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Abstract

In the present paper, we have studied (%, p)-contact metric manifold with generalized

semi-symmetric connection. The semi-symmetric linear connection on a differentiable manifold
introduced by Friedmann and Schouten [4]. Hayden [5] introduced the idea of a metric
connection on a Riemannian manifold. Yano investigated and studied the semi-symmetric
metric connection on a Riemannian manifold. De and Sen-gupta [2], Verma and Prasad [6]
defined and studied new type of semi-symmetric non-metric connections on a Riemannian
manifold. Prasad, Verma and De [7] defined the most general form of semi-symmetric
connection called generalized semi-symmetric connection. Generalized semi-symmetric
connection studied by J. Upreti and S. K. Chanyal [8]. In this paper we have studied torsion

tensor, Rimannian curvature and some of its properties on (k, p)-contact metric manifold with

generalized semi-symmetric connection and establised some results.

1. Introduction

Let M and M be two Riemannian manifolds with the metric tensors g

and g respectively. If g and g are related by the equation
8(X,Y) = e*g(X,Y) (1)

where o is real function, the manifolds M and M are known as conformal
transformation. A harmonic function is defined as a function whose Laplacian

vanishes. A differentiable manifold M2"*! is said to be contact manifold if it
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admits a global 1-form n, a unique vector field &, called the characteristic
vector field such that

nE) =1
and

dn(g X)=0 2

A Riemannian metric g on M?*1 s said to be an associated metric if
there exist a (1, 1) tensor field ¢ such that

dn(X, Y) = g(X, ¢Y)
and
n(X) = g(X, ¢) (3)
¢ =-T+n®¢ 4)
From these equations, we have

¢ =0

ne¢=0
26X, ¢Y) = g(X, Y) - n(X)n(Y). (5)

A differentiable manifold M?"*! equipped with the structure (¢, &, n, 2)
satisfying (5) is said to be a contact metric manifold and is denoted by
M = (M?™", ¢, & n, g). A contact metric manifold is called an n-Einstien

manifold if the Ricei tensor S is of the form

S=ag+bn®n,

where a, b are smooth functions on M?*1 and if b = 0 then the manifold is

called an Einstein manifold. In a contact metric manifold M, we define a (1,1)

tensor field

h = Leb

where L denotes the Lie differentiation. Then A is symmetric and
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he =0,Moch =0

and

If V denotes the Riemannian connection of g then the following relation
holds

Vx€ = —¢X - ohX (6)
(Vxn)Y = g(X, ¢Y) - 2(¢hX, Y). (M

An almost contact metric manifold is Sasakian if and only if
(Vx9)Y = g(X, V)& - n(Y)X, ®)

for all vectors fields X, Y and r is the Levi-Civita connection of Riemannian

metric g. A contact metric manifold for which € is killing vector field is said to
be a k-contact manifold. It is well known that the tangent bundle of a at

Riemannian manifold admits a contact metric structure satisfying
R(X,Y,¢)=0.
As a generalization of R(X,Y, &) = 0 and the Sasakian case, Blair, [3]
considered the (k, p)-nullity condition on a contact metric manifold. The

(%, p)-nullity distribution N(k, p) Blair, [1] and Jun [3] of a contact metric
manifold is defiend by

N(k, n): p > Ny(k, n)
=W e T,)M/R(X, Y, W) = (kI + ph)[2(Y, W)X - g(X, W)Y]
for all X,Y e TM, where (k, pn) e R%. A contact metric manifold with

& € N(k, n) is called a (k, u)-contact metric manifold. For a (%, u)-contact

metric manifold, we have
R(X,Y, &) = k(n(Y)X —n(X)Y) + pm(Y)AX — n(XRY)). )

On (k, p)-contact metric manifold % <1, for k=1, the structure

becomes Sasakian (h =0) and if k<1, the (%, u)-nullity condition
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completely deter-mines the manifold. The condition of being Sasakian
manifold, a k-contact manifold, £ =1 and A =0 are all equivalent in a

(k, pn)-contact metric manifold.

