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Abstract

In this paper, drastic product of two fuzzy graphs is defined and some of its properties are
studied with examples. Effective property and regular property of drastic product of two fuzzy
graphs are studied and degree of vertex in drastic product of two fuzzy graphs is given.

Truncations of drastic sum of two fuzzy graphs are discussed.

1. Introduction

Azriel Rosenfeld introduced and studied certain properties of fuzzy
graphs in 1975 [9]. Fuzzy graphs have vast range of applications. J. N.
Mordeson and C. S. Peng introduced operations on fuzzy graphs and studied
some of the operations and their properties [3]. Regular properties of fuzzy
graphs [7] and properties of truncations of fuzzy graphs are given by A.
Nagoorgani and K. Radha [8].
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1. Preliminaries

Definition 1.1 [9]. A fuzzy graph G is a pair of functions G : (o, p)

where ¢ is a fuzzy subset of a non empty set V and p is a symmetric fuzzy

relation on o satisfying the condition p(uww) < o(u) A o(v). The underlying

crisp graph of G : (o, pn) isdenoted by G*(V, E) where E c vV x V.

Definition 1.2 [9]. The degree of a vertex u 1is defined as
dg () =Y ,., wn(w). Thiscan also be expressed as dg (v) = ¥, _, n(uw)

Definition 1.3 [7]. Let G : (o, p) be a fuzzy graph on ¢ (v, E). If
dg (v) = k for all v e v, that is, if each vertex has same degree k, then G is

said to be a regular fuzzy graph of degree k or a k-regular fuzzy graph.
Definition 1.4 [9]. Let G : (5, 1) be a fuzzy graph on ¢ * (v, E). A fuzzy
graph H : (a, p) on H (V', E') is said to a fuzzy subgraph of G : (o, pn) if it

satisfies a(z) < o(x) forall win V and B(uwv ) < p(w ) for all uvin E’.

Definition 1.5 [4]. The lower and upper truncations of ¢ at level

t, 0 <t <1, are the fuzzy subsets o, and ") defined respectively by,

[G(u),ifuect [ ¢, if ueo

G(t)(u) = and G(l)(u) =
[ 0,if ueo lo(u), if u g o’

Definition 1.6 [5]. Let G, : (c,, n;) and G, : (o4, ny) be two fuzzy
graphs with underlying crisp graphs G, : (v,, E;) and G, : (V,, E,)
respectively. The drastic sum of G, and G, 1s a fuzzy graph

(o U Gg, Hy U ng)on (v, UV,, E; UE,) defined by

[oy(uw), if w e V,yand u ¢ V,
(01U02)(u):l02(u),if ueVyand u ¢ Vy
[ 1,if w eV, NV,
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(uy(uv), if wv € E; and wv ¢ E,
(1 U po)(uwv) =4 py(u), if wwo € E; and w ¢ E,
t 1,if w e E; N E,.

Definition 1.7 [6]. Drastic product of two fuzzy sets 4, and 4, is
defined as

(g, ()i pg, () =1
uAlhAz(x) = J HAZ(JC), if “Al(x) =1
0, if py (%), my,(x) <1
Definition 1.8 [2]. A fuzzy set u, of A is called normalized fuzzy set if

pa(x)=1.
2. Drastic Product of Two Fuzzy Graphs

Definition 2.1. Let G, : (¢,, p;) and G, : (o4, ny) be two fuzzy graphs
with underlying crisp graphs G, : (v,, E,) and G, : (V,, E,) respectively.
Define s, N6, and n;, Nu, on vV, NV, and E, N E, respectively by

[ oy(u), if og(u) =1

(6, Noy)(w) =1 oy(u) if oy(u)=1
[0, i o, (u), o) <1

and

(up(w), i g (ww) =1
(my Nopg)(uww) =4 py(wo), if py(w) =1

LO, if py(wv), py(uww) <1

Now we have to prove that the drastic product of two fuzzy graphs is also

a fuzzy graph. For that we have to prove that
(nq N py)(wv) < (o N 6y)(u) A (o N cy)(v) for all w ¢ E and wu,v e V.

Consider three cases (1) p,(wv) = 1, (2) py(w) =1 and (3) p, (w), py(uw) < 1.

Case 1. p,(w) = 1.

