DESIGN AND DEVELOPMENT OF ALGORITHM FOR M MODULO N GRACEFUL LABELING ON CYCLE AND COMPLETE GRAPH

C. VELMURUGAN and V. RAMACHANDRAN

Assistant Professor in Mathematics Vivekananda College Madurai, Tamilnadu, India E-mail: jsr.maths@gmail.com

Department of Mathematics Mannar Thirumalai Naicker College Madurai, Tamil Nadu, India E-mail: me.ram111@gmail.com

Abstract

A graph G with p vertices and q edges is said to be M modulo N Graceful Labeling (where N is positive integer and M=1 to N) if there is a function f from the vertex set of G to $\{0, M, N+M, 2N, ..., N(q-1), N(q-1)+M\}$ in such a way that (i) f is 1-1, (ii) f induces a bijection f^* from edge set of G to $\{M, N+M, 2N+M, ..., N(q-1)+M\}$ where $f^*(u,v)=|f(u)-f(v)|$ for all $u,v\in V(G)$. In this paper we classified that existence of M modulo N Graceful labeling in cycle C_n . Further we show that every complete graph K_n , n>4 is not M modulo N Graceful Labeling. Also we proposed design and development of C++ algorithm for M modulo N Graceful Labeling on cycle graph C_n .

1. Introduction

Let G = (V, E) denotes a graph with p number of vertices and q number of edges. The symbols V and E will denote the vertex set and edge set of a graph G respectively. A simple graph with n vertices is said to be complete if

 $2020\ Mathematics\ Subject\ Classification:\ 05C78,\ 05C85.$

Keywords: Complete graph, Cycle, Graceful labeling, One Modulo N graceful labeling, M Modulo N graceful labeling etc.

Received April 4, 2020; Accepted February 7, 2021

there is an edge between every pair of vertices. The complete graph on nvertices is denoted by K_n . A graceful labeling of a graph G of size q is an injective assignment of labels from the set $\{0, 1, ..., q\}$ to the vertices of G such that when each edge of G has been assigned a label defined by the absolute difference of its end-vertices, the resulting edge labels are distinct. A graph G is said to be one modulo N graceful labeling (where N is a positive integer) if there is a function f from the vertex set of G to $\{0, 1, N, (N+1), 2N, ..., N(q-1), N(q-1)+1\}$ in such a way that (i) f is 1-1 (ii) f induces a bijection f^* from the edge set of G to $\{1, N+1, 2N+1, ..., N(q-1)+1\}$ where $f^*(uv) = |f(u)-f(v)|$ for all $u, v \in V(G)$. A graph G(V(G), E(G)) with p vertices and q edges is said to be M modulo N graceful labeling (where N is positive integer and M=1 to N) if there is a function f from the vertex set of G to $\{0, M, N, N+M, 2N, ...,$ N(q-1), N(q-1)+M in such a way that (i) f is 1-1, (ii) f induces a bijection f^* from edge set of G to $\{M, N+M, 2N+M, ..., N(q-1)+M\}$ where $f^*(u, v) = |f(u) - f(v)|$ for all $u, v \in V(G)$. A graph G satisfied M modulo N graceful labeling is known as M modulo N graceful graph. "Graceful labeling" was introduced by Rosa [7] and proved that the cycle C_n is graceful if and only if $n \equiv 0$ or 3 (mod 4). S. W. Golomb. [3] explained that the complete graph K_n is graceful if and only if, $n \leq 4$. J. A. Gallian [4] studied a complete survey on graph labeling. A. Elumalai, A. Anand Ephremnath [1] studied that Graceful Labeling of Arbitrary Super subdivision of Grid graph and Cyclic snake. Odd gracefulness was introduced by R. B. Gnanajothi [2]. C. Sekar [11] proved that the graph obtained by identifying an endpoint of a star with a vertex of a cycle is graceful. Maheo and Thuillier [5] have shown that cycle C_n is k-graceful if and only if either $n \equiv 0$ or $1 \pmod{4}$ with k even and $k \le n(n-1)/2$ or $n \equiv 3 \pmod{4}$ with k odd and $k \le (n^2 - 1)/2$, while P. Pradhan et al. [6] have shown that cycle C_n ; $n \equiv 0 \pmod{4}$ is k-graceful for all $k \in N$ (set of natural numbers). Sushant Kumar Rout, Debdas Mishra and Purnachandra Nayak [12] are worked on odd graceful labeling of some new type of graphs obtained by joining of cycle and star and find various result regarding odd graceful labeling. C. Sekar [11] introduced one modulo

