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Abstract

This paper is to investigate the torsional waves in transversely isotropic poroelastic solid.
The solid consists of magneto poroelastic dissipative transversely isotropic medium sandwiched
between two transversely isotropic poroelastic half-spaces, all are under initial stress.
Employing the boundary conditions at the interfaces, frequency equation is obtained. Wave
characteristics namely, phase velocity and attenuation coefficient are computed against
wavenumber at fixed heterogeneity and magneto-poroelastic coupling. Graphical

representations are made to exhibit the results.
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1. Introduction

In general, the study of torsional waves in magneto-poroelastic isotropic
medium has many theoretical and practical applications in several fields such
as Seismology, Acoustics, Geophysics, Soil-mechanics, Bio-mechanics, Civil
engineering, and Mechanical engineering. Particularly, the Earth contains
different layers, heterogeneous in nature, and has significant effect on the
propagation of elastic waves. The Earth crust is made of diversity of igneous,
metamorphic and sedimentary rocks. These rocks are capable to generate
magnetic field due to presence of iron, nickel, and cobalt, etc., in them. Hence,
these rocks are the magneto dissipative poroelastic in nature. The theory of
linear isotropic poroelasticity was developed by Biot [3]. Studies of torsional
vibrations in isotropic poroelastic cylinder are reported in the papers [14-16].
In the paper [1], the analytical solutions for pore pressure and stress fields
for inclined borehole and the cylinder, induced Investigation of Torsional
Wave Propagation in Sandwiched Magneto-Poroelastic Dissipative
Transversely Isotropic Medium by boundary stress perturbation in an
anisotropic poroelastic medium are presented. The Shale rock and Berea
sandstone exhibit transversely isotropic behavior at low effective stress [8-9].
Employing theory of Poroelasticity, torsional vibrations in composite
transversely isotropic poroelastic solid cylinder are investigated by Rani et
al., [13]. Because of various processes in artificial structures and natural
phenomena in the Earth, initial stresses do present in them. In the paper [4],
the authors discussed the propagation of shear waves in an isotropic, visco-
elastic, heterogeneous layer lying over a homogeneous half-space under
initial stress. Kundu et al.,, [11] investigated propagation of a torsional
surface wave in a non-homogeneous anisotropic layer over a heterogeneous
half-space. In the paper [11], it is assumed that homogeneity varies
exponentially with depth in layer, and in half-space. Three types of
heterogeneities, namely, quadratic, hyperbolic and exponential are assumed.
Magneto elastic shear waves in irregular monoclinic layer are studied by
Chattopadhyay et al., [6]. In the paper [6], the propagation of horizontally
polarized shear waves in an internal magneto elastic monoclinic stratum with
irregularity in lower interface is investigated. Shear waves in magneto-elastic
transversely isotropic layer bonded between two heterogeneous elastic media

is studied by Kundu et al.,, [12]. Torsional surface wave propagation in
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anisotropic layer sandwiched between heterogeneous half-space is studied by
Vaishnav et al., [17]. In the paper [17], the dispersion relation of torsional
surface waves has been obtained in presence of heterogeneity, initial stress,
and anisotropic. Shear wave propagation in magneto-elastic medium
sandwiched between two elastic half-spaces is reported in several papers [7,
5, 10]. In the present paper, torsional wave propagation in magneto-
poroelastic dissipative transversely isotropic medium sandwiched between

two transversely isotropic poroelastic half-spaces is investigated.

The rest of the paper is organized as follows: In section 2, formulation and
solution of the problems are given. Boundary conditions and frequency
equation are presented in section 3. In section 4, numerical results are

discussed. Finally, conclusion is given in section 5.

2. Formulation and Solution of the Problem

Upper se mi-infinite half-space

Interface

Y Magneto transversely isotropic poroelastic

medium

B
¢ Interface

Lower semi-infinite half-space e

Figure 1. Geometry of the problem.