2. Generalized Semi-Symmetric Connection

Let (M;g) be a Riemannian manifold of dimension n. The generalized

semi-symmetric connection is defined as
VxY = VxY + u(Y)X + u(Y)X + a(X)Y + n(Y) - g(X, Y)n(E) (10)
where X, Y are vectors fields, V is Levi-Civita connection, u, @ and n are

1-forms associated with the vectors fields U, A and § respectively and

satisfied the following relations

g(X, U) = u(X) (11)
g(X, A) = a(X) (12)
g(X, &) = n(X). (13)

The torsion tensor of V is given by
T(X,Y)=u)X - uwX)Y +a(X)Y - a(Y)X + n(Y)X - n(X)Y. (14)

The generalized semi-symmetric connection satisfies the following
property

(V) (Y, Z) = -u(Y)g(X, Z) - u(Z)g(X, Y) - 2a(X)g(Y, Z) - 2a(X) (Y, Z),
(15)

this shows that the generalized semi-symmetric connection is non-metric. The

curvature tensor R(X, Y, Z) of V is given by
R(X,Y,Z)=R(X,Y, Z) - aY, Z)X - (X, Z)Y - g(Y, Z)LX
+g(Y, Z)LY — ﬁ(Y, Z)X + B(X, Z)Y + y(Y, Z)X - y(X, Z)Y -da(X, Y)Z, (16)

where R(X, Y, Z) is curvature tensor with respect to Levi-Civita connection

V and
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alY, Z) = g(KY, Z) = (Vyw)Z - ulY Ju(Z) + 5 u@)e(Y, Z) an
B(Y, Z) = g(LY, Z) = (Vyn)Z - n(Y(Z) + 5 u@e(Y, Z)  (19)
LX = V& - n(X)5 + 3 n(©)X a9)
and
V(Y. Z) = g(MY, Z) = n(Z)ulY) - n(V)u(Z) - su@)eY, 2)  (@0)

Also we have,

Y, Z) - a(Z, Y) = du(¥, Z) 1)
BY, Z)-B(Z, Y)=dn(Y, Z) (22)
and
yY,Z)-a(Z,Y)=0 (23)
where

du(Y, Z) = (Vyu)Y[9)]

3. Generalized Semi-Symmetric Connection on (%, n)-Contact Metric

Manifold

Let M?"*1 = M is a (k, n)-contact manifold. Let us define a generalized
semi-symmetric connection V on (k, p)-contact metric manifold M. Then we

have

The following relations on (k, u)-contact metric manifold
Vit =u@)X +aX)I + X +¢& (24)
and generalized semi-symmetric connection V is given by the equation
VxY = VxY + n(Y)X + 2u(Y)X + a(X)n(X)E + w(Y)E

a(XN(Y)E + n(XMY)E + n(VxY)E - g(X, Y)E, (25)
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with the help of equations (5) and (10), we have the equations (24) and (25).

Theorem 3.1. In a (k, pn)-contact manifold with structure

(M? 8, Z;, A, U, n, a, lL)

We have
(Vx9)Y = (V)Y + a(X)((X)E - ¢Y)
N(VxP)YE - @(Y) + n(Y)oX + n(¢VxY))E - 2(X, $Y)& (26)
and
(Vx9)Y = g(X, Y) - u(Yn(X) - 2a(X)n(Y) + n(Y). @7

Proof. Using equations (4), (5), (6), (7) and (8), we have the equations (26)
and (27).

