi -,   in .
X

I  Which implies f is .DFCts  

Remark 3.1. The converse of the above theorem, in general, need not be 

true. It can be verified from the following examples. 

Example 3.1. Let  cbaYX ,,  and let the fuzzy sets 

654321 ,,,,,   and 7  are defined as     ,4.0,3.0 11  ba

            ,2.0,2.0;5.0,9.0,6.0,5.0 332221  bacbac
 

            ,5.0,5.0;5.0,4.0,4.0,2.0 554443  bacbac
 

        4.0,4.0,2.0,5.0 6665  cbac
 

and     ,0.0,3.0 77  ba

  .4.07  c  

Consider the double fuzzy topologies      ,,,,,,,,, 2211


 YYX

     


 554433 ,,,,,,,, YYY
 
and  


 66 ,,Y  with 
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 

 

   

 

 






























,o.w.,1

,if,
2

1

1,0if0

o.w.,0

,if,
2

1

1,0if1

2121  

 

 

 

 






























,o.w.,1

if,
2

1

1,0if0

o.w.,0

if,
2

1

1,0if1

2121
 

 

 

 

 






























,o.w.,1

if,
2

1

1,0if0

o.w.,0

if,
2

1

1,0if1

3232
 

 

 

 

 






























,o.w.,1

if,
2

1

1,0if0

o.w.,0

if,
2

1

1,0if1

4343
 

 

 

 

 






























,o.w.,1

if,
2

1

1,0if0

o.w.,0

if,
2

1

1,0if1

5454
 

 

 

 

 






























,o.w.,1

if,
2

1

1,0if0

o.w.,0

if,
2

1

1,0if1

6565
 

 

 

 

 






























,o.w.,1

if,
2

1

1,0if0

o.w.,0

if,
2

1

1,0if1

7676
 

Then the identity function (i)    


 11 ,,,: XXf  is a (i) DFCts  

(resp. pCtsDF   function but not a ,CtsDF   (ii) DFZCts  but not a .sCtsDF   

Since the inverse image of the fuzzy set 2  is an poffo 















-

2

1
,

2

1
,-

2

1
,

2

1
 

and fZo-
2

1
,

2

1








 set but not an of








-

2

1
,

2

1
 and ,-

2

1
,

2

1
of








 (ii) 

   


 22 ,,,: XXf  is a DFpCts  function but not a ,DFCts  since the 
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inverse image of the fuzzy set 3  is an  fpo-
2

1
,

2

1








 set but not an go-

2

1
,

2

1








 

(iii)    


 33 ,,,: XXf  is a DFsCts  (resp. sCtsDF   function but 

not a ,DFCts  since the inverse image of the fuzzy set 4
 
is an fso-

2

1
,

2

1








 

(resp. of







-

2

1
,

2

1
 set but not an fo-

2

1
,

2

1









 
(iv)    


 44 ,,,: YXf  

is a DFZCts  function but not a ,DFpCts  since the inverse image of the fuzzy 

set 5 is an fZo-
2

1
,

2

1








 set but not an fpo-

2

1
,

2

1








 (v) 

   


 55 ,,,: YXf  is a DFbCts  function but not a ,DFsCts  since the 

inverse image of the fuzzy set 6  is an fbo-
2

1
,

2

1








 set but not an fso-

2

1
,

2

1








 

and (vi)    


 66 ,,,: XXf  is a DFeCts  function but not a ,DFZCts  

since the inverse image of the fuzzy set 7  is an feo-
2

1
,

2

1









 
set but not an 

fZo-
2

1
,

2

1








 set in  .,,


X  

Example 3.2. Let  cbaYX ,,  and let the fuzzy sets 98 ,   and

10  are defined as         ,3.0,5.0,6.0,7.0 9888  acba

    3.0,3.0 99  cb  and       .5.0,4.0,3.0 101010  cba  Consider 

the double fuzzy topologies  


 ,,X  and  


 ,Y  with 

 

 

   

 

 






























o.w.,1

,if,
2

1

1,0if0

o.w.,0

,if,
2

1

1,0if1

9898
 

 

 

 

 






























o.w.,1

if,
2

1

1,0if0

o.w.,0

if,
2

1

1,0if1

1010
 

Then the identity function    


 ,,,: YXf  is a DFvCts  

function but not a ,DFZCts  since the inverse image of the fuzzy set 10  is an 
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fbo-
2

1
,

2

1








 set but not an .-

2

1
,

2

1
fZo








 

From the above theorem and examples, the following implications are 

hold. 