Consider the magneto transversely isotropic poroelastic medium
sandwiched between two heterogeneous, and semi-infinite transversely
isotropic poroelastic half-spaces, all assumed to be under initial stress. The

constitutive stress-strain relations for transversely isotropic solid [1] are
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where p = M[e' - ale,, + eqq) - a'e,, |

In the Equation (1), ¢; and ¢, are normal and shear strain components,
p is the pore pressure, o and o’ are Biot’s effective stress coefficients in the
isotropic plane (r - 6 plane) and in the z-diction, respectively. M is Biot’s
modulus, ¢’ is the variation of the fluid content per unit reference volume,

and M ; are components of the drained elastic modulus which depend on
E,E',v,v,G and G'. E and v are drained Young’s modulus and Poisson

ratio in the isotropic plane, E’ and v’ are similar quantities as that of E and
v pertaining to the direction of the axis of symmetry, G and G’ are the shear
modulus related to the direction of the isotropic plane and axis of the
E_’
E

symmetry, respectively. For given anisotropic ratios of N = and

N, = =, E' and v’ can be determined. Different N, and N, ratios define
v

v

different degrees of anisotropy. For torsional waves, it is convenient to

consider the cylindrical polar coordinate system (r, 0, z). The strain-

displacement relation in cylindrical system are

. :%e :u_iJrl@vie _awie :lraul+8017£1
Ty 00 T T e T T a2 T T gl e ar |
. - 1[0y N ow; | . 1[0y, . 1 0w, | ©)
= " 9les  ar |07 T 2 ez  r a0 |

The x-axis is taken along the propagation of torsional wave, and z-axis is in
downward direction as shown in figure 1. The equations of motion in this case
are as follows:
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where, (u;, v;, w;) and (U, V,, W;) are the displacement components of solid

i’

and fluid, respectively. o,., 649, and o,, are the stress

22> 9rz> Oy
components, p; are mass coefficients, b is the dissipative coefficient, ¢ is
time, s is fluid pressure, p' is initial stress, and o4, o, are rotational

4

components given by

1 (0u; ow; 1 (0v; ou;
Bt e

2\ 0z or or 00

The solutions for three parts, namely, upper semi-infinite poroelastic half-
space, intermediate medium of magneto-poroelastic, and lower semi-infinite
poroelastic half-space as shown in Figure 1 are presented separately in the
following sub sections.

2.1. Upper semi-infinite poroelastic half-space

Let (u,, v,, w,;) and (U,, V;, W,) be the displacement components of

solid and fluid parts, respectively, in the upper semi-infinite porous

heterogeneous half-space M, (say). For the torsional vibrations,

u, =w; =0,v; =v,(r, 2, ), and U, =W, =0,V, =V,(r, z, t). In this case,
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the equations of motion (3) are reduced to the following:

96,9 004, 2 0w,  o° o
- + T O TP = —(pyyvy + P Vi) + — (g - Vy)
or 0z r or ot? ot

a2

0
0 = 2 (Pravy + P Vi) =0 —(v; - V) (5)
ot ot

As the half-space M, under consideration is heterogeneous, the following

variations in densities and initial stress with z coordinate are considered.

2 2 2
z z z

P11 = P10 [1 + _] » P12 = Pigo (1 + _] » Pag = Pago [1 + _] ,
él &.!1 E.Jl

2

p' = Pi()o [1 + éij , (6)

1

where p,y . P » Page are initial values of mass coefficients, and p;,, 1is

initial value of initial stress. Substitution of Equation (3) and Equation (6) in

Equation (5) gives the following equations:

2 2 2
z o"v 1 ov M M o7 v
2| M, - Pl |1+ — L, My, -1)—L -~y =5 L
&1 or? r or 2 2 022

[1 z ]2 o%u, (1 z f 2%v, b[@vl avl]
= P11o 2| T, TPz o Ol /T |
&) a? & ot® ot ot
2\ ot )\ o, ov, oV, .
0 = pug [L+—| —— *+Pao |1+ — 2717 — - —|. (7
&1 ot & ot ot ot

For harmonic torsionsl waves, the displacement components can be taken as
follows:

th (z—ct

vi(r, z, t) = fi(z)e ), Vi(r, z,t) = Fl(r)eik(zict). (8

In Equation (8), k& is wavenumber, ¢ is time and ¢ is complex unity.
Substitution of Equation (8) in Equation (7) gives
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2
2[M44 = Pigo [1 + ii] ]f"1 (r) + l—(M awa — DA ()
1 r

2
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r

&

2
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1
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The Equation (9) can be re-written as

