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Abstract 

The incomplete I-functions are the extension of I-function [17] which is an extension of 

familiar Fox’s H-function ([9], [14]). In this paper we find the solutions of one dimensional Heat 

flow equation in terms of incomplete I-functions. Further, numerous special cases are also 

obtained from our main results. 

1. Introduction 

In the last decade, many authors (see, e.g. [1-7], [12-13], [15-16], [18]) 

have developed numerous integral formulas involving a variety of 

incomplete hypergeometric functions. Such integral formulas have many 

applications in potential field of physics, applied sciences, engineering and 

chemical sciences. 

Recently, Bansal et al. [1] introduce new incomplete I-functions and gave 

certain interesting integral formulas and transform of these functions, which 

are expressed in terms of generalized (Wright) hypergeometric function. 

In order to derive our main results we recall here the following 

definitions of some well known special functions: 

The incomplete Gamma functions (IGFs)  yp,  and  yp,  [19] are 

defined as follows 
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      
y

pt ypdtteyp
0

1 0;0Re,,  (1.1) 

and 

      
y

pt ypdtteyp
0

1 0;0Re,,  (1.2) 

respectively, holds the subsequent relation  

        .0Re,,,  ppypyp  (1.3) 

The incomplete I-functions (IIFs)    zI
nm

rqp ll

,
;,

  and    zI
nm

rqp ll

,
;,

  [1] are 

defined as follows 

     
     

    




















qlmjljlmjj

pnjljlnjjjj
nm

rqp
nm

rqp
HhHh

GgGgyGgz

IzI
l

llll

,1,1

,1,2
,

;,
,

;,
,,,

,,,,,,|

 

  


 

L
dzy,

2

1
1  

where 

 
     
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,  (1.5) 

and 
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where 
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 
     

   

.

1

1,1

,

1
1 1

21
11

2

  




 














r

l

q

mj

p

nj
jljljljl

n

j
jj

m

j
jj

l l
GgHh

GgHhyGg

y  (1.7) 

The incomplete I-functions    zI
nm

rqp ll

,
;,

  and    zI
nm

rqp ll

,
;,

  in (1.4) and 

(1.6) exists for 0y  under the following set of conditions satisfied.  

The contour L in the complex -plane extends from  ic  to 

Re,,  cic  and poles of the gamma functions   njGg jl ,1,1   do 

not exactly match with the poles of the gamma functions 

  .,1, mjHh jj   The parameters ll qpnm ,,,  are non negative 

integers satisfying .,1,0,0 rlqmpn ll   The parameters 

jljljj HGHG ,,,  are positive integers and jljljj hghg ,,,  are complex. All 

poles of  y,1   and  y,2   are supposed to be simple and the empty 

product is treated as unity. 


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1122

,  (1.8) 

 
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1
 (1.9) 

On setting ,0y  the incomplete I-functions    zI
nm

rqp ll

,
;,

  and 

   zI
nm

rqp ll

,
;,

  reduce to Saxena’s I-function [18]: 
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and  
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2. Preliminaries 

Here, we find the following interesting results involving IIFs 

   zI
nm

rqp ll

,
;,

  and    zI
nm

rqp ll

,
;,

  by using [10, p.72, Equation (2.2.1.8)] for next 

section: 
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(iii) Other conditions are same as given in equations (1.4)-(1.9). 
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3. Main results 

3.1. Solution of Non Homogeneous Heat Equation  

Let us start with the heat equation [8], consider a wire (or a thin metal 

rod) of length L that is insulated except at the endpoints. Let x denote the 

position along the wire and t denote time 

,
2

2
2

x

u
c

t

u









 (3.1.1) 

where 2c  is constant diffusivity of material and satisfying boundary and 

initial conditions 

    ,0,,0  tLutu  (3.1.2) 

   ,0, xxu   (3.1.3) 

Initially, we assume 
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where ,  are positive numbers and    zI
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,
,,

  is defined by (1.4).  

Since I-function contains as particular cases almost all known special 

functions like Bessel, Mittag-Leffer, Legendre, Hermite, hyper geometric 

functions etc. so this assumption is fairly general.  

