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Abstract 

This paper is to investigate the torsional waves in transversely isotropic poroelastic solid. 

The solid consists of magneto poroelastic dissipative transversely isotropic medium sandwiched 

between two transversely isotropic poroelastic half-spaces, all are under initial stress. 

Employing the boundary conditions at the interfaces, frequency equation is obtained. Wave 

characteristics namely, phase velocity and attenuation coefficient are computed against 

wavenumber at fixed heterogeneity and magneto-poroelastic coupling. Graphical 

representations are made to exhibit the results. 
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1. Introduction 

In general, the study of torsional waves in magneto-poroelastic isotropic 

medium has many theoretical and practical applications in several fields such 

as Seismology, Acoustics, Geophysics, Soil-mechanics, Bio-mechanics, Civil 

engineering, and Mechanical engineering. Particularly, the Earth contains 

different layers, heterogeneous in nature, and has significant effect on the 

propagation of elastic waves. The Earth crust is made of diversity of igneous, 

metamorphic and sedimentary rocks. These rocks are capable to generate 

magnetic field due to presence of iron, nickel, and cobalt, etc., in them. Hence, 

these rocks are the magneto dissipative poroelastic in nature. The theory of 

linear isotropic poroelasticity was developed by Biot [3]. Studies of torsional 

vibrations in isotropic poroelastic cylinder are reported in the papers [14-16]. 

In the paper [1], the analytical solutions for pore pressure and stress fields 

for inclined borehole and the cylinder, induced Investigation of Torsional 

Wave Propagation in Sandwiched Magneto-Poroelastic Dissipative 

Transversely Isotropic Medium by boundary stress perturbation in an 

anisotropic poroelastic medium are presented. The Shale rock and Berea 

sandstone exhibit transversely isotropic behavior at low effective stress [8-9]. 

Employing theory of Poroelasticity, torsional vibrations in composite 

transversely isotropic poroelastic solid cylinder are investigated by Rani et 

al., [13]. Because of various processes in artificial structures and natural 

phenomena in the Earth, initial stresses do present in them. In the paper [4], 

the authors discussed the propagation of shear waves in an isotropic, visco-

elastic, heterogeneous layer lying over a homogeneous half-space under 

initial stress. Kundu et al., [11] investigated propagation of a torsional 

surface wave in a non-homogeneous anisotropic layer over a heterogeneous 

half-space. In the paper [11], it is assumed that homogeneity varies 

exponentially with depth in layer, and in half-space. Three types of 

heterogeneities, namely, quadratic, hyperbolic and exponential are assumed. 

Magneto elastic shear waves in irregular monoclinic layer are studied by 

Chattopadhyay et al., [6]. In the paper [6], the propagation of horizontally 

polarized shear waves in an internal magneto elastic monoclinic stratum with 

irregularity in lower interface is investigated. Shear waves in magneto-elastic 

transversely isotropic layer bonded between two heterogeneous elastic media 

is studied by Kundu et al., [12]. Torsional surface wave propagation in 
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anisotropic layer sandwiched between heterogeneous half-space is studied by 

Vaishnav et al., [17]. In the paper [17], the dispersion relation of torsional 

surface waves has been obtained in presence of heterogeneity, initial stress, 

and anisotropic. Shear wave propagation in magneto-elastic medium 

sandwiched between two elastic half-spaces is reported in several papers [7, 

5, 10]. In the present paper, torsional wave propagation in magneto-

poroelastic dissipative transversely isotropic medium sandwiched between 

two transversely isotropic poroelastic half-spaces is investigated. 

The rest of the paper is organized as follows: In section 2, formulation and 

solution of the problems are given. Boundary conditions and frequency 

equation are presented in section 3. In section 4, numerical results are 

discussed. Finally, conclusion is given in section 5. 

2. Formulation and Solution of the Problem 

 

Figure 1. Geometry of the problem. 

Consider the magneto transversely isotropic poroelastic medium 

sandwiched between two heterogeneous, and semi-infinite transversely 

isotropic poroelastic half-spaces, all assumed to be under initial stress. The 

constitutive stress-strain relations for transversely isotropic solid [1] are 
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where     .zzrr eeeMp      