(my Noug)(wo) = ny (w).
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Since y,(uv)=1, we have o,(z)-1,0,(v)=1 and therefore (o, No,)(u)=0y, ()
and  (6;Noy)()=0y(0). (g Nuy)(uw)=py(w)<oy(w)acy(v)=(c; Noy)(w)a

(6, N oy) ()
Case 2. u, (w) = 1. The proof is same as in case (1).
Case 3. p,(w), py(uv) < 1. (n; N py)(uw) = 0.
Therefore, (u; N py)(ww) < (o, N oy) () A (o, N oy) ().

Hence, (s, N o,, u; N uy) is a fuzzy graph on (v, N V,, E, N E,). Thisis

called the drastic product of two fuzzy graphs G, : (c,,n;) and G, : (o4, py).

Remark. The drastic product of two fuzzy sets can be defined only when

6., 05, n; and p, are normalized fuzzy sets.

Example 2.2

uy (L) 1y (0.7) 0.5 Uy (1) us(0.7)
. ‘ I

/ N\

VAN /

1/ \ 0.8 0.4 os /
7 \
i A\ /
/ \ /
N\
/ \ /
(Y Y ® [ ]
us (1) 0.8 uz(1) u3(0.5) U3 (1) 15(0.5)

Gy Gs G, NG,

Figure 2.1.
In this example, G, and G, are two fuzzy graphs. Here,
oy(u;)=1,i=1,2,3 and py(ugug) = 1. Therefore, (o, N 69)(u;) = og(u;)

forall u; and (u, N py) (wyuy) = wy(uyuy).
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Example 2.3.

g (1) 1 ua(1) u(0.6) 0.2 ug(0.2) 1y (0.6)
T
0.2 0.4 04
1u3(0.2) Uz (0.7) u3(0.7)
Gy G, G NG,

Figure 2.2.
In this graph, o,(x;)=1,i=1,2 and p,(u,u,)=1. Therefore,

(o, N 69)(u;) = oy(u;) for i =1, 2 and (y, N o) (uqjug) = ngluquy).
3. Degrees of Vertices of Drastic Product of Two Fuzzy Graphs

In this section, we obtain the formulae for finding the degrees of vertices

of two fuzzy graphs in terms of degrees of the two fuzzy graphs.

Theorem 3.1. Let G, : (c,, n;) and G, : (o4, ny) be two fuzzy graphs.

The degree of vertex in the drastic product of two fuzzy graphs is given by

dGthZ(u)= ZuZ(uv)+ Z”l(uv)—m,

ny (w )=1 no (w )=1
where m is the number of edges in E, N E, such that p,(w) = py(uwv) = 1.

Proof. Let ¢, and G, be two fuzzy graphs with underlying crisp graphs

G, and G,. By definition,

Ao g, @)= Y G N ug) ()
uv eElﬂEz
= sz(uv)Jr zHl(uv)— ZI.
ny(w )=1 o (w)=1 ny(w )=pg (w )=1

Since the value 1 corresponding to p, (uw) - py(uww) = 1 appears in both of

the first two sums,
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dg hg, @) = Z o (uv) + z py(ww) - m.
uy (w )=1 wy (w)=1
Theorem 3.2. Let G, : (o,, n;) and G, : (o4, ny) be two fuzzy graphs
with underlying crisp graphs G| : (v,, E,) and G, : (V,, E,) respectively.
Let wevinv, If pw)=1 and pupy(w)<1 for every edge

w e E; N E,, dGthZ(u) = dGlﬂGZ(u)'

Proof. Since p, (uv) = 1 and p,(w) < 1 for every edge w e E, N E,,

dGthz(u) = z no(wv) = Z py(wo) A py = dg g, ()
py (w )=1 weE NE,

Theorem 3.3. Let G, : (c,, n;) and G, : (o4, ny) be two fuzzy graphs
with underlying crisp graphs G, : (v,, E,) and G, : (V,, E,) respectively.
Let w e V,NVy. If w;(w)<1,i=1,2 for every edge w < E, N E,, then

d ) = 0 or uis an isolated vertex.

6,nG, ¥
Proof. Let p,(w)<1,i=1,2 for every edge wv e E, N E,. Then,

(1, Nuy)(w) = 0 for every edge ww < E, N E,. Therefore, d = 0.

6, nG, *)

Example 3.2. In example 2.2, u,(u,u,) = 1. Therefore degree of the

vertices u; and u, 1s dg, (u;) and dg  (u,) respectively.

4. Regular Properties of Drastic Product of Two Fuzzy Graphs

In this section we study some regular properties of drastic product of two
fuzzy graphs.