Torsion tensor with respect to Riemannian connection on a Riemannian

manifold is given by

S(X,Y) = VxY - Vy X - [X, Y]. (28)

If S (X, Y) is torsion tensor with respect to generalized semi-symmetric
connection V, then
S(X,Y)=VxY -VyY -[X, Y]
Also, we have

S(X,Y)=8(X,Y)-25,(X,Y) + a(X)n(X)&

—a(YnY)E + [X, Y]+n(X, Y]E (29)
If
S(X, Y) =n(Y)X - n(X)Y (30)
Sy(X, Y) = u(Y)X — u(X)Y (31)
S(X,Y)=-S(X,Y) (32)

Theorem 3.2. If M is a (k, n)-contact metric manifold with generalized
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semi-symmetric connection V, then M is torsion free if
(X, YDE + ul¥)e — uX)e + n(V)E) @X - a(Y) = S(X, ¥) + 28,(X, ¥) (33)
and
VxY -VyX = [X, Y].

Proof. By equations (10), (28) and (29), we have the results.

4. Riemannian Curvature tensor R of (%, pu)-contact metric manifold

with respect to generalized semi-symmetric connection V

If Mis a (k, p)-contact metric manifold and V is a generalized semi-

symmetric connection. V be the Riemannian curvature tensor and V be the

Riemannian curvature tensor on M with respect to V, then
R(X,Y,Z)=VxVyZ -VyVxZ - V[x v/
Then using equations (7), (8), (10), (12), (20), (30) and (31), we have
R(X,Y,Z)=R(X,Y, Z)+ u(VyZ)X — u(VyZ)Y
+(1-8)[s(X, VyZ) - 8(Y, VxZ) - (X, Y] Z)]

+g(X, VyU)Y - g(Y, VyU)X + g(X, )X - g(X, Y)Y
+lgu(@) + a(Y)e + u(Y) - 2a(Y) - 2a(Y) + Vy& + Y]g(X, Z)

+[u(8) - a(X)g — w(X) + 2a(X) - Vx& + X]2(X, Z)
+8(Y, VxA)Z - g(X, VyA)Z) + (Vxn)Z)Y - (Vyn)2)X (34)
if
N(2)[S1(X, Y) - 285(X, Y) - S5(X, Y) - u(VxZ) - u(VyZ) - a((X, Y))
= a(X)uY)Y - aY)w(X)X — w(X)Y)Y + nY)IN(X)X + a(X)u(Z)
—a(Y)uZ) +v(X, Z) + a(X)u(Y) - a(Y)u(X) + n(Y)a(X) - n(X)a(Y) (35)

where
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S3(X, Y) = a(X)Y — a(X)Y — a(Y)X.

Theorem 4.1. On a (k, p)-contact manifold M with structure

(M, g,n, a, u, &, A, U), and generalized semi-symmetric connection V, we

have the following identity
R(X,Y,Z)+R(Y,Z,X)+R(Z, X, Z) =0 (36)
if
*u((X, Y)Z + 2[(Y, VxU)Y - g(X, VyU)Z]

+2[g(Y, VxA)Z - g(X, Vy A)Z] + Z[(Vx)Z)Y - (Vyn)Z)X]
= u(€)g(X, Y) - % Su(X)g(X, Z) - Z[a(Y)u(X)X - a(X)u(Y)Y]

“Z[u(X)MY)Y - u(Y)n(X)X] + (Y, X) - E(X)a(Y) - n(Y)a(X))]
“Z[S)(X, YI(Z) - n(Z2)S3(X, V)] + 22 [n(X)Sz(X, V)]
—su((X, Z)) + Za(X, Y)Y. (37)

Proof. Using equations (34) and (35), we get equations (36) and (37).

Again in a (k, p)-contact metric manifold we have,

Now we have the following theorem:

Theorem 4.2. On a (k, n)-contact metric manifold, with structure

(M, g, n, a, u, & A, U) and generalized semi-symmetric connection V then
R(X, Y, &) = k(X)Y - n(X)Y]+ u[n(Y)rX — n(X)hY] (38)
if
n(X)E =Y ) + aY M(X)E + u(Y)n(X)
—a(X)N(Y)E - u(X(Y) + a(XMY)Y + a(Y)u( X)X
+u(XMY)Y — (Y MX)X - wX) — a(X)u(Y) + a(Y)u(X)