In the Equation (1), jje  and jke  are normal and shear strain components, 

p is the pore pressure,  and    are Biot’s effective stress coefficients in the 

isotropic plane  r  plane) and in the z-diction, respectively. M is Biot’s 

modulus,    is the variation of the fluid content per unit reference volume, 

and jkM  are components of the drained elastic modulus which depend on 

GvvEE ,,,,   and .G   E and v are drained Young’s modulus and Poisson 

ratio in the isotropic plane, E   and v   are similar quantities as that of E and 

v pertaining to the direction of the axis of symmetry, G and G   are the shear 

modulus related to the direction of the isotropic plane and axis of the 

symmetry, respectively. For given anisotropic ratios of 
E
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 ,  and v   can be determined. Different EN  and vN  ratios define 

different degrees of anisotropy. For torsional waves, it is convenient to 
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The x-axis is taken along the propagation of torsional wave, and z-axis is in 

downward direction as shown in figure 1. The equations of motion in this case 

are as follows: 
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where,  iii wvu ,,  and  iii WVU ,,  are the displacement components of solid 

and fluid, respectively.   rrzzzrr ,,,,  and z  are the stress 

components, ij  are mass coefficients, b is the dissipative coefficient, t is 

time, s is fluid pressure, p   is initial stress, and z  ,  are rotational 

components given by 
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The solutions for three parts, namely, upper semi-infinite poroelastic half-

space, intermediate medium of magneto-poroelastic, and lower semi-infinite 

poroelastic half-space as shown in Figure 1 are presented separately in the 

following sub sections. 

2.1. Upper semi-infinite poroelastic half-space 

Let  111 ,, wvu  and  111 ,, WVU  be the displacement components of 

solid and fluid parts, respectively, in the upper semi-infinite porous 

heterogeneous half-space 1M  (say). For the torsional vibrations, 

 ,,,,0 1111 tzrvvwu   and  .,,,0 1111 tzrVVWU   In this case, 
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the equations of motion (3) are reduced to the following: 
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As the half-space 1M  under consideration is heterogeneous, the following 

variations in densities and initial stress with z coordinate are considered. 
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where 220120110 ,,   are initial values of mass coefficients, and 100p   is 

initial value of initial stress. Substitution of Equation (3) and Equation (6) in 

Equation (5) gives the following equations: 
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For harmonic torsionsl waves, the displacement components can be taken as 

follows: 

   
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In Equation (8), k is wavenumber, t is time and i is complex unity. 

Substitution of Equation (8) in Equation (7) gives 
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The Equation (9) can be re-written as 
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Solution of Equation (10) is 
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In Equation (11), 1C  and 2C  are arbitrary constants, and 
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Substitution of Equation (11) in Equation (8) gives 
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Substituting Equation (11) in Equation (8), and then using stress-

displacement relations, the following stress components in this half-space are 

obtained: 
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2.2. Sandwiched magneto poroelastic medium 

Let  222 ,, wvu  and  222 ,, WVU  be the solid and fluid displacement 

components, respectively, in the sandwiched magneto transversely isotropic 

poroelastic medium 2M  (say). For torsional waves, Equation (3) can be 

written as 
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  (14) 

In Equation (14),  


 BJ


 is the -component of electromagnetic force, J


 is 

the electric current density and B


 the magnetic induction vector. The 

Maxwell’s equations of the electromagnetic field are 

,,,0 JH
t

B
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








  
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
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
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
 B

t

v
EJHB e
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 (15) 

here, E


 is the induced electric field, H


 is the magnetic field consisting both 
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primary and induced magnetic field, e  and  are the induced permeability, 

and conduction coefficient, respectively. The Maxwell stress tensor 

   .
0

ijkkijiie

M

ij
pHpHpHx   Let  zr HHHH ,, 


 and change in 

magnetic field be  .,, 321 ppp  If the displacement current is absent. With 

the help of Equation (15), the following equation is obtained. 
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 (16) 

The component form of Equation (16) can be written as follows: 
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and 
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If the medium is perfectly conductor (i.e., ,  the equations (17) and 

(18) reduce to 
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Here, it is assumed that the primary magnetic field is uniform throughout 

the space. It is clear from Equation (19) that there is no perturbation in rH  

and ,zH  but there is perturbation in .H  If 2p  is perturbation in, ,H  then 

20201 , pHHHH r    and ,03HH z   where 030201 ,, HHH  are 

components of the initial magnetic field .0H


 Since  ,sin,,cos 020  HpH  

where 00 HH


  and,  is the angle at which wave crosses the magnetic 

field. Thus, H


 can be expressed as 

 .sin,,cos 020  HpHH


 (20) 

Here, it is assumed that 2p  is zero initially. Using Equation (20) in Equation 

(19), one obtains 
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The above equation gives 

.sincos
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The relation,     HHHH
H 
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














2

2

 and Equation (15) give 

the electromagnetic force as given below: 