2 2

— ibke ]fl (r) + [pm (ke )2(1 + éi}

1

+ ibke JFl(z) =0. (9

2
M+ Ldf1 +q1f1 = 0. (10)
dr? dr
Solution of Equation (10) is
-1x
fi(r)y=e 2 (Cqycos (q;r)+ Cysin (gy7)). (11)

In Equation (11), ¢, and ¢, are arbitrary constants, and

2 1 2
L™ - 4q , z
q, = —2 , L = (M, - 1)[27‘[M44 - Ploo [1 + _§ J ]}
1

2 2 3

1 z z M M-k

ql = _[M44 - Pioo [1 + é_] ] P110 mz[l + —] + bio — 44 B
1

3}

2 2 2
_ [9120 (02[1 + ﬁiJ - bim] {[9120 m[l + QLJ - ib}] [p220 m(l + @i] + ib}
1 1 1

Substitution of Equation (11) in Equation (8) gives

Fy(r) = -G,G f,(r). (12)
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2 2

2 < . 2 z .
where, G, = —pig © 1+§_ + ibo, and Gy = poggy ® 1+§— + ibo.
1 1

Substituting Equation (11) in Equation (8), and then using stress-
displacement relations, the following stress components in this half-space are

obtained:
o —Lr|_ I
1 q .
(cer)M1 = - 244 e 2 LCI[:COS (qqr) - 12 1jsm (q.7)
L 1 ik (2 —
+ Cz[ 191 cos (g;r)+ —sin (qlr)Telk(z Ct),
2 r J
L
M55 . 2r . tk(z-ct)
(04, )M1 - ik e [Cy cos (qyr) + Cq4 sin (qqr)]e . (13)

2.2. Sandwiched magneto poroelastic medium

Let (u,, vy, w,) and (U,, V,, W,) be the solid and fluid displacement

components, respectively, in the sandwiched magneto transversely isotropic

poroelastic medium M, (say). For torsional waves, Equation (3) can be

written as
0 2
06,9 9%pz 2 00, -- 0 0
— 4 +—0,— D +( I xB)g=———(pyyvy +paVy)+b—(vy -Vy),
or 0z r or o2 ot
a* 8
0 = —(p1gVg + P Vy) - b —(vyg — Vy) (14)

In Equation (14), (J x B )p 1s the 6-component of electromagnetic force, J is

the electric current density and B the magnetic induction vector. The

Maxwell’s equations of the electromagnetic field are

B=0VxE=-22VxH=4J,

<1

>~

- - - a —
:ueH,J:c{E+ athXB], (15)

here, £ is the induced electric field, # is the magnetic field consisting both
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primary and induced magnetic field, p, and o are the induced permeability,
and conduction coefficient, respectively. The Maxwell stress tensor
MJC

0 - .
(t;) =u,(H;p; -H;p;, - H,p,d;) Let H = (H,, H,, H_) and change in

magnetic field be (p,, py, p3). If the displacement current is absent. With

the help of Equation (15), the following equation is obtained.

viH - uec{ﬁe x["52 . HJ] (16)

ot ot

The component form of Equation (16) can be written as follows:

o0H 1 o0H 1
Lo V'H,, —% - viH,, a7
ot u,o ot u,c
and
o0H 1 0 ov 0 ov
® - VPHy + —|H, —%|+ — | H, —2|. (18)
ot u,c or ot oz ot

If the medium is perfectly conductor (i.e., s —» =), the equations (17) and

(18) reduce to

oH oOH oH 0 0 0 0
Mg M £y ) 0y ) a9

ot ot ot or ot oz ot

Here, it is assumed that the primary magnetic field is uniform throughout

the space. It is clear from Equation (19) that there is no perturbation in #,
and H,, but there is perturbation in #,. If p, is perturbation in, H,, then

H, =Hy,,H,=Hy +p, and H, = H,,, where H, 6K Hy, H,; are
components of the initial magnetic field H,. Since (H, cos ¢, py, H, sin ¢),
where H, = | H, | and, ¢ is the angle at which wave crosses the magnetic

field. Thus, # can be expressed as
H - (H cos ¢, py, Hy sin ¢). (20)

Here, it is assumed that p, is zero initially. Using Equation (20) in Equation

(19), one obtains
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vy 0 TR PO TP 21
ot 7ar{H°COS¢at]+az[Hosm¢at]' 1)

The above equation gives
‘ (22)

0vy . 2
py = Hcos ¢ 5 + H  sin ¢¥.

