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Abstract

In this paper determinant theory and the adjoint of non-square fuzzy matrices have been
studied. Some properties of the adjoint of non-square fuzzy matrices are discussed. A new type

of compatible norm |-||-. distributive law and equivalence of the non-square fuzzy matrices.

1. Introduction

The concept of fuzzy set was introduced by Zadeh [10] A. Arunkumar, S.
Murthy, G. Ganapathy [1] introduced determinant for non-square matrices.
In 1995 Ragab. M. Z and Eman [8] introduced the determinant and Adjoint of
square Fuzzy Matrix. Nagoorgani A. and Kalyani G. [5] introduced the
binormed sequences in fuzzy matrices. A. Nagoorgani and A. R. Manikandan

[6] introduced integral over Fuzzy Matrices. A. R. Meenakshi [3] some
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concept of matrix theory and applications in fuzzy matrices. Dennis Bernstein
[2] introduced compatible norm in matrix mathematics theory, facts and
Formulas. A. K Shymal and Madhumangal Pal [9] properties of triangular
fuzzy matrices. Some concept of Madhumangal Pal and Rajkumar Pradhan.
[4] triangular Fuzzy Matrix sNorm. A. Nagoorgani and A. Pappa [7]

introduced determinant for non-square fuzzy matrices with compatible norm.

In this paper the concept Adjoint of non-square fuzzy matrices with
Compatible Norm discussed. In section [4] adjoint of non-square fuzzy
matrices properties are given. In section [5] distributive law of non-square
fuzzy matrices with compatible norm. In section [3] equivalence of non-square

fuzzy matrices using compatible norm.
2. Preliminaries

We consider F = [0, 1] the fuzzy algebra with operator [+, -] and the
standard order “<” where a + b = max {q, b}, a-b = min {a, b} for all a, b in
F - F is a commutative semiring with additive and multiplicative identies 0

and 1 respectively. Let F,,,, denote the set of all m x n NSFM over F,,,. In
short F,, 1is the set of all NSFM of order m xn define “+” and Scalar
Multiplication in F,,, as A+ B = [a;; + b;;] where A =[q;;] and B=|b;]
and cA = [caij] where c is in [0,1] with these operations F,,,. Forms a linear

space. NSFM Multiplication is number of columns in the first Matrix must be

equal to the number of rows in the second Matrix with the operations F,,,

forms a linear space.

3. Determinant Theory and the Equivalence of Non-Square Fuzzy
Matrices

Definition 3.1. An m xn Matrix A = [aij] whose components are in the

unit interval [0, 1] is called Fuzzy Matrix.
Definition 3.2. The determinant | A| of an nxn Fuzzy Matrix A is

defined as follows; |A| :ZGES A16(1)%26(2) - Ono(n)- Where S, denotes the

symmetric group of all permutations of the indices (1, 2, ..., n).
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Definition 3.3. A Non-Square Fuzzy Matrix [NSFM] A = [a;;] of order
mxn over F,,. If n>m. Then the Matrix A is called horizontal Non-

Square Fuzzy Matrix. Otherwise A is called Vertical Non-Square Fuzzy
Matrix.

Definition 3.4. To every Non-Square Fuzzy Matrix [NSFM] A = [q;;] of
order m xn over F,,, with entries as unit interval [0, 1] Determinant | A |

of mxn over F,,. Fuzzy Matrix A is defined as follows.

|A| :ZGeSn A16(1)226(2) - --Imo(n) (Where S, denotes mn).

Definition 3.5. The NSFM | A | = [q;;] be the order m x n over F,,,. If
the order m xn > 3. The minor of arbitrary element a;; is the determinant
of the value.

Definition 3.6. Non-Square Fuzzy Matrices of minor:

The NSFM A = [a;;] be the order of m xn over F,,,. The minor of an
element a;; in det | A| is the order (m—-1)x(n-1) NSFM formed by

deleting i-th row and the j-th column from A = (a;;) denoted by M;;.