Theorem 4.1. Let G, : (c,, n;) and G, : (o4, ny) be two fuzzy graphs
with underlying crisp graphs G, : (V,, E,) and G, : (V,, E,) respectively.
Let p,(e) =1 and p,(e) <1 for every edge wv e E, N E,. Then G, N G, is

regular fuzzy graph if and only if G, N G, is a regular fuzzy graph.
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Proof. By Theorem 3.2, if v ¢ Vv, NV, with y;(w)=1 and p,(w) =1

for every edge wv ¢ E, N E,, then dalhaz(”) = dg ng, @)

Therefore G, N G, is regular fuzzy graph if and only if ¢, NG, is a

regular fuzzy graph.

5. Truncations on Drastic Sum of Two Fuzzy Graphs
Theorem 5.1. G, U Gy, is a fuzzy subgraph of (G, U G;),.
Proof. First we prove that (s, U o), > 014 U o)

IfueV, -Vy(o, Uoy)y) = oyp)@) = (014 U os0))) @)

If uc Vy, (0, Uoy)y, @) = oy0)(®) = (514) U oy0)),) (@)

Let u € v, N V,. Then (o, U c,)(u) =1 gives (o, U oy) ) = 1.
Hence (s, U o)) > 010 U oy

Next we prove that u, () U nyg) < (u, U o))

For this, we consider the following three cases:

Case l. u ¢ E; N E, with either p;(uw) > ¢t Or p,(w) > ¢ but not both.

Suppose that p,(uw) > ¢ Then p,(w) =t So wy)(w) = p;(w) and

Hoqy(uww) = 0.

Hence the edge wv will be in Gy, UGy, with

(1) u Hoy) (wv) = py(uv).
Since wv € E, N E,, (p, U po)(uv) =1 = (p, U Hz)(t)(uv) -1

Therefore (u;() U ny()) () < (n; Uny), (w). The proof is similar if

po(uwv) = t.
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Case 2. w e E,NE, with either p (w)<¢ py(w)<t or

pp(wv) 2 t, py(uwv) = t. Since wv € E; N E,, (1, U u2)(t) (wv) = 1.
If py(w) < t, then Hi)(wv) =0 and if po(uww) < t, then Hoqy(uv) = 0.

S0 (wy() U ) (wo) = 0. If py(uw) > ¢, then py()(uw) = py (w) > 0 and if
wo(uwv) > ¢, then pyy(w) = py(w) > 0.

So (ul(t) U ug(t))(uv) =1.

Hence (1, U ny)y) = myg U kg

Case 3. w ¢ E, or w e E, but not both.

If w e Eq, (pn, U o) (wv) = pqy(uv) and if w e Ey,

(™ U po)(uv) = pg(uv)
Hence (u, U “2)(7:) () = nipw) = (kg U Hoy) (wv), for i =1, 2.
From the above three cases, we get u; () U ny() < (0 U ny),).

Hence G, U Gy, is a fuzzy sub graph of (G, U G,),.

Theorem 5.2. (G, U G,)"" is a fuzzy subgraph of ¢\ U ¢ {".
Proof. Let ¢, and G, be two fuzzy graphs.

®)

5 > (o, U o,)"). For that consider three

First let us prove that cit) Uo

cases.

Case 1.Let u ¢ vV, - V,.

(0, Uoy) @) = o1(u) (0, Uoy) @) = o) = cVw) U o (w).

Case 2. Let u ¢ V, - V,.

(06, Uoy) @) = oy) (o, Uoy) @) = o) = eV @)U oV ).
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Case 3.Let u € vV, N V,.

(03 Uoy) ) =1. (0 Uoy) ) = . e ) U ol ) = 1.

(t)

Let us prove that pit) U ny = (1 U uz)(‘).
Casel.Let w ¢ E, - E,.

(01 Ug) (o) = wy(wo) - oy Upy)w) = @) = 5 w) U nl ).

Case 2. Let w ¢ E, - E,.

(y U g) ) = wy ) - (uy Upy)P@) = 08w ) = 5l @o) U n o).

Case 3. Let wv ¢ E, N E,.

(i Uny) @) = 1-(uy Upp)Pw) = 6o nP @) 0 n ) = 1.

Conclusion

In this paper, the drastic product of two fuzzy graphs is introduced and

certain properties are studied with examples. The regular property of drastic

product of fuzzy graphs is studied. A formula for finding the degrees of

vertices in drastic product of fuzzy graphs is given. Some properties of

truncations of drastic sum of two fuzzy graphs are discussed.
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