three graceful labeling. V. Ramachandran and C. Sekar [9] introduced the concept of one modulo N graceful where N is a positive integer and discussed various cycle related graphs are one modulo N graceful. V. Ramachandran and C. Sekar [10] talked about that one modulo N gracefulness of Crowns, Armed crowns and chain of even cycles. V. Ramachandran [8] proved that Cycle C_n is one modulo N graceful labeling if $n \equiv (0 \mod 4)$. C. Velmurugan and V. Ramachandran [13] introduced M modulo N graceful labeling and proved that path and star are M modulo N graceful graph. If a graph G is M Modulo N graceful labeling, then when M = N = 1 the labeling is graceful labeling, when M = 1 and N = 2 the labeling is odd graceful labeling, when M = 1 and N = 3 the labeling is one modulo N graceful labeling and when M = 1 and N = N the labeling is one modulo N graceful labeling.

In this paper we explain four theorems for designing M modulo N graceful Labeling of cycle graph C_n and one theorem for complete graph K_n . Also we propose C++ algorithm for M modulo N graceful Labeling on cycle graph C_n .

2. Main Result

Theorem 2.1. The cycle C_n is not M modulo N graceful labeling for all M = 1 to N if $n \equiv 1 \pmod{4}$.

Proof. Let the cycle C_n , $n \equiv 1 \pmod{4}$. [7] Rosa proved that the cycle C_n is not graceful if $n \equiv 1 \pmod{4}$. Since in that case M = N = 1.

Clearly this implies that cycle C_n , $n \equiv 1 \pmod{4}$ is not $M \mod N$ graceful labeling if M = N.

To prove that C_n , $n \equiv 1 \pmod{4}$ is not M modulo N graceful labeling for all $M \neq N$.

Suppose C_n , $n \equiv 1 \pmod{4}$ is said to be M modulo N graceful labeling for all $M \neq N$.

Then there exist a function f from the vertex set of C_n to $\{0, M, N, N+M, 2N, ..., N(q-1), N(q-1)+M\}$ is one to one. To show

that f induces a bijection f^* from edge set of C_n to $\{M, N+M, 2N+M, ..., N(q-1)+M\}$, where $f^*(u, v) = |f(u)-f(v)|$ for all $u, v \in V(C_n)$.

Let u_1, u_2, \ldots, u_n be the vertices of C_n , since C_n is M modulo N graceful labeling, hence labeling of the two continuous vertices of C_n is either $f(u_{2i-1}) = kN$ and $f(u_{2i}) = kN + M$, or $f(u_{2i-1}) = kN + M$ and $f(u_{2i}) = kN$, for some $k, 0 \le k \le n-1, 1 \le i \le [(n-1)/2]$. Since n is odd therefore u_1 and u_n both has a labeling either kN or kN + M for some $k, 0 \le k \le n-1$. In C_n, u_1 and u_n are adjacent, therefore $f^*(u_1, u_n) = |f(u_n) - f(u_1)| = kN$ for some $k, 0 \le k \le n-1$ which is not in $f^*(E(C_n))$. Hence there exists a contradiction. So cycle $C_n, n \equiv 1 \pmod{4}$ is not M modulo N graceful labeling for all $M \ne N$.

Hence the cycle C_n , $n \equiv 1 \pmod{4}$ is not M modulo N graceful labeling for all M=1 to N.

Example 1. The cycle C_n , $n \equiv 1 \pmod{4}$ is not M modulo N graceful labeling. The contradiction part marked as oval shape.

Theorem 2.2. The cycle C_n , $n \equiv 3 \pmod{4}$ is M modulo N graceful labeling if M = N and not M modulo N graceful labeling if and $M \neq N$.

Proof. Let C_n , $n \equiv 3 \pmod{4}$ be cycle with n vertices.

