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Abstract

In this paper, we give decompositions of continuity and some weaker forms of continuity

via idealization using the concepts of Ajg-sets, Bjjg-sets, Bgjg-sets, Bgjg-sets,

aAjg-sets, aCyg-sets and WLCg- sets.

1. Introduction

Ideal in topological spaces have been considered since 1966 by
Kuratowski [7] and Vaidyanathaswamy [14]. After several decades, in 1990,
Jankovic and Hammlet [4] investigated the topological ideals which is the
generalization of general topology. Whereas in 2010, Khan and Noiri [5]
introduced and studied the concept of semi local functions. In 2014, Shanthi

and Ramesh Kumar [11] introduced semi-Ig-open sets, pre- Ig-open sets
and o — Ig-open sets. In this paper we introduce the notions of Ajg-sets,

By g-sets, Byjg-sets, Bsjg-sets, aAjg-sets, aCjg-sets and WLC g - sets to
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obtain decomposition of some weaker forms of continuity. Let (X, t) be a

topological space and I is an ideal of subset of X. An ideal I on a topological
space (X, 1) is a collection of nonempty subsets of X which satisfies (i) A € I

and Bc A implies Be I and (i1) A el and B e I implies AuB e 1.
Given a topological space (X, t) with an ideal I on X and if ¢(X) is the set of

all subsets of X, a set operator (-)* : p(X) — @(X), called the local function of
A with respect to t and I, is defined as follows: for
Ac X, A"(I,71)={x e X[lUNnAgI for every U ent(x)] where
1(x) = {U € 1/x € U} (Kuratowski 1966). A Kuratowski closure operator

cl*(-) for a topology t*(I, 1), called the *-topology, finer than t is defined by
c*(A) = AU A*(I, 1) (Vaidyanathaswamy, 1945). When there is no chance
for confusion, we will simply write A* for A*(Z, 1) and t* or t*(I) for
(I, 7). If I is an ideal on X, then (X, t, I) is called an ideal space.

B={G-A/G e, Ael}isabasis for t* (Jankovic and Hamlett, 1992). If
A c X, cl(A) and int(A) will respectively denote the closure and the

interior of Ain (X, t) and int"(A) will denote the interior of A in (X, t*).

Definition 1.1. Let (X, 1) be a topological space. A subset A of X is said

to be semi open [8] if there exists an open set U in X such that

U c A c cl(U). The complement of a semi open set is said to be semi-closed.

The collection of semi open (resp. semi closed) sets in X is denoted by SO(X)
(resp. SC(X)). The semi closure of A in (X, t) is denoted by the intersection of

of all semi closed sets containing A and is denoted by scl(A).

Definition 1.2. For AcX,A.(I,71)={xeX/UnAg¢l for very
U € SO(X, x)} is called the semi-local function [5] of A with respect to I and
1, where SO(X, x) = {U € SO(X) : x € U}. We simply write A, instead of

A.(I, 7). Tt is given in [1] that t*(I) is a topology on X, generated by the sub
basis {U-E:U e SO(X) and E eI} or equivalently t™“(I)={UcX:

cl™(X-U)=X-U}. The closure operator cI*® for a topology t**(I) is defined
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as follows: for A ¢ X, cI™(A) = AU A, and int*(A) denote the interior of

the set A in (X, ™, I). It is known that t < t"(I) = t™(I). A subset A of
(X, t, I) is called semi-*-perfect [6] if A = A,, *-semi dense in itself [6]
(resp. semi-*-closed [6]) if A < A, (resp. A, < A).

Lemma 1.3 [5]. Let (X, 1, I) be an ideal space and A, B — X. Then for

the semi-local function the following properties hold:

(1) If A < B, then A, c B,.

@) If U e 1, then U N A, < (U N A),.

Definition 1.4. A subset A of a topological space X is said to be
(1) a-open [10] if A < int (cl(int (A))).

(i1) pre-open [9] if A < int (cl(A)).

(111) semi-open [8] if A < cl(int (A)).

Definition 1.5. A subset A of an ideal space (X, t, I) is said to be
(i) o — I-open [3] if A < int (c/*(int(A))).