2 - - — - - -
The relation, v[—] = -(VxH)xH +(H -v)-H and Equation (15) give
the electromagnetic force as given below:
2 - - -
R

+ (H -V)H

G x5 - [[

In this case, the components of J x B are (J x B), =0,(J xB), =0,

and
2 2 2
- - o"v o0 v o"v
(JxB)e:ueHg sh12¢ 22+sm 2¢ +cosz¢ 22 (24)
oz or
Substitution of Equation (24) in Equation (14) gives
2 2
o v 1 ov
2M44—pi00[1+i] +pechosz¢ 2+—(M44—1) 2
&1 or2 r or
2 2
o v M M 0" v
+p, HYsin 29 —2 - — 2 | =B,y HZsin P | —2
oroz r2 2 822
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S/ ot & PYE: at at
2\ a2, 2\ a%v, ov, OV, 95
+t Pogo |1+ T - by - | (25)
2 &, 12 ot ot

o 10
1 ot

For torsional harmonic waves, the displacement components can be expressed

as
vy(r, z, t) = fz(r)eik(27Ct), Vol(r, z, t) = Fz(r)eik(zict). (26)
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Substitution of Equation (26) in Equation (25) gives
2

2
M+x_2df_27q_f2:0. 27
dr 2 x, dr %

The solution of Equation (27) is

XgT

fo(r) = e’le (Cg cos (gqr)+ Cysin (gqr)). (28)

In Equation (28), ¢, and c, are arbitrary constants,

where,

2 -2 2 -1 2
XgX, + 4q % ) z 9 9
qy = p , Xy = 2| My - pigg 1+é_ + n,Hg cos ™ o,
1

1 . 2 .
Xy = :(M44 - 1)+ tkp, Hj sin 2¢,

2 2
M M -k z
qzziﬁ- 325 +ueHgk2sinz¢—pnoo)2[1+—] - bio

2 2 2
_ [9120 mz{l + &iJ + bicoJ [9120 m[l + &iJ — ib] [9220 03[1 + éi] + ibj
1 1 1

Using Equations (25), (26), and (28) the following equation is obtained.

-1

Fy(r) = ~G1, G, fo(r), (29)

where, G, = pyp + ibo " and G, = pyyy - ibo . Substitution of Equation
(28) in Equation (26), gives

*er
2x, | 1 X299 ) .

1 Cqy| —cos (gqor) - sin (gqr)
L 2 2x4

My

(Gre)Mz - 2 ¢

x 1 i -
+Cy 292 cos (gqr) + —sin (gqr) Telk(z Ct),
2xq r J
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Xorl

M55
2

ike 21

(GGZ)M2 = Cy cos (ggur)+ Cy sin (q2r)]eik(zict). (30)

2.3. Lower inhomogeneous poroelastic half-space

In the lower heterogeneous poroelastic half-space M, (say), let
(uz, vy, wy) and (U,, V4, Wy) be the displacement components of solid and
fluid, respectively. For torsional wave, the equation of motion is reduced to

2

oc 00 2 o® 0 0
_re+_z+_5re—p' == ——(py1 v + P V) + b —(vy — V3),
or 0z r or ot? ot
2
0 0
0= —(paVs + Py Vy)—b—(vy - Vy) 31

As the half-space is heterogeneous, the mass coefficients, and initial stress
are assumed as follows:

P11 = Pro (L +n2), p1g = pigg (L +12), pgg = pgyy (1 + n2)
and

P’ = DPigo 1+ p*z), (32)

where, pj,, 1is initial value of the initial stress, and », p° are constants.