Definition 3.7. Cofactor:

The NSFM A = (a;;) be the order of m x n over F,,,. The Cofactor of an
element a;; is denoted by A;; and is defined as A; = (1)i+jMij.

Definition 3.8. (Compatible Non-Square Fuzzy Matrices). Compatible
Fuzzy Matrices which can be multiplied for this to be possible. The number of
columns in the first Non-Square Fuzzy Matrix must be equal to the number
of rows in the second Non-Square Fuzzy Matrix (NSFM). The product of
mx p. Non-square Fuzzy Matrix and p x n. Non-Square Fuzzy Matrix has

order m x n Non-Square Fuzzy Matrix over F,,, we consider F = [0, 1].

Definition 3.9. (Compatible Norm |-|.). Let F,, is the set of all
(m xn) NSFM over F = [0, 1]. Define the norms ||, ][ on the order

mxn, mx p, pxn over F,, respectively, are compatible if for all A € 7,
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and B € F,,. Then
I AB|. <[ Alel Bl
Definition 3.10. Let A be in NSFM A = [q;;] be the order of m x n over
Fpn defined as A° = [1 — a;;], where A = (q;;).

For all i =1 to m, j =1 to n. Then A® is known as the complement

Matrix of A.

05 00 04 06 05 1.0 06 04
If A={0.1 09 0.7 05|then A°=/09 0.1 03 0.5
08 03 05 0.2 02 0.7 05 0.8

Definition 3.11. Let A =[qg;;] and B = [b;;] NSFM over F,,,A is
defined greater than Bif | B|, <[ A|.B is greater than Aif | A |, <| B,
A and B NSFM are said to comparable if either |A|. <|B|, (or)
I B, <lAl.

Example 3.12. If A < B.

05 00 04 06 0.6 08 05 0.7
IfA={01 09 07 05/B=[{03 09 08 06
0.8 0.3 05 0.2 09 04 06 0.5
| Al =06
| B, <o0.8.

Theorem  3.13.  Let A, B NSFM  over Fn- Then
lAl. <l Bl, = lA+B], =|B]|-

Proof. | A, <||B|, then | A|, +| B, max {aij, bij} = [b;;] = B.

Conversely, if |A+ B, =|B|, then a; <b;, that is, |A[, <| B]L-
Thus | Al <[ B, <[ A+B], =B

Example 3.13.1. If
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05 00 04 0.6 06 08 05 0.7
A=|01 09 07 05|B=|03 09 08 0.6
0.8 03 05 0.2 09 04 06 05

0.6 0.8 05 0.7
|A+B|, =03 09 08 06]=08
0.9 04 06 05

|A+B]|. =B,

Theorem 3.14. Let A, B be NSFM over F,,,. If | A|, <| B|, then for
any C e Fp,| AC|, <| BC|, and forany D € F,,,| DA |, <| DB|..

Proof. If | A|. <| B|. NSFM for C is the compaitable NSFM then
IAC|, <[ BC|, A =la;]B = [b;]C =[cj].

Since | A, <| B, a;j <b; for i =1 to m and j =1 to n by NSFM
compaitable
aij Cjk < bl] Cjk
for k =1 to p. by NSFM addition we get ), azicjr <, bijcjp-

Thus | AC|, <|BC|,-|DA|, <|DB|, can be proved in the same

manner.

Theorem 3.15. If A and B are NSFM is the set of all m xn over F,,,.
We consider F = [0, 1] and any Scalar in [0, 1] we have

Il Az, <] Al ]* ]

O 15Al <15l Al

@) [adx [, < af Al (%]

(iii) | A% + BX |, = [ AX |, +[ BX ..
Proof.

(@) If m =1 the norms ||, |-l llos Frns Fp» Fpn respectively, are
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compatible if for all A € F,,y € F,. Let ¥ be any fuzzy vector in mxn

over F,,,.
Then it is enough to prove that
1Al <15 le> I Al
| Al <171 [a;]
<50 Al

(i) If n =1 the norms |-, |- [.> |-l z0» Fms Fmp» Fp respectively, are

compatible if for all A € F,,,x € F,.
If a.in [0, 1] then oA = [aq;]
| wdz |, < foag]] %,
< afa; ]| % |,
<o Al %],.

