ADJOINT OF NON-SQUARE FUZZY MATRICES WITH COMPATIBLE NORM

P. MURUGANANTHAM, A. NAGOOR GANI and A. PAPPA
P.G and Research Department of Mathematics
Jamal Mohamed College (Autonomous)
Affiliated to Bharathidasan University
Tiruchirappalli-620 020, India
E-mail: pmananthjmc@gmail.com
ganijmc@yahoo.co.in
P.G and Research Department of Mathematics
Jamal Mohamed College (Autonomous)
Affiliated to Bharathidasan University
Tiruchirappalli-620 020, India
E-mail: pappa740@yahoo.com

Abstract

In this paper determinant theory and the adjoint of non-square fuzzy matrices have been studied. Some properties of the adjoint of non-square fuzzy matrices are discussed. A new type of compatible norm $\|\cdot\|_{C}$. distributive law and equivalence of the non-square fuzzy matrices.

1. Introduction

The concept of fuzzy set was introduced by Zadeh [10] A. Arunkumar, S. Murthy, G. Ganapathy [1] introduced determinant for non-square matrices. In 1995 Ragab. M. Z and Eman [8] introduced the determinant and Adjoint of square Fuzzy Matrix. Nagoorgani A. and Kalyani G. [5] introduced the binormed sequences in fuzzy matrices. A. Nagoorgani and A. R. Manikandan [6] introduced integral over Fuzzy Matrices. A. R. Meenakshi [3] some
concept of matrix theory and applications in fuzzy matrices. Dennis Bernstein [2] introduced compatible norm in matrix mathematics theory, facts and Formulas. A. K Shymal and Madhumangal Pal [9] properties of triangular fuzzy matrices. Some concept of Madhumangal Pal and Rajkumar Pradhan. [4] triangular Fuzzy Matrix sNorm. A. Nagoorgani and A. Pappa [7] introduced determinant for non-square fuzzy matrices with compatible norm.

In this paper the concept Adjoint of non-square fuzzy matrices with Compatible Norm discussed. In section [4] adjoint of non-square fuzzy matrices properties are given. In section [5] distributive law of non-square fuzzy matrices with compatible norm. In section [3] equivalence of non-square fuzzy matrices using compatible norm.

2. Preliminaries

We consider $\mathcal{F}=[0,1]$ the fuzzy algebra with operator $[+, \cdot]$ and the standard order " \leq " where $a+b=\max \{a, b\}, a \cdot b=\min \{a, b\}$ for all a, b in $\mathcal{F} \cdot \mathcal{F}$ is a commutative semiring with additive and multiplicative identies 0 and 1 respectively. Let $\mathcal{F}_{m n}$ denote the set of all $m \times n$ NSFM over $\mathcal{F}_{m n}$. In short $\mathcal{F}_{m n}$ is the set of all NSFM of order $m \times n$ define " + " and Scalar Multiplication in $\mathcal{F}_{m n}$ as $A+B=\left[a_{i j}+b_{i j}\right]$ where $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ and $c A=\left[c a_{i j}\right]$ where c is in [0,1] with these operations $\mathcal{F}_{m n}$. Forms a linear space. NSFM Multiplication is number of columns in the first Matrix must be equal to the number of rows in the second Matrix with the operations $\mathcal{F}_{m n}$ forms a linear space.

3. Determinant Theory and the Equivalence of Non-Square Fuzzy Matrices

Definition 3.1. An $m \times n$ Matrix $A=\left[a_{i j}\right]$ whose components are in the unit interval $[0,1]$ is called Fuzzy Matrix.

Definition 3.2. The determinant $|A|$ of an $n \times n$ Fuzzy Matrix A is defined as follows; $|A|=\sum_{\sigma \in S_{n}} a_{1 \sigma(1)} a_{2 \sigma(2)} \ldots a_{n \sigma(n)}$. Where S_{n} denotes the symmetric group of all permutations of the indices $(1,2, \ldots, n)$.

Definition 3.3. A Non-Square Fuzzy Matrix [NSFM] $A=\left[a_{i j}\right]$ of order $m \times n$ over $\mathcal{F}_{m n}$. If $n>m$. Then the Matrix A is called horizontal NonSquare Fuzzy Matrix. Otherwise A is called Vertical Non-Square Fuzzy Matrix.

Definition 3.4. To every Non-Square Fuzzy Matrix [NSFM] $A=\left[a_{i j}\right]$ of order $m \times n$ over $\mathcal{F}_{m n}$ with entries as unit interval [0, 1] Determinant $|A|$ of $m \times n$ over $\mathcal{F}_{m n}$. Fuzzy Matrix A is defined as follows. $|A|=\sum_{\sigma \in S_{n}} a_{1 \sigma(1)} a_{2 \sigma(2)} \ldots a_{m \sigma(n)}$ (where S_{n} denotes $m n$).