Substitution of Equations (3) and (32) in Equation (31) gives,

2
0" vg

2
, * ovy My Mg 0 vs
2(M 44 - pigo X + p 2)) . - +

LMy - 1)
- 44
or r r P2 2 022

o%v, 2%V, dvg 0V,
:p110(1+nz)—2 + prgo (1 + nz) 2 +b - —,

2 2
0" vy 0"V O0vg A
0 = pigo (1 + nz) + poggo (1 + nz) Pl b[ - . (33)

For torsional harmonic waves, the displacement components in lower semi-

infinite porous half-space are taken as follows:
vy(r, z, t) = f3(r)eik(2_6t), Val(r, z, t) = F3(r)eik(2_0t). (34)
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Substitution of Equation (34) in Equation (33) gives

d2f3 +x_4df3 q3

_ 1 - 0. 35
dr 2 x3 dr X3 fa ’ (35)
The solution of Equation (35) is
73647‘
fa(r) =e 2% (C5 cos (ggr) + Cy sin (ggr)). (36)

In Equation (36), 5 and c, are arbitrary constants, and

-1 3 -1
\/(x4x3 )+ 4q L ) . 1
q5 = 5 s xg = 2(M 4y - pigo @+ p 2)), xy =1 (M, -1)

2

M M - k

q3 = %4— %—pnoaﬂ(l+nz)—bim—(p120m2(1+nz)
r

. Pigo (1 + nz ) — ib
- biw) .
Pago @(1 + nz ) + ib

After long calculation, the following equation is obtained:

Fy(r) = ~Dyy Dy, f5(r), (37

1

where, Dy = prgo L +nz)-ibo and Dyy = pggy (1 + nz )+ ibo L.

Substitution of Equation (36) in Equation (33), and using stress-displacement

relations, the following stress components are obtained.

—Xyr

M44 2x3 [ 1 X493 .
= - e C-| — cos r) - sin r
(5r0) 0, 9 L 55 (g57) 2x, (g37)
X 1 i _
+ CG[ 493 cos (ggr) + —sin (q3r)yelk(z Ct),
2x4 r J
x4r
M g . ik (2 —
(4, )M3 = 255 ike “%3 [C5 cos (ggr) + Cg sin (qsr)]el (z o). (38)

3. Boundary Conditions and Frequency Equation
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The displacement components and stresses are assumed to be continuous

at z = a,, the interface between upper half-space (m,) and intermediate

medium (M ,). That is,

(vl)Ml = (02)M2

(GrG)Ml = (Gre)Mz’

(39)

(Gez)]u1 = (692)M2~

The displacement components and stresses are assumed to be continuous at
the lower interface z = a,. That is,

(U2)M2 = (US)M%

(GrG)MZ = (GrO)M3 ’
(40)

(692 )M2 = (Gez)M3 .
The above boundary conditions lead to the following system of homogeneous

equations:
la;Jlc; =101, G, j =1, 2.8 4,5, 6) (41)

where,
La X201
M - M h
44 44 2x
Ay = > © 2 cos (qiaq), Ayy = ;¢ ' ocos (gqay),
M 7—La1 1
44 1 g
Ay = 5 e 2 [a—cos (q1a7) - sin (qlal)j,
1
u _T%e%
44 2x 1 1 .
Agy = 5 e b [a—cos (q1ay) - - sin (qlal)],
1 1
M ~Laq
55
Ay = 5 e 2 cos (g1aq1),

Ay =Ajg =Ags =Agg =Agy =Agg =AYy = Ay =A5 =Ag =Ag =Ag =0,
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A, Ay, Agy, Ay, Ay, = Similar expression as A, A;;, Ay, Ay, With
cos integer replaced by sin integer, respectively,

A, = Similar expression as 4,, with cos integer replaced by sin
integer, respectively,

-La

Agy, A,y = Similar expression as A;; with e 2 and ¢, replaced by

X2

M .
%; e 1 and q,, respectively,

A, = Similar expression as A,, with cos integer and ¢, replaced bysin
integer and ¢,, respectively,

Agys, Ay, Ass, Agg = Similar expression as A, , A, , As, A5, With

x,, xq, ¢5 Teplaced by x,, x,, ¢5, respectively,

Agy, Ay, = Similar expression as A,;, A,, Wwith a; replaced by a,,
respectively,
7—La1
Agy, Agy = Similar expression as A, A;,, Wwith ¢, and . 2
M 5 .
replaced by ¢, and o respectively,
Ags, Ags = Slimilar expression as Ag,, 4, With ¢, replaced by ¢,

respectively,

The equation (41) results in a system of six homogeneous equations in six

arbitrarily constants c¢,, C,, C,, C,, C; and C4. For a non-trivial solution,

determinant of coefficients is zero. Accordingly, the following complex valued

frequency equation is obtained:

|a; [+ilaj |=0, G, j=1, 2 3, 4,5, 6) (42)
The elements «; and «j in Equation (42) are given in Appendix-A.
4. Numerical Results

For numerical process, the following materials are used. Both upper and
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lower semi-infinite porous half-spaces are Berea sandstone saturated with
water [9] (say) Mat-I. The parameter values of the said material are as

follows:
Py = 2407 6akg /m®, p, = —266 kg /m >, py, = 456 kg /m °.