(ii) pre-I- open [2] if A c int (cI*(A)).

(iii) semi -I- open [3] if A c cl*(int (A)).

Definition 1.6. A subset A of an ideal space (X, 1, I) is said to be
(i) o — Ig-open [11] if A c int (cI™(int(A))).

(ii) Pre-Ig-open [11] if A c int (cI™(A)).

(iii) Semi-Ig-open [11] if A < cI™(int (A)).

(iv) o — Ig-set [11] if int (cI**(int(A))) = int (A).

(v) Cig-set [11]if A=U NV, where U € © and Vis an o — Ig- set.
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(vi) Ig-locally closed set [13]if A =U NV, where U et and V, = V.

The family of all o — Ig-open (resp. semi-Ig-open, pre-Ig-open) sets in
an ideal space (X, 1, I) is denoted by aISO(X) (resp. SISO(X), PISO(X)).

Lemma 1.7 [11]. Let (X, 1, I) be an ideal space and A — X. Then the

following conditions are equivalent:

(1) A is open,;

(1)) Ais a — Ig-open and a Cig-set.

Lemmal.8 [12]. Let (X, t, I) be an ideal space and A — X. If U is open
in (X, 1, I), then U ncl™(A) c ™ (U N A).

Lemma 1.9 [12]. Let (X, 1, I) be an ideal space

1) If V € SISO(X) and A € alSO(X), then V n A € SISO(X)

(1) If V € PISO(X) and A € olSO(X), then V N A € PISO(X).

Lemma 1.10 [12]. Let (X, 1, I) be an ideal space. A subset A of X is
o — Ig- open if and only if it is semi-Ig-open and pre-Ig-open.

2. Ajg-sets and aAjg-sets

Definition 2.1. A subset A of an ideal space (X, 1, I) is called

(i) an Ajg-setif A = U NV, where Uis open and c/**(int (V)) = V.

(i) a Byjg-set if A=UnNV, where U is a—Ig-open and
cl*(int (V)) = X.

(iii) a Byjg-setif A =U NV, where Uis a — Ig-open and c/*(V) = X.

(iv) an oadjg-set if A=UnNV, where U is a-Ig-open and
c*(int (V) = V.

(v) an oCpg-set if A=UnNV, where U is o - Ig-open and

int(cl* (int (V))) < V.
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(vi)a WLCg-setif A =U NV, where Uis open and c/*(V) = V.
Proposition 2.1. Let (X, 1, I) be an ideal space and A — X. The

following properties hold:

(1) IfAisan Ajg-set, then Aisa Cig-set.

(i) If Ais a B;jg- set, then Ais a Byjg - set.

(i) If Ais an aAjg-set, then Ais a aCyg- set.

@iv) If Ais an Ajg-set, then A is an 0Ag - set.

) If Ais an I,- locally closed set, then A is a WLC g - set.

Proof. Obvious.

Remark 2.1. Converse of the Proposition 2.1 need not be true as seen
from the following examples.

Example 2.1. Let X ={a,b,c,d}, t={9, {a}, {b}, {a, b}, {a,d}, {a, b, d}, X}
and I ={¢,{b},{c},{b,c}}. Then (i) A =1{b, ¢, d}is a Cjg-set but it is not an
Ajg - set.

(i) A ={a, b, ¢} isa Byjg-set butitisnota Bjjg- set.

(i) A = {b, d} is a aCjg-set but it is not an aAjg - set.

(iv) A = {b, ¢} is a WLCg-set but it is not a Ig-locally closed set.

Example 2.2. Let X = {a, b, ¢}, 1 = {9, {a}, {a, ¢}, X} and I = {¢}. Then
A = {a, b} is an aAjg-set but it is not an Ajg- set.

Theorem 2.1. Let (X, t, I) be an ideal space and A — X. Then the
following conditions are equivalent:
(1) A is open;

(1) Ais o — I4-open and an Ajpg - set.

Proof. (i) = (i) If A is open then A =int(A)c cl™(int(A))
c int (c/**(int (A))).
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Hence A is a — I;-open. Since A = A n X where A is an open set and
cl™(int(X)) = X, A isan Ajg-set.