=—g(Y, VxU)Y + g(Y, VyU)X - g(X, V)X - g(X, Y)Y
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- Vy&n(X) + Vynén(Y) - g(Y, VxA)E + g(X, VyA)§
—(VxR)Y + (Vyn)e)X) - n(lX, Y]EA + &)
+g(Y,Vxé)+ g(X, Vx&) + S3(X, Y) + 255(X, Y)
+u(VxE) - u(Vy€) - a((X, YE).
Now if
R(X,Y, A) = k[a(Y)X — a(X)Y] + p[a(Y)hX — a(X)hY]
R(X, Y, U) = k[u(Y)X - w(X)Y] + pla(Y)hX - w(X)hY],
then we have the following relations
R(X,Y,U) = k[a(Y)X - u(X)Y] + p[a(Y)hX - a(X)hY],
if
g(X, VyA)g - g(Y, VxA)E - g(Y, VXU)Y + g(X, VxU)X
- 8(X, Y)(X -Y)-g(Y, VxA) + g(X, VyA)A
+g(Y, VxA) - g(VxA, X)
= a(X)Y - a(Y)X + VyEa(X) - Vxa(Y)
+(Vx)A)Y - (VymA)X + a([X, Y (E-1)
+a(Y)u(X)X - a(X)uY)Y + (XYY — u(¥Y)n(X)X
+n(X)a(Y) - n(Y)a(X) - u(VxA) - u(VxA) - a(X, YDA
and
R(X,Y,U) = k(¥)X - w(XY)) + pw(Y)hX - u(X)hY)

if

(1 -9)[eX, VxU) - g(Y, VxU) - w(X)a(Y) + a(X)u(Y) - u(X, Y])

= g(X, VxU)X - g(Y, VxU)Y - g(X, Y)(X, Y)
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+ g(X, VxU)X — g(y, Vx AU + u(Y)X — u(X)Y
+Vx&u(Y) = Vy&u(X) + (VxnU)X - (Vxn)U)Y
a(X)uY)Y - a(Y)u(X)X + u(Y)u(X)X + u(Y m(X)X — w(Xm(Y)Y
+a(X) - aY) + n(X)
and
u(&) = 0, n(U) = 0, w(U) = 1.

Theorem 4.3. On a (k, p)-contact metric manifold with structure
(M7 g; n7 u> a7 n; U7 A);

we have
R(, U, A) = RE U, A)+ u(VyA)g - n(VyA)

+u(VeA)E + u(V:UU — u(V:A)A - n(VyA)A

(Vea) AU = (Vym)A)E - a(&, UD + n(VyA)
- &+ u(VeA) - u(V:A - aflg, UDA. (42)

Proof. Using equations (3), (11), (12), (13), (20), (30), (32), (34) and (35),
we have the equation (42).

Theorem 4.4. If V is generalized semi-symmetric connection on (, p)-
contact metric manifold M with structure (M, g, n, a, u, &, A, U), then we

have the following relation

V(X,Y,U)=-V(Y, X, U), (43)
if
a(X)u(Y) + a(Y)u(X) = a¥)u(X)X + a(X)u(Y)Y. (44)
Proof. Using equations (39) and (40), we have the equations (43) and
(44).

Theorem 4.5. On (k, pu)-contact metric manifold with generalized

Rieman-nian connection V, then Riemannian curvature tensor V is skew-
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symmetric in first two slots with the condition

or

u) =0 (45)

g(X’ Z) = _g(Ya Z) (46)

Proof. By equations (34) and (35), we have the theorem.

Theorem 4.6. On a (k, p)-contact metric manifold M, we have the

following relation

(1]

(2]

(3]

(4]

(5]
(6]

(7]

(8]

(9]

(Vx9)Y = (8(X, Y) + g(X, hY))(1 +¢)

() ((X) + 1 - 2)X) + a(X) (n(X)E) - §(Y)). (47)

Proof. By [70] we have

(Vo)Y = (8(X, Y) + g(X, RY))E - n(Y)(X + hX). (48)

using equation (26), we have the equation (47).
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