[7] Rosa proved that the cycle C_n is graceful if $n \equiv 3 \pmod 4$, in that case M = N = 1 and hence C_n , $n \equiv 3 \pmod 4$ is M Modulo N graceful labeling for all M = N.

Define

$$f(u_{2i}) = (n-i)N + M$$
, $i = 1$ to $(n-1)/2$.

$$f(u_{2i}) = (n+1-i)N$$
, $i = 1$ to $(n-1)/2$. Since $M = N$.

$$f(u_{2i+1}) = iN$$
, $i = 0$ to $(n-3)/4$.

$$f(u_{2i+1}) = (i+1)N$$
, $i = [(n-3)/4+1]$ to $(n-1)/2$.

Example 2. Cycle C_n , $n \equiv 3 \pmod{4}$ is $M \mod 4$ modulo N graceful labeling if M = N.

To prove that C_n , $n \equiv 3 \pmod 4$ is not $M \mod N$ graceful labeling for all $M \neq N$. Suppose C_n , $n \equiv 3 \pmod 4$ is said to be $M \mod N$ graceful labeling for all $M \neq N$.

Then there exist a function f from the vertex set of C_n to $\{0,M,N,N+M,2N,...,N(q-1),N(q-1)+M\}$ is one to one. To show that f induces a bijection f^* from edge set of C_n to $\{M,N,N+M,2N+M,...,N(q-1),N(q-1)+M\}$, where $f^*(u,v)=|f(u)-f(v)|$ for all $u,v\in V(C_n)$.

Let u_1, u_2, \ldots, u_n be the vertices of C_n , since C_n is M modulo N graceful labeling, hence labeling of the two continuous vertices of C_n is either $f(u_{2i-1}) = kN$ and $f(u_{2i}) = kN + M$, or $f(u_{2i-1}) = kN + M$ and $f(u_{2i}) = kN$, for some $k, 0 \le k \le n-1, 1 \le i \le \lfloor (n-1)/2 \rfloor$. Since n is odd therefore u_1 and u_n both has a labeling either kN or kN + M for some $k, 0 \le k \le n-1$. In C_n, u_1 and u_n are adjacent, therefore $f^*(u_1, u_n) = |f(u_n) - f(u_1)| = kN$ for some $k, 0 \le k \le n-1$ which is not in $f^*(E(C_n))$. Hence there exists a contradiction. So $C_n, n \equiv 3 \pmod{4}$ is not M modulo N graceful labeling for all $M \ne N$.

Hence the cycle C_n , $n \equiv 3 \pmod{4}$ is M modulo N graceful labeling if

M = N and not M modulo N graceful labeling if $M \neq N$.

Example 3. Cycle C_{11} is M modulo N graceful labeling if M = N

Example 4. Cycle C_{11} is 1 modulo 1 graceful labeling

Example 5. Cycle C_{11} is 7 modulo 7 graceful labeling

Theorem 2.3. The cycle C_n is not M modulo N graceful labeling if $n \equiv 2 \pmod{4}$ except when M = 1 and N = 2.

Proof. Let Cycle C_n , $n \equiv 2 \pmod{4}$. Clearly [7] A. Rosa proved that Cycle C_n , $n \equiv 2 \pmod{4}$ is not graceful, in that case M = N = 1. Therefore Cycle C_n , $n \equiv 2 \pmod{4}$ is not $M \pmod{N}$ graceful Labeling for all M = N.

[2] Gnanajothi proved that C_n , $n \equiv 2 \pmod 4$ is odd graceful. [8] V. Ramachadran showed that C_n , $n \equiv 2 \pmod 4$ is one modulo N graceful labeling but neither graceful nor one modulo N graceful for every positive integer $N \ge 3$.

To prove that Cycle C_n , $n \equiv 2 \pmod 4$ is not M modulo N graceful labeling if $M \neq N$, except M = 1 and N = 2.

Suppose C_n , $n \equiv 2 \pmod{4}$ is $M \mod N$ graceful labeling if $M \neq N$.