(i) = (i) By Lemma 1.7, [Proposition 4.16 of [11]] Ais o — I -open and a
Cis-set if and only if A is open. Thus applying Proposition 2.1, A is a
Cjs-set. Therefore, it follows that A is open.

Proposition 2.2. A subset A is an Ajg-set in an ideal space (X, t, I) if
and only if it is Semi-I,- open and a WLC g - set.

Proof. Necessity: Let A be an Ajg-set. Then A =U NV, where U et
and c/®(int(V))=V. By Lemma 1.8, we have A =U ncl™(int(V)) c
™ (U nint(V)) = ™ (int(U N V)) = cl™(int(A)). This shows that A is semi
-Ig-open. Moreover, cl™*(V) = cl™(cl™(int (V))) = c/*(int (V)) =V  and
hence A = U ncl™(V). Therefore, A is a WLC g - set.

Sufficiency: Suppose that A is Semi-Ig-open and a WLCg-set. Then
A=UnNV, where U is open and. cl™(V)=V. Since
A=UnV,AcU,AcV and hence AcUnc™A)cUnc™V)=
UNV =A. Therefore, we have A =Uncl™(A). Next, since A is
Semi-I;-open, we have cl™(int(A))> A and cl*(int(A)) o cI™(A).
Therefore, we obtain cl**(A) > cl™(int (cI*(A))) o cl™(int (A)) o cl™(A)
and hence cl™(int (c/**(A))) = cI**(A). This shows that A is an Ajg- set.

Proposition 2.3. For an ideal space(X, 1, I), every aAjg-set is semi
-Ig-open.

Proof. Let A be an aAjg-setin (X, 1, I). Then A =U NV, where U is
a — Ig-open and cl**(int(V)) = V. Therefore V is semi-Ig-open. By Lemma
1.9 (1), A is a semi-Ig- open set.

Theorem 2.2. Let (X, 1, I) be an ideal space and A — X. Then A is an
Ajgg-setif and only if Ais an aAjyg-set and a WLC g - set.
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Proof. Necessity: By Proposition 2.1, every Ajg-set is an adjg-set. By
Proposition 2.2, A is a WLC g - set.

Sufficiency: Let A be an aAjg-set and a WLCg-set in (X, 1, I). By
Proposition 2.3, A is also Semi-Ig-open. Thus it follows from Proposition 2.2
that Ais an Ajg-set.

Proposition 2.4. For an ideal space (X, t, I), every Bgjg-set is
pre-Ig-open.

Proof. Let A be a Byjg-set. Then A =U NV, where Uis a — Ig-open
and cI™(V)= X and hence V is pre-Ig-open. By Lemma 1.9 (ii), 4 is a
pre-Ig-open set.

Theorem 2.3. Let (X, 1, I) be an ideal space and A — X. Then A is
o — Ig-open if and only if A is a Bgjg-set and an aAjg - set.

Proof. The necessity is obvious.

Sufficiency: Let A be a Bgjg-set and an oAjg-set. By Proposition 2.4, A
is pre-Ig-open. By Proposition 2.3, A is also semi-Ig-open. By Lemma 1.10,
Ais o — Ig-open.

Theorem 2.4. Let (X, 1, I) be an ideal space and A — X. Then the
following conditions are equivalent:

(1) A is open;

(1) A is a Bgjg-set, an aAjg-set and a WLC g - set.

Proof. A is open if and only if A is o — I;-open and an Ajg-set by
Theorem 2.1. By Theorem 2.2, A is Ajg-set if and only if A is an aAjg-set
and a WLC g - set. Thus it follows from the Theorem 2.3 that A is open if and
only if Ais a Bgjg-set, an adjg-set and a WLC g - set.

3. Decompositions of Continuity

Definition 3.1. A function f:(X,t, I)—> (Y,0) is said to be

o — I- continuous [3] (resp. semi-I- continuous [3], pre-I- continuous [2]) if
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for every V e o, fﬁl(V) is an o — I-open set (resp. semi-I-open set,
pre-I- open set) of (X, 1, I).