Intermediate layer is magneto poroelastic medium is Shale Rock [8] Mat-

II. The parameter values of the said material are as follows:
pyy = 1398 .712kg /m?®, py, = —257 .28 kg /m°, p,, = 771 .84 kg /m >,

Employing these values in frequency equation, the phase velocity,
attenuation coefficient, against wavenumber are computed when the

anisotropic ratio N, =1 at various N, values N, =1, at various N

values, and at an arbitrary chosen initial stress. The material constants

My, M involves E, E’, v and v’. The values of Young’s modulus (E),

55
Poisson’s ratio (v) for Berea sandstone saturated with water and Shale rock
are taken to be 14.4Gpa,0.20 and 1.854Gpa,0.22 as suggested in the paper [9,

8]. The heterogeneous parameters [% L LI 0.01} and magneto-

k- oke,

2
poroelastic coupling factor are taken to be [”‘EN & _ 0.01J [2]. The

-1 2Im (o)

. the formula, Im (o) 1is
Re (o)

attenuation coefficient (@ ') is @

frequency of imaginary part in frequency equation and Re (o) is frequency of

real part in frequency equation. The values are computed using the bisection
method implemented in MATLAB, and the results are depicted in Figures 2-
5. Figures. 2-5 depict the variation of phase velocity and attenuation
coefficient against wavenumber at fixed heterogeneous and magneto
poroelastic medium in Mat-I and Mat-II, respectively. From figure 2, it is
clear that attenuation coefficient values are greater than that of phase
velocity. In Figures 3-5, it is seen that the phase velocity, in general, lower

than that of attenuation coefficient.
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—H—Phazevelocity

—o— Attenuation coefficient

Wavennmber

Figure 2. Variation of phase velocity and attenuation coefficient against
wavenumber of interface between upper half-space and intermediate medium
at Mat-1.
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Figure 3. Variation of phase velocity and attenuation coefficient against
wavenumber of interface between upper half-space and intermediate medium
at Mat-II.
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—H&— Phasevelocity

—<— Attenuation coefficient

Wavenumber

Figure 4. Variation of phase velocity and attenuation coefficient against
wavenumber of interface between intermediate medium and lower half-space
at Mat-1.
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Figure 5. Variation of phase velocity and attenuation coefficient against

wavenumber of interface between intermediate medium and lower half-space
at Mat-II.

5. Conclusion

Torsional wave propagation 1in magneto-poroelastic dissipative
transversely isotropic medium sandwiched between two transversely
isotropic poroelastic half-spaces all under initial stress is investigated in the

framework of Biot’s theory. Employing the boundary conditions at the
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interfaces, frequency equation 1is obtained. Frequency equation and

attenuation coefficient are computed against wavenumber at the fixed

heterogeneous and magneto-poroelastic coupling factor. From numerical

results, it is seen that the phase velocity, in general, less than that of

attenuation coefficient.
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Appendix-A

L
My 5 . .
e (Ryaq cos T, sin (Rya;cos Ty )cosh (Rya,sin T;)

—Rja,sin T, cos (Rya, cos T )sinh (R;a;sin T,))

L

M, :
e 2(Rya;cos T;cos (Rya; cos T} )cosh (Rjaysin T;)

2

G2 =
+R,a,;sin T, sin (R;a, cos T, )sinh (R;a;sin T,))

o L
Ay = 255 e 2 cos (Rya, cos T;)cosh (R,a; sin T,);

M =
Agy = B ¢ 2 sin (Rya; cos Ty)cosh (Rya; sin T;)

M44

(x4, cos (Rya; cos Ty)cosh (Ryay sin Ty)

+x15 sin (Rya;cos Ty )sinh (Rgyaq sin T,));

M
agy = %(x11 sin (Rya; cos Ty)cosh (Rya; sin T,)

Advances and Applications in Mathematical Sciences, Volume 20, Issue 10, August 2021