(iii) If n =1 the norms |-, |-l |-ll.-» Fp» Fp» Fpm respectively, are
compatible if for all A, Be F,, X € F,| AX|, = [a;]|*¥|, and
| Bx . = (611 % |,

| Ax + Bx ||, = [la;;]+ [b;]11 % .
= layll x I, + (6511 %,
= Ax |, +] Bx |
4. Adjoint of Non-Square Fuzzy Matrices with Compatible Norm

Definition 4.1. The Adjoint Matrix of an m xn NSFM over F,,A is

denoted by the (i, jth) entry adj A and is defined as
bij =1 Aji |,
where | Aj; | is the determinant of the (m —1) x (n —1). Fuzzy Matrix formed
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by deleting row j and column i from A and B = adj A.

Remark 1. We can rewrite b;; of adj A = B = [b;;] as follows

b = E | I Q
Y GeSn].mi tenjm; to(t)>

Example 4.1.1.

05 00 04 06
IfA=/01 09 0.7 05
08 03 05 0.2

adjA = b =| Aj; |

minor of M;; = b;;
ij ij

by =05
by = 0.7
by = 0.8
b, =0.8

adj A =bj; =| Aj | =

Theorem 4.2. For an m xn NSFM A and B we have the following

Q) | A| <|B| implies | adj A| < | adj B|

by = 0.5
byy = 0.6
bys = 0.6
byy = 0.5

0.5
0.7
0.8
0.8

by, = 0.6
byy = 0.5
bys = 0.6
by, = 0.5

0.5 0.6
0.6 0.6
0.6 0.6
0.5 0.5

= 0.6.

i) | A|T <|B|" implies |adj A|" <|adj B|"

(i) | adj A + adjB | < | adj (A + B)|

@) | adjA” | = | (adja)" |

) | Aladj A)| = | (Aadj A)[".

1181
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Proof.
1.Let C=|adj A| and D =| adj B| thatis

Cij = E I I Ais(t)>
J GeSn]. m; ten;m; ®)
and

d;j = Zcesnj e Htenj . bio(t)-

It is clear that ¢;; < d;; because ;) < bys(y) for every ¢ € njm;

2.Let C; =|adj A|" and D; =|adj B|! thatis

- Tl e
Jt oSy, nj o(t)em;n; tol(t)

and

d

i = Z oeSy, nj Hc(t)emi n; btcs(t)'

It is clear that cj; < dj; because (1) < bys(y) for every ¢ € m;n;.

3. Because A, B < A + B, it is clear that adjA, adjB < adj(A + B) and
so|adj A+adjB| <|adj (A +B)|.

4.Let B=adj A and C = adj AT, then

bij = E I | As(t)>
J GESnj m; tenjm; ®)
and

R |
Y GeSnj,ni olt)en; m; to(t)

which is the element b;; hence | (adj A | =] adj AT |.

Similarly we prove following properties.
Q) If|A|=| A + Ay | then |adj A| = | adj A; + adjAs |
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@) If g A| = Ay | +c¢| Ay | then |cadj A| = cadj A | +]| cadj As |.

Theorem 4.3. Let A be a NSFM and adj A of NSFM, the multiple A and
adj A is equal to a Square Fuzzy Matrix.

| Aladj A) |, # | (adj A)A |-

Proof. Let C = A(adj A) and D = (adj A)A then
Cjj = Z:;l a;i| Aj; | (Square Fuzzy Matrix)
and
d;j = ZZJ Aj; |a;j. (Square Fuzzy Matrix)

Example 4.3.1.
If

05 00 04 06
A=|01 09 07 05
08 03 05 0.2

05 05 0.6
: 0.7 0.6 0.6
ladj A, =
0.8 0.6 0.6
08 05 05
05 0.5 0.6
05 00 04 06] "
| Aladj A)[, =|0.1 09 0.7 05| o o
08 03 05 02 = 7
0.8 05 0.5
0.6 05 0.5
=07 06 06
05 0.5 0.6

its 3 x 3. Square Fuzzy Matrix

| Aadj a)|, = 0.6.
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05 05 0.6
07 o6 oel[0F 00 04 06

