

ON DECOMPOSITIONS OF CONTINUITY AND SOME WEAKER FORMS OF CONTINUITY VIA IDEALIZATION

V. JEYANTHI and R. RAJESWARI

Department of Mathematics Government Arts College for Women Sivagangai-630562, Tamil Nadu, India

Department of Mathematics Thasim Beevi Abdul Kader College for women (Autonomous) Kilakarai, Tamil Nadu, India E-mail: jeykaliappa@gmail.com rajisankerklk@gmail.com

Abstract

In this paper, we give decompositions of continuity and some weaker forms of continuity via idealization using the concepts of A_{IS} -sets, B_{1IS} -sets, B_{2IS} -sets, B_{3IS} -sets, αA_{IS} -sets, αC_{IS} -sets and WLC_{IS} -sets.

1. Introduction

Ideal in topological spaces have been considered since 1966 by Kuratowski [7] and Vaidyanathaswamy [14]. After several decades, in 1990, Jankovic and Hammlet [4] investigated the topological ideals which is the generalization of general topology. Whereas in 2010, Khan and Noiri [5] introduced and studied the concept of semi local functions. In 2014, Shanthi and Ramesh Kumar [11] introduced semi- I_S -open sets, pre- I_S -open sets and $\alpha - I_S$ -open sets. In this paper we introduce the notions of A_{IS} -sets, B_{1IS} - sets, B_{2IS} -sets, B_{3IS} - sets, αA_{IS} - sets, αC_{IS} - sets and WLC_{IS} - sets to

2010 Mathematics Subject Classification: 54A05, 54A10.

Received July 12, 2019; Accepted September 25, 2019

Keywords: semi- I_S -open sets, pre- I_S -open sets, $\alpha - I_S$ -open sets, αA_{IS} -sets, B_{1IS} -sets, B_{2IS} -sets, αA_{IS} -sets, αC_{IS} -sets and WLC_{IS} -sets.

obtain decomposition of some weaker forms of continuity. Let (X, τ) be a topological space and I is an ideal of subset of X. An ideal I on a topological space (X, τ) is a collection of nonempty subsets of X which satisfies (i) $A \in I$ and $B \subset A$ implies $B \in I$ and (ii) $A \in I$ and $B \in I$ implies $A \cup B \in I$. Given a topological space (X, τ) with an ideal I on X and if $\wp(X)$ is the set of all subsets of X, a set operator $(\cdot)^* : \wp(X) \to \wp(X)$, called the local function of with respect to τ and I, isdefined follows: Α \mathbf{as} for $A \subset X, A^*(I, \tau) = \{x \in X / U \cap A \notin I\}$ for $U \in \tau(x)$ every where $\tau(x) = \{U \in \tau/x \in U\}$ (Kuratowski 1966). A Kuratowski closure operator $cl^*(\cdot)$ for a topology $\tau^*(I, \tau)$, called the *-topology, finer than τ is defined by $cl^*(A) = A \cup A^*(I, \tau)$ (Vaidyanathaswamy, 1945). When there is no chance for confusion, we will simply write A^* for $A^*(I, \tau)$ and τ^* or $\tau^*(I)$ for $\tau^*(I, \tau)$. If I is an ideal on X, then (X, τ, I) is called an ideal space. $\beta = \{G - A/G \in \tau, A \in I\}$ is a basis for τ^* (Jankovic and Hamlett, 1992). If $A \subset X$, cl(A) and int (A) will respectively denote the closure and the interior of A in (X, τ) and $int^*(A)$ will denote the interior of A in (X, τ^*) .

Definition 1.1. Let (X, τ) be a topological space. A subset A of X is said to be semi open [8] if there exists an open set U in X such that $U \subset A \subset cl(U)$. The complement of a semi open set is said to be semi-closed. The collection of semi open (resp. semi closed) sets in X is denoted by SO(X) (resp. SC(X)). The semi closure of A in (X, τ) is denoted by the intersection of of all semi closed sets containing A and is denoted by scl(A).