Clear that [8] V. Ramachadran showed that C_n , $n \equiv 2 \pmod 4$ is one modulo N graceful labeling. Then there exist a function f from the vertex set of $C_n, n \equiv 2 \pmod 4$ to $\{0, M, N, N + M, 2N, ..., N(q-1), N(q-1) + M\}$ is one to one. To show that f induces a bijection f^* from edge set of $C_n, n \equiv 2 \pmod 4$ to $\{M, N + M, 2N + M, ..., N(q-1) + M\}$, where $f^*(u, v) = |f(u) - f(v)|$ for all $u, v \in V\{C_n, n \equiv 2 \pmod 4\}$.

To get the edge label M either we have labels of two adjacent vertices by 0 and M or Nk + M and Nk for some k.

Suppose we take the vertex adjacent to the vertex having the label M will be label as Nj for some j > 0 and then we get $|Nj = M| \equiv (N - M)$ is not in $f^*(E\{C_n, n \equiv 2 \pmod{4}\})$ or duplicate labeling exits.

Similarly in the second situation, the second vertex adjacent to the vertex having the label Nk must be Np+M where p < k and in this case $|(Np+M)-Nk|=|Nk-Np-M|\equiv (N-M)$ not in $f^*(E\{C_n,\,n\equiv 2(\text{mod }4)\})$ or duplicate labeling exits.

Hence cycle C_n , $n \equiv 2 \pmod{4}$ is not $M \mod N$ graceful labeling except when M=1 and N=2.

Example 6. Cycle C_6 is one modulo 2 graceful labeling

Example 7. Cycle C_n , $n \equiv 2 \pmod{4}$ is not 3 modulo 6 graceful labeling, since edge label 3 create a duplicate labeling. $f^*(E\{C_n, n \equiv 2 \pmod{4}\}) = \{3, 9, 15, ..., 6(n-1)+3\}$, i.e., M = 3, N = 6 and let j = 1. The contradiction part marked as oval shape.

Example 8. Cycle C_n , $n \equiv 2 \pmod{4}$ is not 6 modulo 9 graceful labeling, since 12 does not belongs in $f^*(E\{C_n, n \equiv 2 \pmod{4}\}) = \{6,15,24,33,42,51,60,\ldots,9(n-1)+6\}$. i.e., M=6, N=9 and let k=5, p=3. The contradiction part marked as oval shape.

Theorem 2.4. The Cycle C_n is M modulo N graceful labeling if $n \equiv 0 \pmod 4$.

Proof. Let C_n be cycle of length $n \equiv 0 \pmod{4}$.

To define labeling of vertices in C_n

$$f(u_{2i-1}) = (i-1)N$$
 for $i = 1$ to $\frac{n}{2}$

$$f(u_{2i}) = (n-i)N + M, i = 1 \text{ to } \frac{n}{2}$$

$$f(u_{[(n+4i)/2]}) = \left(\frac{3n}{4} - (i+1)\right)N + M, i = 1 \text{ to } \frac{n}{4}.$$

Hence the Vertices Labeling are $\{f(u_{2i+1}), i=1 \text{ to } \frac{n}{2} \cup f(u_{2i}), i=1 \text{ to } \frac{n}{2} \cup f(u_{2i}), i=1 \text{ to } \frac{n}{2} \cup f(u_{2i+1}), i=1 \text{ to } \frac{n}{2} \cup f(u_{2i}), i=1 \text{ to } \frac{n}{2} \cup f(u_{2i+1}), i=1 \text{ to } \frac{n}{$

To define labeling of edges in C_n

$$f^*(e_{2i-1}) = |f(u_{2i}) - f(u_{2i-1})| = |(n-i)N + M - (i-1)N| = |(n-2i+1)N + M|,$$
 $i = 1$ to $n/4$.

$$f^*(e_{2i}) = |f(u_{2i}) - f(u_{2i+1})| = |(n-i)N + M - (i)N| = |(n-2i)N + M|, i = 1$$
 to $n/4$.