INVESTIGATION OF TORSIONAL WAVE PROPAGATION ... 2413

—x19 cos (Rya; cos Ty )sinh (Rgya; cos Ty));

L
as; =e 2 cos (Rjay cos T;)cosh (Rya, sin T,)
L
a3y =e 2 sin (Rya; cos Ty)cosh (Rya; sin T, );
1-My )
gy = —e 1 (x4, cos (Rgyaq cos Ty)cosh (Ryay sin T,)

+x15 sin (Rga; cos Ty )sinh (Ryay cos Ty))

1-M 4 )
ag = —e "1 (x5 cos (Rya, cos Ty)sinh (Rya, sin T,)
—-xq; sin (Rgaq cos Ty)cosh (Rya, sin T,))
x4a2
M x40 B
A5 = —%%e 23 (Rgay cos Tg cos (Rgaqy cos Ty)cosh (Rgag sin Tg)
x
3

+Rgay sin Ty sin (Rgay cos Ty)sinh (Rga, sin Ty))

)
M, x,09 " Tox.
Ay = *%ﬁe “3 (Rgay cos Ty sin (Rgay cos Tjy)cosh (Rgay sin Ty)
3

-Rga, sin Ty cos (Rgaqy cos Tg)sinh (Rga, sin Ty))

Xyaq
My -

gy = 5 e 3 cos (Rgagy cos Ty)cosh (Rgay sin Ty);

x40y

A[55 N 2x .

a5 - 3 sin (Rgaq cos Ty)cosh (Rgagy cos Ty);
1-My)

gy = € o1 (x45 cos (Rgagy cos Ty)cosh (Ryay sin Ty)
+xy, sin (Ryaqy cos Ty)sinh (Ryay sin T,))
1-My)

gy = € 1 (xq3 sin (Ryaqy cos Ty)cosh (Rga, sin Ty)
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—-xq4 cos (Ryay cos Ty)sinh (Ryaqy sin Ty))

X4@2

2
ags = —e 3 cos (Rgay cos Ty)cosh (Rgay cos Ty

X4az
2x5 .
agg = —e 3 gin (Rgaqy cos Tg)cosh (Rgagy cos Tj);
M L
aj; = 244 e 2(R,a; cos Ty cos (Rya, cos T,)sinh (R,a, sin T,)

+Rja, sin T, sin (Rya; cos T;)cosh (Rja; sin T,))

I
ajy = %e 2(Rya; sin T, cos (Rjay cos T;)cosh (R,a; sin T;)

-R,a, cos T, sin (Rya; cos T;)sinh (R;a; sin T,))

L

ab; =e 2 sin (Rya; cos Ty )sinh (R;a; sin T, )
L

aty, =e 2 cos(Rya; cos Ty)cosh (Rya; sin T, );

X492
M x,a -
44 X492 2x . .
Qg = ———— ——e 3 (Rgay sin Ty cos (Rgay cos Tg)cosh (Rgay sin Ty)
2 2x3
—-Rga, sin Ty sin (Rqagy cos Tg)sinh (Rga,y sin Tg))
.7C4az
M x,a T 9x
ayy = S R 3 (Rgaqy cos Tq cos (Rgay cos Tq)sinh (Rgay sin Ty)
2 2x4
+Rgay sin Ty sin (Rgagy cos Tg)cosh (Rgay cos Ty ))
A5 = @1 = Qg5 = Qg = Qg5 = Gzg = Ay = Ay = A5 = A5y = Qg = Qg
_ o o ,
= Q15 = Qg T Qg5 = Qg = Qg5 = Q35 = Ay = Ay = Ap
= a =ag =a =0
= QG5 = Qg = Qg = U,
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2
2 , z 2 2
X, _(M44 - DP1go [1+_i j ]+peH0 cos = ¢;

1
2 . '
X9 = My, -1+ p,Hysin 2¢; x4 = 2((M 44 — p1go (1 — p2)),
2 2 2 . 2
x5 = (Mg +1-2M,,)- (ka) (n,Hy sin 2¢)7;

xg = 2(M,, -1kayp,H sin 2¢; x, = M, -1,

2

2
+p,eH§ coszd)J ;

z
o - [M oot (142
1

2
, z 2 2
xg = 2| M, - pigo 1+_§ + u H g cos ™ ¢;

1

xq; = Rgay cos Ty cos (—ka ueHOZ sin 2¢) - Rga, sin Ty sin (—ka p.eHg sin 2¢),
x5 = Rgaq cos Ty cos (—ka ueHg sin 2¢) + Rgya, sin Ty sin (—ka p,eHg sin 2¢),
1 6
2 6 z 2 2
@ = [P110 P220 © (1 + i_] b7 (P1g + P12 + 2P3z0 )
1

2
2[M44 [1 + gij - P1oo ]
1

5 z
@y = bipgg © (Pggg + 2Pyy0 )| 1+ ?