Definition 1.2. For $A \subset X, A_*(I, \tau) = \{x \in X/U \cap A \notin I \text{ for very } U \in SO(X, x)\}$ is called the semi-local function [5] of A with respect to I and τ , where $SO(X, x) = \{U \in SO(X) : x \in U\}$. We simply write A_* instead of $A_*(I, \tau)$. It is given in [1] that $\tau^{*s}(I)$ is a topology on X, generated by the sub basis $\{U - E : U \in SO(X) \text{ and } E \in I\}$ or equivalently $\tau^{*s}(I) = \{U \subset X: cl^{*s}(X-U) = X-U\}$. The closure operator cl^{*s} for a topology $\tau^{*s}(I)$ is defined

as follows: for $A \subseteq X$, $cl^{*s}(A) = A \cup A_*$ and $int^{*s}(A)$ denote the interior of the set A in (X, τ^{*s}, I) . It is known that $\tau \subset \tau^*(I) \subset \tau^{*s}(I)$. A subset A of (X, τ, I) is called semi-*-perfect [6] if $A = A_*$, *-semi dense in itself [6] (resp. semi-*-closed [6]) if $A \subset A_*$ (resp. $A_* \subset A$).

Lemma 1.3 [5]. Let (X, τ, I) be an ideal space and $A, B \subset X$. Then for the semi-local function the following properties hold:

- (i) If $A \subset B$, then $A_* \subset B_*$.
- (ii) If $U \in \tau$, then $U \cap A_* \subset (U \cap A)_*$.

Definition 1.4. A subset *A* of a topological space *X* is said to be

- (i) α -open [10] if $A \subset \operatorname{int} (cl(\operatorname{int} (A)))$.
- (ii) pre-open [9] if $A \subset int(cl(A))$.
- (iii) semi-open [8] if $A \subset cl$ (int (A)).

Definition 1.5. A subset *A* of an ideal space (X, τ, I) is said to be

(i) $\alpha - I$ - open [3] if $A \subset \operatorname{int} (cl^*(\operatorname{int}(A)))$.

(ii) pre-*I*- open [2] if $A \subset \operatorname{int} (cl^*(A))$.

(iii) semi -*I*- open [3] if $A \subset cl^*(int(A))$.

Definition 1.6. A subset *A* of an ideal space (X, τ, I) is said to be

- (i) αI_S -open [11] if $A \subset \operatorname{int}(cl^{*s}(\operatorname{int}(A)))$.
- (ii) Pre- I_S -open [11] if $A \subset \operatorname{int}(cl^{*s}(A))$.
- (iii) Semi- I_S -open [11] if $A \subset cl^{*s}(int(A))$.
- (iv) $\alpha^* I_S$ -set [11] if int $(cl^{*s}(int(A))) = int(A)$.
- (v) C_{IS} -set [11] if $A = U \cap V$, where $U \in \tau$ and V is an $\alpha^* I_S$ -set.

(vi) I_S -locally closed set [13] if $A = U \cap V$, where $U \in \tau$ and $V_* = V$.

The family of all $\alpha - I_S$ -open (resp. semi- I_S -open, pre- I_S -open) sets in an ideal space (X, τ, I) is denoted by $\alpha ISO(X)$ (resp. SISO(X), PISO(X)).

Lemma 1.7 [11]. Let (X, τ, I) be an ideal space and $A \subset X$. Then the following conditions are equivalent:

(i) A is open;

(ii) A is $\alpha - I_S$ -open and a C_{IS} -set.

Lemma1.8 [12]. Let (X, τ, I) be an ideal space and $A \subset X$. If U is open in (X, τ, I) , then $U \cap cl^{*s}(A) \subset cl^{*s}(U \cap A)$.

Lemma 1.9 [12]. Let (X, τ, I) be an ideal space

(i) If $V \in SISO(X)$ and $A \in \alpha ISO(X)$, then $V \cap A \in SISO(X)$

(ii) If $V \in PISO(X)$ and $A \in \alpha ISO(X)$, then $V \cap A \in PISO(X)$.

Lemma 1.10 [12]. Let (X, τ, I) be an ideal space. A subset A of X is $\alpha - I_S$ - open if and only if it is semi- I_S - open and pre- I_S - open.

2. A_{IS} - sets and αA_{IS} - sets

Definition 2.1. A subset *A* of an ideal space (X, τ, I) is called

(i) an A_{IS} -set if $A = U \cap V$, where U is open and $cl^{*s}(int(V)) = V$.