$$f^*(e_{(n+4i)/2}) = |f(u_{(n+4i)/2}) - f(u_{[(n+4i+2)/2]})| = |\left(\frac{3n}{4} - (i+1)\right)|$$

$$N + M - [(n+4i)/4]N| = |\left(\frac{n-4i-2}{2}\right)N + M|, i = 1 \text{ to } \left(\frac{n}{4} - 1\right).$$

$$f^*(e_{(n+4i-2)/2}) = |f(u_{(n+4i)/2}) - f(u_{[(n+4i-2)/2]})|$$

$$= |\left(\frac{3n}{4} - (i+1)\right)N + M - \left(\frac{n+4i-4}{4}\right)N|$$

$$= \left(\frac{n-4i}{2}\right)N + M|, i = 1 \text{ to } \frac{n}{4}.$$

$$f^*(e_n) = |f(u_n) - f(u_1)| = \left(\frac{n-2}{2}\right)N + M.$$

Hence the edges Labeling are $\{f^*(e_{2i-1}) = i = 1 \text{ to } n/4\} \cup \{f^*(e_{2i}), i = 1 \text{ to } n/4\} \cup \{f^*(e_{(n+4i)/2}), i = 1 \text{ to } (n/4) - 1\} \cup \{f^*(e_{(n+4i-2)/2}), i = 1 \text{ to } (n/4)\} \cup \{f^*(e_n)\{M, N+M, 2N+M, ..., (n-1)N+M\} \text{ are distinct. Hence Cycle } C_n \text{ is } M \text{ modulo } N \text{ graceful labeling if } n \equiv 0 \text{ (mod 4)}.$

Example 9. Vertices Labeling of C_n

Example 10. M modulo N graceful labeling of C_n

Example 11. 3 modulo 10 graceful labeling of C_{12}

Example 12. 6 modulo 9 graceful labeling C_{12}

 $\mbox{\bf Algorithm 2.5. Development of C++ algorithm for M modulo N Graceful Labeling on cycle graph C_n.}$

```
#include<iostream.h>
#include<conio.h>
void main()
{
    clrscr();
    int i, j, n, N, M, Y;
    cout<<"Enter n vealue for Cn: n=";
    cin>>n;
    cout<<endl<<"C"<<n<<" is cycle of Length "<<n<<endl;
    if((n%4)==0)
```

```
cout<<"Enter N vealue for Cn: N=";</pre>
   cin>>N;
   cout<<endl<<"Want to find particular M and N Value: say Yes=1or NO
=0:Y=";
   cin>>Y;
   if(Y==1)
   cout<<"Enter M vealue for Cn: M=";</pre>
   cin>>M;
   goto G;
   for(M=1;M<=N;M++)
   G:
   cout<<endl<<M<<" modulo "<<N<" graceful Labeling of Vertices of C"
<<n<<endl;
   for(i=1;i \le (n/4);i++)
   cout << "V" << (2*i)-1 << "=" << (i-1)*N;
   cout << "V" << 2*i << "=" << (n-i)*N+M;
   for(i=1;i \le (n/4);i++)
   j=(n/4)+i;
   cout<<" V"<<(2*j)-1<<"="<<(j-1)*N;
```

```
cout << "V" << (n+(4*i))/2 << "=" << (((3*n)/4)-(i+1))*N+M;
    cout << endl << M << " modulo " << N << " graceful Labeling of edges of
C"<<n<<endl;
    for(i=1;i \le (n/4);i++)
    cout<<" e"<<(2*i)-1<<"="<<(n-(2*i)+1)*N+M;
    cout << "e" << 2*i << "=" << (n-(2*i))*N+M;
    }
    for(i=1;i \le (n/4);i++)
    {
    cout << "e" << (n+(4*i)-2)/2 << "=" << ((n-(4*i))/2)*N+M;
    if(i \le ((n/4)-1))
    cout << "e" << (n+(4*i))/2 << "=" << ((n-(4*i)-2)/2)*N+M;
    }}
    cout << "e" << n << "=" << ((n-2)/2)*N+M;
    if(Y==1)
    goto H;
    }}
    H:
    if(Y==1)
    cout <<\!\!endl\!<<\!\!"Hence C"<\!\!<\!\!n<\!\!"is"<\!\!< M<\!\!" modulo "<\!\!< N<\!\!" graceful
Labeling";
```

```
}
   else
   cout<<endl<<"Hence C"<<n<" is M modulo N graceful Labeling";
   if((n\%4)==1)
   cout<<endl<<"Hence C"<<n<<" is not M modulo N graceful Labeling";
   if((n\%4)==2)
   cout<<endl<<"Hence C"<<n<" is not M modulo N graceful Labeling
except M=1 and N=2";
   }
   if((n\%4)==3)
   cout<<"Enter N value for Cn: N=";</pre>
   cin>>N;
   for(M=1;M\leq N;M++)
   if(M!=N)
   cout<<endl<<"Hence C"<<n<<" is not M modulo N graceful Labeling
since" << M<" not equal to "
   << N;
```