Let the solution of equation (3.1.1)-(3.1.3) is obtained by separation of 

variables and represented in the following general form 
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Where nB  is arbitrary constant and  .,2,1,0, 


 N
L

N
Kn  

From equations (3.1.4) and (3.1.5), we obtain 
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Multiplying on both sides of (3.1.6) by me
xiKm ,  is any positive integer and 

integration with respect to x from 0 to L. Separating real and imaginary 

parts and using (2.1) and (2.3), we have 
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where  
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Hence, we arrive at the desired solution of equation (3.1.1)-(3.1.3) is 

given by 
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Now, the solution of equation (3.1.1)-(3.1.3) in IIF    ,,
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 (3.1.11) 

IIFs    zI
nm

rqp ll

,
,,

  and    zI
nm

rqp ll

,
,,

  are satisfied the conditions which are 

given in (1.4) and (1.6) respectively.  

3.2. Solution of Homogeneous Wave Equation 

The wave equation [8] is of second order with respect to the space 

variable x and time t, and takes of the form 

 .0,0,
2

2
2

2

2










tLx

x

u
c

t

u
 (3.2.1) 

Here the constant 2c  is called the wave speed, with initial and boundary 

conditions 

    ,0,0,  tLuxu  (3.2.2) 

   xxu 00,   and 0




t

u
 at .0t  (3.2.3) 

Then, we consider the general solution of (3.2.1)-(3.2.3) by separation of 

variables method is given by 

  






1

,cossin,

n

n
nn t

cK
xKBtxu  (3.2.4) 
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where nB  is arbitrary constant and  .,2,1,0, 


 N
L

N
Kn  

Now apply the same lines of section 3.1, then we arrive at the desire 

solutions of (3.2.1)-(3.2.3) in terms of IIFs    zI
nm

rqp ll

,
,,

  and    zI
nm

rqp ll

,
,,

  are 

given by  
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and 
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Where A  and B  are defined in (3.1.8) and (3.1.9) and 

 .,2,1,0, 


 N
L

N
Kn  IIFs    zI

nm
rqp ll

,
,,

  and    zI
nm

rqp ll

,
,,

  are satisfied 

the conditions which are given in (1.4) and (1.6) respectively.  

3.3. Special cases. Now, we find certain interesting cases of solution of 

heat equation (3.1.1). 

(i) On setting ,0y  the incomplete I-functions    zI
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where       
 ,21,,,, ,1,1 npnjjnjj KGgGgA

l
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member in (3.1) exists.  
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(iii) On setting 1r  in (1.4) and (1.6), it reduces to IHF introduced by 

Srivastava [19]. Then 

 























A

B
n

nm
qp

n

tcK
nnn

z
LK

exKKK

txu

n

|
sin

sin
2

cos2

,

1

,2
2,22

22

 

 
,|

cossin

sin
2

sin2

1

,2
2,2

22

























A

B
n

nm
qp

nnn

tcK
nnn

z
LKLKLK

exKKK n

 (3.3.2) 

where         
 ,21,,,,,,, ,1,2 npnjljlnjjjj KGgGgyGgA  and  

      ,,,,21,,2 ,1 qjj HhB   provided that each member in (3.2) 
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exists.  

(iv) If we put 1r  and 0y  in (1.4) and (1.6), it reduces to Fox’s H-

function [9]: 

 























A

B
n

nm
qp

n

tcK
nnn

zH
LK

exKKK

txu

n

|
sin

sin
2

cos2

,

1

,2
2,22

22

 

 
,|

cossin

sin
2

sin2

1

,2
2,2

22


























A

B
n

nm
qp

nnn

tcK
nnn

zH
LKLKLK

exKKK n

 (3.3.3) 

where       
 ,21,,,, ,1,1 npnjjnjj KGgGgA  and  

      ,,,,21,,2 ,1 qjj HhB    provided that each member in (3.3) 

exists. 

(v) On setting 0y  and ,0t  the incomplete I-functions    zI
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reduce to Anharmonic Fourier series for I-function [17]. Then solution is  
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where       
 ,21,,,, ,1,1 npnjljlnjj KGgGgA

l
 and  

        ,,,,,,21,,2 ,1,1 qlmjljlmjj HhHhB 
   provided that each 

member in (3.3.4) exists. Similarly, we can find some other special cases of 

solution of wave equation (3.2.1). 

4. Conclusions 

In this paper, we have used new incomplete I-functions [1], which is an 

extension of Saxena’s I-function [17]. Next, we gave certain integrals 



PRACHI JAIN and ARVIND GUPTA 

Advances and Applications in Mathematical Sciences, Volume 19, Issue 12, October 2020 

1238 

involving incomplete I-functions. Further, we find the solutions of heat and 

wave equations in terms of incomplete I-functions and also we obtained 

numerous special cases from our main result. The outcomes of this work are 

very helpful in the study of physics, engineering and applied sciences.  
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