(ii) a B_{1IS} -set if $A = U \cap V$, where U is $\alpha - I_S$ -open and $cl^{*s}(int(V)) = X$.

(iii) a B_{2IS} -set if $A = U \cap V$, where U is $\alpha - I_S$ -open and $cl^{*s}(V) = X$.

(iv) an αA_{IS} -set if $A = U \cap V$, where U is $\alpha - I_S$ -open and $cl^{*s}(int(V)) = V$.

(v) an αC_{IS} -set if $A = U \cap V$, where U is $\alpha - I_S$ -open and $\operatorname{int}(cl^{*s}(\operatorname{int}(V))) \subset V$.

(vi) a WLC_{IS} -set if $A = U \cap V$, where U is open and $cl^{*s}(V) = V$.

Proposition 2.1. Let (X, τ, I) be an ideal space and $A \subset X$. The following properties hold:

(i) If A is an A_{IS} -set, then A is a C_{IS} -set.

(ii) If A is a B_{1IS} - set, then A is a B_{2IS} - set.

(iii) If A is an αA_{IS} - set, then A is a αC_{IS} - set.

(iv) If A is an A_{IS} - set, then A is an αA_{IS} - set.

(v) If A is an I_s -locally closed set, then A is a WLC_{IS}-set.

Proof. Obvious.

Remark 2.1. Converse of the Proposition 2.1 need not be true as seen from the following examples.

Example 2.1. Let $X = \{a, b, c, d\}, \tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, d\}, \{a, b, d\}, X\}$ and $I = \{\phi, \{b\}, \{c\}, \{b, c\}\}$. Then (i) $A = \{b, c, d\}$ is a C_{IS} -set but it is not an A_{IS} -set.

(ii) $A = \{a, b, c\}$ is a B_{2IS} - set but it is not a B_{1IS} - set.

(iii) $A = \{b, d\}$ is a αC_{IS} -set but it is not an αA_{IS} -set.

(iv) $A = \{b, c\}$ is a WLC_{IS} - set but it is not a I_S - locally closed set.

Example 2.2. Let $X = \{a, b, c\}, \tau = \{\phi, \{a\}, \{a, c\}, X\}$ and $I = \{\phi\}$. Then $A = \{a, b\}$ is an αA_{IS} -set but it is not an A_{IS} -set.

Theorem 2.1. Let (X, τ, I) be an ideal space and $A \subset X$. Then the following conditions are equivalent:

(i) A is open;

(ii) A is $\alpha - I_s$ -open and an A_{IS} -set.

Proof. (i) \Rightarrow (ii) If A is open then $A = \operatorname{int} (A) \subset cl^{*s}(\operatorname{int} (A))$ $\subset \operatorname{int} (cl^{*s}(\operatorname{int} (A))).$

Hence A is $\alpha - I_s$ -open. Since $A = A \cap X$ where A is an open set and $cl^{*s}(int(X)) = X$, A is an A_{IS} -set.

(ii) \Rightarrow (i) By Lemma 1.7, [Proposition 4.16 of [11]] A is $\alpha - I_s$ -open and a C_{IS} -set if and only if A is open. Thus applying Proposition 2.1, A is a C_{IS} -set. Therefore, it follows that A is open.

Proposition 2.2. A subset A is an A_{IS} -set in an ideal space (X, τ, I) if and only if it is Semi- I_s - open and a WLC_{IS}-set.

Proof. Necessity: Let A be an A_{IS} -set. Then $A = U \cap V$, where $U \in \tau$ and $cl^{*s}(\operatorname{int}(V)) = V$. By Lemma 1.8, we have $A = U \cap cl^{*s}(\operatorname{int}(V)) \subset$ $cl^{*s}(U \cap \operatorname{int}(V)) = cl^{*s}(\operatorname{int}(U \cap V)) = cl^{*s}(\operatorname{int}(A))$. This shows that A is semi $-I_S$ -open. Moreover, $cl^{*s}(V) = cl^{*s}(cl^{*s}(\operatorname{int}(V))) = cl^{*s}(\operatorname{int}(V)) = V$ and hence $A = U \cap cl^{*s}(V)$. Therefore, A is a WLC_{IS} -set.