else

```
{
    cout<<endl<<"Hence C"<<n<<" is "<< M<<" modulo "<< N <<" graceful
Labeling since M = N"
    <<endl;
    for(i=1;i<=((n-1)/2);i++)
    {
        cout<<" u"<<(2*i)<<"="<<(n+1-i)*N;
    }
    for(i=0;i<=((n-3)/4);i++)
    {
        cout<<" u"<<((2*i)+1)<<"="<<i*N;
    }
    for(i=(((n-3)/4)+1);i<=((n-1)/2);i++)
    {
        cout<<" u"<<(2*i)+1<<"="<<(i+1)*N;
    });;
    getch();
}
```

Theorem: 2.6. For any N, the Complete graph K_n is not M modulo N graceful labeling if n > 4 and M = 1 to N.

Proof [3]. S. W. Golomb explained that the complete graph K_n is graceful if and only if, $n \le 4$. Clearly K_n is M modulo N graceful labeling for all M and N if $n \le 2$.

Also K_n , $3 \le n \le 4$ is M modulo N graceful labeling, when M = N, since K_n , $3 \le n \le 4$ is graceful, but not M modulo N graceful labeling, when $M \ne N$, since which contains odd cycle c_3 .

To prove that complete graph K_n , n > 4 is M modulo N graceful labeling when M = 1 to N.

Suppose complete graph K_n , n > 4 is M modulo N graceful labeling when M = 1 to N.

There exist a function f from the vertex set of K_n to $\{0, M, N+M, 2N+M, ..., N(q-1), N(q-1)+M\}$ is one to one. Then show that f induces a bijection f^* from edge set of K_n to $\{M, N+M, 2N+M, ..., N(q-1)+M\}$ where $f^*(u,v)=|f(u)-f(v)|$ for all $u,v\in V(K_n)$.

Let $v_1, v_2, ..., v_n$ be the vertices of K_n . Assume $f(v_1) = kN$, for some $k, 0 \le k \le q-1$ suppose at least two vertices other than v_1 has a labeling must be of the form kN+M, for some $k, 0 \le k \le q-1$. Since K_n is complete, i.e., each and every vertices adjacent to each and every other vertices. Hence at least one edge has labeling distinct from $\{M, N+M, 2N+M, ..., N(q-1)+M\}$. i.e., Let that two vertices are v_r and $v_s, 1 < r, s \le n$, and $r \ne s, f(v_r) = iN+M$ and $f(v_s) = jN+M, i \ne j$, and q-1>i, j>0 then $f^*(v_r, v_s) = |f(v_r)-f(v_s)| = |i-j|N$ which is not in $f^*(E(K_n))$. Hence there exist a contradiction for the definition of f^* . Therefore every Complete graph $K_n, n>4$ is not M modulo N graceful graph.

Similarly $f(v_1)$ has a labeling from any one of the following

 $\{M,\ N+M,\ 2N+M,\ ...,\ N(q-1)+M\}$ then any two vertices except v_1 has distinct labeling from $\{0,\ N,\ 2N,\ ...,\ N(q-1)\}$ since K_n is complete. Let $1< r,\ s\le n,$ and $r\ne s,\ f(v_r)=iN$ and $f(v_s)=jN,\ i\ne j,$ and $q-1>i.\ j>0,$ then $f^*(v_r,\ v_s)=|\ (v_r)-(v_s)\ |=|\ i-j\ |N|$ which is not in $f^*(E(K_n))$. Hence there exist a contradiction for the definition of f^* .