    .
2

2





























 HH

H
BJ e


 (23) 

In this case, the components of BJ


  are     ,0,0 
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Substitution of Equation (24) in Equation (14) gives 
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For torsional harmonic waves, the displacement components can be expressed 

as 

   
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Substitution of Equation (26) in Equation (25) gives 
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The solution of Equation (27) is 
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In Equation (28), 3C  and 4C  are arbitrary constants, 

where, 
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Using Equations (25), (26), and (28) the following equation is obtained. 
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2.3. Lower inhomogeneous poroelastic half-space 

In the lower heterogeneous poroelastic half-space 3M  (say), let 

 333 ,, wvu  and  333 ,, WVU  be the displacement components of solid and 

fluid, respectively. For torsional wave, the equation of motion is reduced to 
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As the half-space is heterogeneous, the mass coefficients, and initial stress 

are assumed as follows: 
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where, 100p   is initial value of the initial stress, and 
pn ,  are constants. 

Substitution of Equations (3) and (32) in Equation (31) gives, 
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For torsional harmonic waves, the displacement components in lower semi-

infinite porous half-space are taken as follows: 
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Substitution of Equation (34) in Equation (33) gives 

.03
3

3
3

3

4

2

3
2

 f
x

q

dr

df

x

x

dr

fd
 (35) 

The solution of Equation (35) is 
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In Equation (36), 5C  and 6C  are arbitrary constants, and 
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After long calculation, the following equation is obtained: 
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Substitution of Equation (36) in Equation (33), and using stress-displacement 

relations, the following stress components are obtained. 
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3. Boundary Conditions and Frequency Equation 
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The displacement components and stresses are assumed to be continuous 

at ,1az   the interface between upper half-space  1M  and intermediate 

medium  .2M  That is, 
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The displacement components and stresses are assumed to be continuous at 

the lower interface .2az   That is, 
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The above boundary conditions lead to the following system of homogeneous 

equations: 
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3432221412 ,,,, AAAAA  Similar expression as 33211311 ,,, AAAA  with 

cos integer replaced by sin integer, respectively, 

24A  Similar expression as 23A  with cos integer replaced by sin 

integer, respectively, 

4333 , AA  Similar expression as 11A  with 2

1La

e




 and 1q  replaced by 

1

12

255
;

2

x

ax

e
M 

 and ,2q  respectively, 

44A  Similar expression as 24A  with cos integer and 1q  replaced bysin 

integer and ,2q  respectively, 

56554645 ,,, AAAA  Similar expression as 54534443 ,,, AAAA  with 

221 ,, qxx  replaced by ,,, 543 qxx  respectively, 

5453 , AA  Similar expression as 2423 , AA  with 1a  replaced by ,2a  

respectively, 

6463 , AA  Similar expression as 1211 , AA  with 1q  and 2

1La

e




  

replaced by 2q  and ,
2

55M
 respectively, 

6665 , AA  Similar expression as 6463 , AA  with 2q  replaced by 3q  

respectively, 

The equation (41) results in a system of six homogeneous equations in six 

arbitrarily constants 54321 ,,,, CCCCC  and .6C  For a non-trivial solution, 

determinant of coefficients is zero. Accordingly, the following complex valued 

frequency equation is obtained: 

 .6,5,4,3,2,1,,0  jiaia ijij  (42) 

The elements ija  and ija   in Equation (42) are given in Appendix-A. 

4. Numerical Results 

For numerical process, the following materials are used. Both upper and 
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lower semi-infinite porous half-spaces are Berea sandstone saturated with 

water [9] (say) Mat-I. The parameter values of the said material are as 

follows: 

.mkg456,mkg266,mkg64.2407
3

22
3

12
3

11   

Intermediate layer is magneto poroelastic medium is Shale Rock [8] Mat-

II. The parameter values of the said material are as follows: 

.mkg84.771,mkg28.257,mkg72.1398
3

22
3

12
3

11   

Employing these values in frequency equation, the phase velocity, 

attenuation coefficient, against wavenumber are computed when the 

anisotropic ratio 1EN  at various VN  values ,1VN  at various EN  

values, and at an arbitrary chosen initial stress. The material constants 

5544 , MM  involves vEE ,,   and .v   The values of Young’s modulus (E), 

Poisson’s ratio (v) for Berea sandstone saturated with water and Shale rock 

are taken to be 14.4Gpa,0.20 and 1.854Gpa,0.22 as suggested in the paper [9, 

8]. The heterogeneous parameters 










01.0

1
,,

1kk

p

k

n
 and magneto-

poroelastic coupling factor are taken to be 
















01.0

,
2

0

N

He  [2]. The 

attenuation coefficient  
1

Q  is 
 

 
.