Sufficiency: Suppose that A is Semi- I_S -open and a WLC_{IS} -set. Then $A = U \cap V$, where U is open and. $cl^{*s}(V) = V$. Since $A = U \cap V$, $A \subset U$, $A \subset V$ and hence $A \subset U \cap cl^{*s}(A) \subset U \cap cl^{*s}(V) = U \cap V = A$. Therefore, we have $A = U \cap cl^{*s}(A)$. Next, since A is Semi- I_s -open, we have $cl^{*s}(\operatorname{int}(A)) \supset A$ and $cl^{*s}(\operatorname{int}(A)) \supset cl^{*s}(A)$. Therefore, we obtain $cl^{*s}(A) \supset cl^{*s}(\operatorname{int}(cl^{*s}(A))) \supset cl^{*s}(\operatorname{int}(A)) \supset cl^{*s}(A)$ and hence $cl^{*s}(\operatorname{int}(cl^{*s}(A))) = cl^{*s}(A)$. This shows that A is an A_{IS} -set.

Proposition 2.3. For an ideal space (X, τ, I) , every αA_{IS} -set is semi $-I_S$ -open.

Proof. Let A be an αA_{IS} -set in (X, τ, I) . Then $A = U \cap V$, where U is $\alpha - I_S$ -open and $cl^{*s}(int(V)) = V$. Therefore V is semi- I_S -open. By Lemma 1.9 (i), A is a semi- I_S -open set.

Theorem 2.2. Let (X, τ, I) be an ideal space and $A \subset X$. Then A is an A_{IS} -set if and only if A is an αA_{IS} -set and a WLC_{IS}-set.

Proof. Necessity: By Proposition 2.1, every A_{IS} -set is an αA_{IS} -set. By Proposition 2.2, A is a WLC_{IS} -set.

Sufficiency: Let A be an αA_{IS} -set and a WLC_{IS} -set in (X, τ, I) . By Proposition 2.3, A is also Semi- I_S -open. Thus it follows from Proposition 2.2 that A is an A_{IS} -set.

Proposition 2.4. For an ideal space (X, τ, I) , every B_{2IS} -set is pre- I_S -open.

Proof. Let A be a B_{2IS} -set. Then $A = U \cap V$, where U is $\alpha - I_S$ -open and $cl^{*s}(V) = X$ and hence V is pre- I_S -open. By Lemma 1.9 (ii), A is a pre- I_S -open set.

Theorem 2.3. Let (X, τ, I) be an ideal space and $A \subset X$. Then A is $\alpha - I_S$ -open if and only if A is a B_{2IS} -set and an αA_{IS} -set.

Proof. The necessity is obvious.

Sufficiency: Let A be a B_{2IS} -set and an αA_{IS} -set. By Proposition 2.4, A is pre- I_S -open. By Proposition 2.3, A is also semi- I_S -open. By Lemma 1.10, A is $\alpha - I_S$ -open.

Theorem 2.4. Let (X, τ, I) be an ideal space and $A \subset X$. Then the following conditions are equivalent:

(i) A is open;

(ii) A is a B_{2IS} -set, an αA_{IS} -set and a WLC_{IS}-set.

Proof. A is open if and only if A is $\alpha - I_s$ -open and an A_{IS} -set by Theorem 2.1. By Theorem 2.2, A is A_{IS} -set if and only if A is an αA_{IS} -set and a WLC_{IS} -set. Thus it follows from the Theorem 2.3 that A is open if and only if A is a B_{2IS} -set, an αA_{IS} -set and a WLC_{IS} -set.

3. Decompositions of Continuity

Definition 3.1. A function $f: (X, \tau, I) \to (Y, \sigma)$ is said to be $\alpha - I$ -continuous [3] (resp. semi-*I*-continuous [3], pre-*I*-continuous [2]) if

for every $V \in \sigma$, $f^{-1}(V)$ is an $\alpha - I$ -open set (resp. semi-*I*-open set, pre-*I*-open set) of (X, τ, I) .