 

Note: BA   denotes A implies B, but not conversely. 

Definition 3.2. A mapping    


 ,,,,: YXf  is called DFZCts  

at a fuzzy point rx  if the inverse image of each   Qi -, 
 
neighbourhood of 

 rxf  is an   ZQi -, 
 
neighbourhood of .

X
r Ix   

Theorem 3.2. A mapping    


 ,,,,: XXf  is DFZCts  iff it is

DFZCts  at every fuzzy point .
X

r Ix   

Theorem 3.3. Let  


 ,,X  and  


 ,,Y  be dfts’s and 

   


 ,,,,: YXf  be a mapping. Then the following statements are 

equivalent: 

1. f is DFZCts  function. 2.  
1

f
 
is an   fZoi -,   set in  


 ,,X  for 

each   foi -,   set  in  


 ,,Y  3.  
1

f
 
is an   fZci -,   set in  


 ,,X  for 

each   fci -,   set  in  .,,


Y  4.       ,,,,,
,,

 


ifCiZCf

.
X

I  5.        .,,,,,
,

11

,

Y
IiCfifZC  






 
6.  




,,
CI

              .,,,,,,,,,,,
,

11

,,

1 Y
IiCfiifICiif  









7.       ,,,,,
1

,,

1







 ifZIkiIf  for each .

Y
I  8.
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              









 ,,,,,,,,,,

1

,,

1

,,,

1
iifCIiifICiIf

 

for each .
Y

I  

Proof. (i)  (iii), (ii)  (i), (ii)  (viii), (iii)  (i), (v)  (vii) and (viii)  

(ii) are direct to prove, other results are provided here. 

(i)  (ii). Let  be an   foi -,   set in   fY ,,,


  is a ZCtsDF  function, 

then we have  


1
1

f  is an   fZci -,   set of  .,,


X  But 

   .11
11




ff  Therefore  
1

f  is an   fZoi -,   set of  .,,


X  

(iii)  (iv). Let ,
X

I  since           .,,,,,
,,

 





ifIiifI  

Then by (iii),     



,,

,

1
ifCf  is an   fZci -,   set of  .,,


X  Since 

       ,,,
,

11
 




ifCfff  we have       .,,,,

,

1

,
 






ifCfiZC  

Hence       .,,,,
,,

 


ifCiZCf  

(iv)  (v). For all Y
I  let  

1
f  instead of  in (iv), we have

           .,,,,,,
,

1

,

1

,
 










iCiffCifZCf  It implies that 

      .,,,,
,

11

,
 






iCfifZC  

(vii)  (i). Let  be an   fci -,   set in  .,,


Y  Then  .,,11
,

 


iI

By (vii),      .,,11
1

,

1







 ifZIf  But we know that 

     .,,11
1

,

1







 ifZIf  Thus,      ,,,11

1

,

1







 ifZIf  

that is,  


1
1

f  is   fZoi -,   set. Since      
 111

,11 fff  is 

  fZci -,   set. Therefore f is DFZc  function. 

(iii)  (vi): For all ,
Y

I  since  


,,
,

iC  is an   fci -,   set in

 ,,,


Y  by (iii), we have that   



,,

,

1
iCf  is an   fZci -, 

 
set in 

 .,,


X
 

Hence           







,,,,,,,,

,

1

,,,

1
iiiCfCIiCf
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               .,,,,,,,,,,
1

,,

1

,,

1

,,













 iifICifCIiifIC  

(vi)  (iii). For all ,
Y

I  since  


,,
,

iC  is an   fci -,   set in 

 ,,,


Y
 

and let  


,,
,

iC  instead of  in (vi), we have that 

             









,,,,,,,,,,

,

1

,,,

1

,,
iiiCfICiiCfCI

 

       .,,,,,,
,

1

,,

1
 








iCfiiCCf  Hence   




,,

,

1
iCf  is 

an   fZci -,   set in  .,,


X  

Proposition 3.1. Let     DFZCtsYXf


 2211 ,,,,:  mapping and 

if for any fuzzy subset  of X is  -, i fuzzy nowhere dense then f is .pCtsDF   

Proof. Let   ., 22 


i  Since f is an DFZCts  mapping, then  
1

f  

is an   fZoi -,   set in  .,, 11


X  Put   
1

f  is an   fZoi -,   set in X. 