:
\
|
L
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2
z

2 2 2
(ka )" pgg ® [1 + é_j = (P110 P120 * P20 )
1

4

M
m4[1+i] s ag = My, + 55 (ka)2m+peH§sin2¢
1
2 2
[1+ Zj p [1+ Zj coS
~ P11o T | T P2 P ’
E.~1 é1
[ M 55 2, 2 2 2
| My + ; (kb ) (pgyo 1 + nz)” + bo”)

2 9 3 2 4
! Pigo Pago @ (1 + nz )" = b7pyyy (1 + nz)o

09:

1
|

|

| - |
2 2 2. | |
1+ nz + b 2 4 3 2 2
(P20 ) )I—pzzo Proo @ (1 +1nz)" + b pgyy (1 + nz)o }
EEACH J

b e + 2b2p120 1+ nz)o

3 3 3 2
lrb 0" +2b0 " pigp Pggy (1 +nz)
1

2 2 2 3 2 2
3 2 3 i+b plgg M+nz) o —bpyyy (1+nz) o
(Pogo M+ nz) +bo”)

i
\
Q10 = }
L+bpf2o (1+nz)2m5 J

(x4x:;1 )2 + 4xg1a9

-1
a1 = 4 v Q112 = QX5 >
Xgxg + 4agxy Xgxg + dagxy
dxqgxg dx,xg

a4, ay =Similar expression as a,;, a, With x;;, x;, replaced by

x15, x74 Trespectively,

asy, as, = OSimilar expression as ay, a, Wwith M, , x;;, x,, replaced

by M., x5, x,, , respectively,
a3, ay, = Similar expression as ag,, ag, With a,, x5, x;, replaced by

a,, %y, » %15, and multiplied by % M respectively,

X135, x4 = OSimilar expression as x,, x,, With a, replaced by a,

respectively,
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ajy, ai, = Similar expression as ag,, ay, With a,, x5, x;, replaced by

. g M
ay, x4, , %y, and multiplied by —*

, respectively,

ajy = Similar expression as a,, with x;, x;, and positive sign replaced

by x5, »;; and negative sign, respectively,

ap, = Similar expression as a,, Wwith cos, sin and negative sign replaced

by sin, cos and positive sign, respectively,

M .
' ) i . ’ , . - 55
ah , ahy = OSimilar expression as aj;, aj, with multiplied by —
respectively,
ahy, ap, = Similar expression as ags, ay With x,;, x,, replaced by

x4, ¥, » Tespectively,

ay; = Similar expression as a, Wwith x,,, x,, replaced by x,,, x,
respectively,
ay, = Similar expression as a,, Wwith cos, sin and negative sign replaced

by sin, cos and positive sign, respectively,
aj, = Similar expression as oy, with x,;, x;, and positive sign replaced

by x,,, »,; and negative sign, respectively,

ai, = Similar expression as aj, with cos, sin and negative sign replaced

by sin, cos and positive sign, respectively,

aks, afg = Similar expression as aj;, ap, with multiplied by
“¥493
M 3 .
55, *¥s | respectively,
2
agy = Similar expression as aq Wwith x,,, x,, and positive sign replaced

by x,,, »,; and negative sign, respectively,

ay, = Similar expression as ag, With x,,, x;, ., cosh and negative sign

replaced by x,,, x,5, sinh and positive sign, respectively,
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“¥492
ays, ah; = Similar expression as aj, , aj, with multiplied by e **3 |
respectively,
T,; Ty = Similar expression as 7, with a,, a, replaced by
a;, ag; ajq » a5 respectively,
R,; Ry, = Similar expression as R, with a,, ¢, replaced by

a;, ag; ajq » a5 respectively.
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