Definition 3.2. A function $f: (X, \tau, I) \to (Y, \sigma)$ is said to be $\alpha - I_S$ -continuous [11] (resp. semi- I_S -continuous [11], pre- I_S -continuous [11]) if for every $V \in \sigma$, $f^{-1}(V)$ is an $\alpha - I_S$ -open set (resp. semi- I_S -open set, pre- I_S -open set) of (X, τ, I) .

Definition 3.3. A function $f: (X, \tau, I) \to (Y, \sigma)$ is A_{IS} -continuous, (resp. B_{1IS} -continuous, B_{2IS} -continuous, αA_{IS} -continuous, αC_{IS} continuous, weakly $-I_S - LC$ -continuous) if for every $V \in \sigma$, $f^{-1}(V)$ is an A_{IS} -set (resp. a B_{1IS} -set, a B_{2IS} -set, an αA_{IS} -set, an αC_{IS} -set, a WLC_{IS} -set) of (X, τ, I) .

Theorem 3.1. Let (X, τ, I) be an ideal space. For a function $f : (X, \tau, I) \rightarrow (Y, \sigma)$ the following conditions are equivalent:

- (i) f is αI_S -continuous;
- (ii) f is semi- I_S continuous and pre- I_S continuous;
- (iii) f is B_{2IS} continuous and αA_{IS} continuous.

Proof. This is an immediate consequence of Lemma 1.10 and Theorem 2.3.

Theorem 3.2. Let (X, τ, I) be an ideal space. For a function $f : (X, \tau, I) \rightarrow (Y, \sigma)$ the following conditions are equivalent:

- (i) f is A_{IS} continuous;
- (ii) f is semi- I_S continuous and weakly $-I_S$ LC- continuous;
- (iii) f is αA_{IS} continuous and weakly $-I_S$ LC-continuous.

Proof. This is an immediate consequence of Proposition 2.2 and Theorem 2.2.

Theorem 3.3. Let (X, τ, I) be an ideal space. For a function $f : (X, \tau, I) \rightarrow (Y, \sigma)$ the following conditions are equivalent:

- (i) *f* is continuous;
- (ii) f is αI_S -continuous and A_{IS} -continuous;

(iii) f is B_{2IS} -continuous, αA_{IS} -continuous and weakly $-I_S - LC$ -continuous.

Proof. This is an immediate consequence of Theorem 2.1 and Theorem 2.4.

References

- M. E. Abd El-Monsef, E. F. Lashien and A. A. Nasef, Some topological operators via ideals, Kyungpook Math. J., 32(2) (1992), 273-284.
- J. Dontchev, Idealization of Ganster-Reilly decomposition theorems, http://arxiv.org/abs/Math.GN/9901017,5 Jan.1999
- [3] E. Hatir and T. Noiri, On decompositions of continuity via idealization, Acta. Math. Hunger. 96 (2002), 341-349.
- [3] D. Jankovic and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97 (1990), 295-310.
- [4] M. Khan and T. Noiri, Semi-local functions in ideal topological spaces, J. Adv. Res. Pure Math. 2 (2010), 36-42.
- [5] M. Khan and T. Noiri, On g-I closed sets in ideal topological spaces, J. Adv. Stud. in Top.,(2010), 29-33.
- [6] K. Kuratowski, Topology, Vol.I, Academicpress, New York, 1966.
- [7] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36-41.
- [8] A. S. Mashhour, M. E. Abd. El-Monsef and S. N. El-deeb, On pre-continuous and weak pre continuous mappings, Pro. Math. Phys. Soc. Egypt, 53 (1982), 47-53.
- [9] O. Njasted, On some nearly open sets, Pacific J. Math. 15 (1965), 961-970.
- [10] R. Shanthi and M. Rameshkumar, A decomposition of continuity in ideal topological spaces by using semi-local functions, Asian J. Math. Appl. (2014), 1-11.
- [11] R. Shanthi and M. Rameshkumar, On αI_s -open sets and αI_s -continuous functions, J. Math. Comput. Sci. 5(5) (2015), 615-625.
- [12] R. Shanthi and M. Ramesh Kumar, f_{Is} and Regular I_s -closed sets in Ideal Topological Spaces, Int. J. Pure and Appl. Math 113(13) (2017), 163-171.
- [13] R. Vaidyanathaswamy, Set Topology, Chelsea Publishing Company, 1960.