Hence       .,,,,,,,,
,,,

 


iiIiiIC

 
But    


,,

,
iI

   ,,,,,
,,

 


iCiI  then      .,,,,,,
,,,

 


iiCIiI

 
Since  

is  -, i fuzzy nowhere dense and by Lemma 2.1, we have   .0,,
,

 


iI  

Therefore f is .pCtsDF   

Definition 3.3. A mapping    


 2211 ,,,,: YXf  is called double 

fuzzy -open map (briefly ODF   if the image of every   foi -,   set of 

 


 11 ,,X  is   ofi  -,  set in  .,, 22


Y  

Definition 3.4. A mapping    


 2211 ,,,,: YXf  is called double 

fuzzy  -bicontinuous (briefly, biCtsDF   if f is oDF   map and CtsDF   map.  

Theorem 3.4. If    


 2211 ,,,,: YXf  be a biCtsDF   mapping 

then the inverse image of each   fZoi -,   set in  


 22 ,,Y
 
under f is   fZoi -,   

set in  .,, 11


X  
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Proof. Let f be a biCtsDF   and  be a   fZoi -,   set in  .,, 22


Y  Then 

         
11

,,,,
,,,,,,,

22222222




  ffiiCIiiIC

          
1

,,,

1

,, 2222222222

,,,,,,







  fCiiCIfiiIC

 

        .,,,,,,
222222 ,,

1

,
 






iiCIfiiI  

Since f is a biCtsDF   mapping, then f is ODF   map and CtsDF   map. 

Then f is sCtsDF   map and pCtsDF   map. Hence 

           .,,,,
1

,,

1

,,

1

22222222











 ifCIifICf  This shows 

that  
1

f  is   fZoi -,   set in  .,, 11


X  

Remark 3.2. If    


 2211 ,,,,: YXf  be a biCtsDF   mapping. 

Then the inverse image of each   pofi  -,  (resp.   ofi  -,  set in Y under f 

is   Zofi -,   set in X. 

Remark 3.3. Let  


 11 ,,X
 
and  


 22 ,,Y

 
be dfts’s and YXf :  be 

a mapping. The composition of two DFZCts  mappings need not be DFZCts  

as shown by the following example. 

Example 3.3. Let  cbaZYX ,,  and let the fuzzy sets 321 ,,   

and 4  defined as         ,6.0;5.0,4.0,3.0 2111  acba

          5.0,9.0,6.0;5.0,9.0 33322  cbacb and   ,4.04  a
 

    .5.0;0.0 44  cb  Consider the double fuzzy topologies  


 ,,X  and 

 


 ,,Y  with 

 

 

   

 

 






























.o.w,1

,if,
6

5

1,0if0

o.w.,0

,if,
6

1

1,0if1

2121
 

 

 

 

 






























.o.w,1

if,
6

5

1,0if0

o.w.,0

if,
6

1

1,0if1

33
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 

 

 

 






























.o.w,1

if,
6

5

1,0if0

o.w.,0

if,
6

1

1,0if1

44
 

Then the identity function    


 ,,,,: 11 YXf
 

and 

   


 ,,,,: ZYg  are DFZCts  functions. But fg   is not DFZCts  

function, since the inverse image under fg   of the fuzzy set 4  is not an

fZo-
6

5
,

6

1








 set in  .,,


X  

The next theorem gives the conditions under which the composition of 

two DFZCts  mappings is .DFZCts  

Theorem 3.5. Let    


 2211 ,,,, YX  and  


 33 ,,Z  be .' sdfts  If 

   


 2211 ,,,,: YXf  and    


 3312 ,,,,: ZsYg  are mappings, 

then fg   is DFZCts  mapping if 

1. f is DFZCts  and g is .DFCts
 

2. f is biCtsDF   and g is DFZCts  mapping.  

Proof. (i) Let   i 3  
and   .3   Since g is ,DFCts  then 

   ig 
1

3  
and    .

1
3 kg 


 Since f is ,DFZCts  then 

      
 111

fggf   is   fZoi -,   set in  .,, 11


X  Hence fg   is

.DFZCts  

(ii) Let   i 3  
and   .3   Since g is ,DFZCts  then  

1
g  is an 

  Zofi -,  set in  .,, 22


Y  Since f is ,biCtsDF   by Theorem 3.4,    
1

fg   

is   Zofi -,  set in  .,, 11


X  Hence fg   is .DFZCts  

4. Conclusion 

In this paper, we have introduced the double fuzzy -continuous, double 

fuzzy -bicontinuous, double fuzzy Z-continuous functions in double fuzzy 

topological spaces. Also some interesting properties and characterizations of 
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the concepts are studied and we hope these investigations will further 

encourage other researchers to explore the interesting connections between 

this area of topology and fuzzy set.  
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