Re

Im21







Q  the formula,  Im  is 

frequency of imaginary part in frequency equation and  Re  is frequency of 

real part in frequency equation. The values are computed using the bisection 

method implemented in MATLAB, and the results are depicted in Figures 2-

5. Figures. 2-5 depict the variation of phase velocity and attenuation 

coefficient against wavenumber at fixed heterogeneous and magneto 

poroelastic medium in Mat-I and Mat-II, respectively. From figure 2, it is 

clear that attenuation coefficient values are greater than that of phase 

velocity. In Figures 3-5, it is seen that the phase velocity, in general, lower 

than that of attenuation coefficient. 
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Figure 2. Variation of phase velocity and attenuation coefficient against 

wavenumber of interface between upper half-space and intermediate medium 

at Mat-I. 

 

Figure 3. Variation of phase velocity and attenuation coefficient against 

wavenumber of interface between upper half-space and intermediate medium 

at Mat-II. 
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Figure 4. Variation of phase velocity and attenuation coefficient against 

wavenumber of interface between intermediate medium and lower half-space 

at Mat-I. 

 

Figure 5. Variation of phase velocity and attenuation coefficient against 

wavenumber of interface between intermediate medium and lower half-space 

at Mat-II. 

5. Conclusion 

Torsional wave propagation in magneto-poroelastic dissipative 

transversely isotropic medium sandwiched between two transversely 

isotropic poroelastic half-spaces all under initial stress is investigated in the 

framework of Biot’s theory. Employing the boundary conditions at the 
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interfaces, frequency equation is obtained. Frequency equation and 

attenuation coefficient are computed against wavenumber at the fixed 

heterogeneous and magneto-poroelastic coupling factor. From numerical 

results, it is seen that the phase velocity, in general, less than that of 

attenuation coefficient. 
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1413 , xx  respectively, 

5453 , aa  Similar expression as 1413 , aa  with 121144 ,, xxM  replaced 

by ,,, 141355 xxM  respectively, 

1413 , aa  Similar expression as 6463 , aa  with 14132 ,, xxa  replaced by 

,,, 12111 xxa  and multiplied by ,
2

44M
 M respectively, 

1413 , xx  Similar expression as 1211 , xx  with 1a  replaced by 2a  

respectively, 



INVESTIGATION OF TORSIONAL WAVE PROPAGATION … 

Advances and Applications in Mathematical Sciences, Volume 20, Issue 10, August 2021 

2417 


1413 , aa  Similar expression as 6463 , aa   with 14132 ,, xxa  replaced by 

12111 ,, xxa  and multiplied by ,
2

44M
 respectively, 


23a  Similar expression as 23a  with 1211 , xx  and positive sign replaced 

by 1112 , xx  and negative sign, respectively, 


24a Similar expression as 24a  with cos, sin and negative sign replaced 

by sin, cos and positive sign, respectively, 


2221 , aa  Similar expression as 3231 , aa   with multiplied by ,

2

55M
 

respectively, 


3433 , aa  Similar expression as 3433 , aa  with 1211 , xx  replaced by 

,, 1112 xx  respectively, 


43a  Similar expression as 43a  with 1413 , xx  replaced by 1314 , xx  

respectively, 


44a  Similar expression as 44a  with cos, sin and negative sign replaced 

by sin, cos and positive sign, respectively, 


53a  Similar expression as 53a  with 1413 , xx  and positive sign replaced 

by 1314 , xx  and negative sign, respectively, 


54a  Similar expression as 53a    with cos, sin and negative sign replaced 

by sin, cos and positive sign, respectively, 


5655 , aa  Similar expression as 3231 , aa   with multiplied by 

,
2

3

24

255 x

ax

e
M



 respectively, 


63a  Similar expression as 63a  with 1413 , xx  and positive sign replaced 

by 1314 , xx  and negative sign, respectively, 


64a  Similar expression as 63a   with ,, 1413 xx  cosh and negative sign 

replaced by ,, 1314 xx  sinh and positive sign, respectively, 
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
6665 , aa  Similar expression as 3231 , aa   with multiplied by ,3

24

2 x

ax

e



 

respectively, 

32 ; TT  Similar expression as 1T  with 43 , aa  replaced by 

11211187 ,;, aaaa  respectively, 

32 ; RR  Similar expression as 1R  with 43 , aa  replaced by 

11211187 ,;, aaaa  respectively. 