Hence the complete graph K_n , n > 4 is not M modulo N Graceful Labeling for all N, where M = 1 to N.

Example 13. K_5 is not M modulo N graceful Labeling, since the absolute difference between vertices incident with dotted edge is not in $f^*(E(K_n))$.

Example 14. K_4 is not M modulo N graceful Labeling if $M \neq N$, since the absolute difference between vertices incident with dotted edge is not in $f^*(E(K_n))$.

Conclusion

In this paper we conclude the following results

- (i) Cycle C_n , $n \equiv 0 \pmod{4}$ are $M \pmod{N}$ graceful labeling.
- (ii) Cycle C_n , $n \equiv 1 \pmod{4}$ is not M modulo N graceful labeling for all N, where M = 1 to N.
- (iii) Cycle C_n , $n \equiv 2 \pmod{4}$ is not M modulo N graceful labeling for except M=1 and N=2.
- (iv) Cycle C_n , $n \equiv 3 \pmod 4$ is M modulo N graceful labeling for all M = N and not M modulo N graceful labeling for all $M \neq N$.

We design and developed C++ algorithm for M modulo N graceful labeling on cycle graph C_n . Furthermore we showed that Complete graph K_n , n=1 and 2 is M modulo N graceful labeling. Complete graph K_n , n=3 and 4 is M modulo N graceful labeling if M=N and not M modulo N graceful labeling if $M\neq N$. Complete graph K_n , n>4 is not M modulo N graceful labeling for all N, where M=1 to N.

Reference

- [1] A. Elumalai and A. Anand Ephremnath, Graceful Labeling of Arbitrary Super subdivision of Grid graph and Cyclic snake, International Journal of Scientific and Engineering Research (2229-5518) 6(3) (2015), 315-318.
- R. B. Gnanajothi, Topics in Graph theory, Ph.D. Thesis, Madurai Kamaraj University, 1991.
- [3] S. W. Golomb, How to number a graph, Graph Theory and Computing, Academic Press, New York (1972), 23-37.
- [4] Joseph A. Gallian, A Dynamic survey of graph labeling, the electronic Journal of Combinatorics, (2013).
- M. Maheo and H. Thuillier, On d-graceful graphs, Ars Combinatorial 13 (1982), 181-192.
- [6] P. Pradhan, Kamesh Kumar and A. Kumar, Missing numbers in k-graceful graphs, International Journal of Computer Applications 79 (2013), 1-6.
- [7] A. Rosa, On certain valuations of the vertices of a graph, Theory of Graphs (International Symposium, Rome, July 1966), Gordon and Breach, New York and Dunod Paris (1967), 349-355.
- [8] V. Ramachadran, Colligation of cycle graphs on one modulo N graceful labeling and its applications, Journal of Information and Optimization Sciences (2169-0103) (2018), 1-8.
- [9] C. Sekar and V. Ramachandran, One modulo N gracefulness of regular bamboo tree and coconut tree, International Journal on Applications of Graph Theory in Wireless adhoc Networks and Sensor Networks (GRAPH-HOC) (0975-7031) 6(2) (2014), 1-10.

2300 C. VELMURUGAN and V. RAMACHANDRAN

- [10] C. Sekar and V. Ramachandran, One modulo N gracefulness of cycle related graphs, National Journal of Technology (0973-1334) 10(4) (2014), 30-36.
- [11] V. Ramachandran and C. Sekar, One modulo N gracefulness of Crowns, Armed crowns and chain of even cycles, Ars Combinatoria (SCI Journal) (0381-7032) 138 (2018), 143-159.
- [12] C. Sekar, Studies in Graph theory, Ph.D. Thesis, Madurai Kamaraj University, (2002).
- [13] Sushant Kumar Rout, Debdas Mishra and Purnachandra Nayak, Odd Graceful Labeling of Some New Type of Graphs, International Journal of Mathematics Trends and Technology (IJMTT) ISSN: 2231-5373-41(1) (2017), 9-15.
- [14] C. Velmurugan and V. Ramachandran, M Modulo N Graceful Labeling of Path and Star, Journal of Information and Computational Science ISSN: 1548-7741, 9(12) (2019), 1212-1221.