Definition 3.2. A function f:(X,t,I)— (Y,c) is said to be
o — Ig-continuous [11] (resp. semi-Ig-continuous [11], pre-Ig-continuous

[11]) if for every V e o, fﬁl(V) is an o — Ig-open set (resp. semi-Ig-open
set, pre-Ig-open set) of (X, 1, I).

Definition 38.3. A function f:(X, 1, I) > (Y, c) is Ajg-continuous,

resp. Bjjg-continuous, Byjg-continuous, aAjg-continuous, aCjg-
11S 21IS IS IS

continuous, weakly —Ig — LC-continuous) if for every V e o, f_l(V) is an
Ajg-set (resp. a Bjjg-set, a Bgjg-set, an oadjg-set, an aCjg-set, a
WLC g - set) of (X, 1, I).

Theorem 3.1. Let (X, 1, I) be an ideal space. For a function
f:(X, 1, I)— (Y, o) the following conditions are equivalent:

() fis a — Ig- continuous;
(ii) f is semi-Ig- continuous and pre-1g- continuous;
(ii1) fis Bgjg - continuous and aAjg- continuous.

Proof. This is an immediate consequence of Lemma 1.10 and Theorem
2.3.

Theorem 3.2. Let (X,rt,I) be an ideal space. For a function
f:(X, 1, I)— (Y, o) the following conditions are equivalent:

() fis Ajg-continuous;
(1i) f is semi-Ig- continuous and weakly —Ig — LC- continuous;
(iii) fis 0Ajg- continuous and weakly —Ig — LC- continuous.

Proof. This is an immediate consequence of Proposition 2.2 and Theorem
2.2.
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Theorem 3.3. Let (X, 1, I) be an ideal space. For a function
f:(X, 1, I) > (Y, o) the following conditions are equivalent:
(1) f is continuous;

(i) fis a — Ig-continuous and Ajg- continuous;

(i) f is  Bgjg-continuous, 0Ajg-continuous and  weakly

—Ig — LC- continuous.

Proof. This is an immediate consequence of Theorem 2.1 and Theorem
2.4.

References

[1] M. E. Abd El-Monsef, E. F. Lashien and A. A. Nasef, Some topological operators via
ideals, Kyungpook Math. J., 32(2) (1992), 273-284.

[2] J. Dontchev, Idealization of Ganster-Reilly decomposition theorems,
http://arxiv.org/abs/Math.GN/9901017,5 Jan.1999

[8] E. Hatir and T. Noiri, On decompositions of continuity via idealization, Acta. Math.
Hunger. 96 (2002), 341-349.

[3] D. Jankovic and T. R. Hamlett, New topologies from old via ideals, Amer. Math.
Monthly, 97 (1990), 295-310.

[4] M. Khan and T. Noiri, Semi-local functions in ideal topological spaces, J. Adv. Res. Pure
Math. 2 (2010), 36-42.

[6] M. Khan and T. Noiri, On g-I closed sets in ideal topological spaces, J. Adv. Stud. in
Top.,(2010), 29-33.

[6] K. Kuratowski, Topology, Vol.I, Academicpress, New York, 1966.

[71 N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math.
Monthly, 70 (1963), 36-41.

[8] A. S. Mashhour, M. E. Abd. El-Monsef and S. N. El-deeb, On pre-continuous and weak
pre continuous mappings, Pro. Math. Phys. Soc. Egypt, 53 (1982), 47-53.

[9] O. Njasted, On some nearly open sets, Pacific J. Math. 15 (1965), 961-970.

[10] R. Shanthi and M. Rameshkumar, A decomposition of continuity in ideal topological
spaces by using semi-local functions, Asian J. Math. Appl. (2014), 1-11.

[11] R. Shanthi and M. Rameshkumar, On o — I5-open sets and a — Ig-continuous

functions, J. Math. Comput. Sci. 5(5) (2015), 615-625.

[12] R. Shanthi and M. Ramesh Kumar, f7; and Regular -I;- closed sets in Ideal Topological
Spaces, Int. J. Pure and Appl. Math 113(13) (2017), 163-171.
[13] R. Vaidyanathaswamy, Set Topology, Chelsea Publishing Company, 1960.

Advances and Applications in Mathematical Sciences, Volume ..., Issue ..., 2019