Iladi Al =| o o6 o6l 09 07 05
7 108 03 05 0.2
08 05 05

0.6 0.5 0.5 0.5
06 06 06 0.6

its 4 x 4 Square Fuzzy Matrix
0.6 06 06 0.6

05 05 05 0.6

| (adj A)A |, =

| (adj A)A], = 0.5.

Theorem 4.4. For any mxn NSFM A, the NSFM A(adj A) and
(adj A)A is compatible.

Proof.

0 [ Aladj A)[, <[ Allsl adj A

0.6 = (0.6)(0.6)

0.6 <0.6

(i) || (adj A)A ||, < | (adj A)[|o]| Al

0.5 < (0.6)(0.6)

0.5<0.6

(iid) | (A(adj A)? |, < | Aladj A)|,

C

0.6 05 05][0.6 05 05
0.7 06 06[07 06 0.6
05 05 0605 05 06

| (A(adj A)Y* |,

0.6 0.5 0.5
=106 0.6 06]<]|Alad A,
05 05 0.6

@) | ((adj A)AY |, < | (adj A)A |,
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0.6 05 0.5 05]|[06 05 05 0.5
06 06 06 06|06 06 06 0.6
06 06 06 06|06 06 06 0.6
105 05 05 0.6J{056 05 05 0.6

| (adj A)AY |, =

0.6 05 05 05
06 06 06 06
_ <l (adj A)A|.
06 06 0.6 06| Il

105 05 05 0.6

5. Distributive Law of Non-Square Fuzzy Matrices with Compatible
Norm

@ [AB+C)|, =[AB|, +[AC], and [ A(B+C)|, =[ Aly +[ B +C |
(i) |[(B+C)Al, =[| BA| +|CA], and [ (B+C)A|, =[B+C|, +| Al

Then the NSFM are over F=[0,1]A and (B+C),(B+C) and A

compatible in F,,,
() A,B,C are mxn,nxp,nxp respectively | A(B+C)|, =| AB].+|AC]..

Let |A| = [aij], |B| = [bjk] and | C| = [cjk] such that the ranges i, j, k&

are i =1tom, j =1to n k=1 to p respectively.
| B+Cl|, =[bj +cjp] =max {bj, cj.}

(ik)th element in the product of A and (B + C) that is A(B + C) is the sum of

the products of the corresponding elements in the ith row of A and kth column
of B+C

n
= Zj:l al](b]k + CJk)
n . n .
= Zj:l min (aijbjk) + Zj:l min (aijcjk)

= (ik)*h entries of AB + (ik)"" entries of AC
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= (tk)th entries of (AB + AQC)
= AB+BC|, = | AB|, +| AC],
(ii) A, B,C are pxm,nxp,nxp respectively ||(B+C)A|,=|BA||,+|CA]..
Let | A| = [ay;], | B| = [bjz] and | C| = [cj,] such that the ranges i, j, k
are i =1tom, j=1to n, k=1 toprespectively.
| B+Cl|,. = [bjr +cjp] = max {bj, cjp}

(ji)th element in the product of (B + C) and A thatis (B + C)A is the sum

of the products of the corresponding elements in the jth row of B + C and ith

column of A
n
= zjzl(bjk +Cjp )
n . n .
= Zj:l min(bjy, az; )+ ijl min(cjy, az; )

= (ji)th entries of BA + ( ji)th entries of CA
= (ji)th entries of (BA + CA)

=[(B+COA|, =] BA|, +|CA],.

6. Conclusion

In this paper new definition for the Equivalence of Non-Square Fuzzy
Matrices and its properties are suggested in Fuzzy environment. A numerical
example 1s given to clarify the developed theory and the proposed Adjoint of
Non-Square Fuzzy Matrices with Compatible Norm.
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