Definition 3.5. The NSFM $|A|=\left[a_{i j}\right]$ be the order $m \times n$ over $\mathcal{F}_{m n}$. If the order $m \times n \geq 3$. The minor of arbitrary element $a_{i j}$ is the determinant of the value.

Definition 3.6. Non-Square Fuzzy Matrices of minor:
The NSFM $A=\left[a_{i j}\right]$ be the order of $m \times n$ over $\mathcal{F}_{m n}$. The minor of an element $a_{i j}$ in $\operatorname{det}|A|$ is the order $(m-1) \times(n-1)$ NSFM formed by deleting i-th row and the j-th column from $A=\left(a_{i j}\right)$ denoted by $M_{i j}$.

Definition 3.7. Cofactor:

The NSFM $A=\left(a_{i j}\right)$ be the order of $m \times n$ over $\mathcal{F}_{m n}$. The Cofactor of an element $a_{i j}$ is denoted by $A_{i j}$ and is defined as $A_{i j}=(1)^{i+j} M_{i j}$.

Definition 3.8. (Compatible Non-Square Fuzzy Matrices). Compatible Fuzzy Matrices which can be multiplied for this to be possible. The number of columns in the first Non-Square Fuzzy Matrix must be equal to the number of rows in the second Non-Square Fuzzy Matrix (NSFM). The product of $m \times p$. Non-square Fuzzy Matrix and $p \times n$. Non-Square Fuzzy Matrix has order $m \times n$ Non-Square Fuzzy Matrix over $\mathcal{F}_{m n}$ we consider $\mathcal{F}=[0,1]$.

Definition 3.9. (Compatible Norm $\|\cdot\|_{c}$). Let $\mathcal{F}_{m n}$ is the set of all $(m \times n)$ NSFM over $\mathcal{F}=[0,1]$. Define the norms $\|\cdot\|_{c},\|\cdot\|_{c^{\prime}},\|\cdot\|_{c^{\prime \prime}}$ on the order $m \times n, m \times p, p \times n$ over $\mathcal{F}_{m n}$ respectively, are compatible if for all $A \in \mathcal{F}_{m p}$
and $B \in \mathcal{F}_{p n}$. Then

$$
\|A B\|_{c} \leq\|A\|_{c^{\prime}}\|B\|_{c^{\prime \prime}}
$$

Definition 3.10. Let A be in NSFM $A=\left[a_{i j}\right]$ be the order of $m \times n$ over $\mathcal{F}_{m n}$ defined as $A^{c}=\left[1-a_{i j}\right]$, where $A=\left(a_{i j}\right)$.

For all $i=1$ to $m, j=1$ to n. Then A^{c} is known as the complement Matrix of A.

If $A=\left[\begin{array}{cccc}0.5 & 0.0 & 0.4 & 0.6 \\ 0.1 & 09 & 0.7 & 0.5 \\ 0.8 & 0.3 & 0.5 & 0.2\end{array}\right]$ then $A^{c}=\left[\begin{array}{cccc}0.5 & 1.0 & 0.6 & 0.4 \\ 0.9 & 0.1 & 0.3 & 0.5 \\ 0.2 & 0.7 & 0.5 & 0.8\end{array}\right]$
Definition 3.11. Let $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ NSFM over $\mathcal{F}_{m n} A$ is defined greater than B if $\|B\|_{c} \leq\|A\|_{c} B$ is greater than A if $\|A\|_{c} \leq\|B\|_{c}$. A and B NSFM are said to comparable if either $\|A\|_{c} \leq\|B\|_{c}$ (or) $\|B\|_{c} \leq\|A\|_{c}$.

Example 3.12. If $A \leq B$.
If $A=\left[\begin{array}{llll}0.5 & 0.0 & 0.4 & 0.6 \\ 0.1 & 0.9 & 0.7 & 0.5 \\ 0.8 & 0.3 & 0.5 & 0.2\end{array}\right] B=\left[\begin{array}{llll}0.6 & 0.8 & 0.5 & 0.7 \\ 0.3 & 0.9 & 0.8 & 0.6 \\ 0.9 & 0.4 & 0.6 & 0.5\end{array}\right]$
$\|A\|_{c}=0.6$
$\|B\|_{c} \leq 0.8$.
Theorem 3.13. Let $A, B \quad$ NSFM over $\mathcal{F}_{m n}$. Then $\|A\|_{c} \leq\|B\|_{c} \Leftrightarrow\|A+B\|_{c}=\|B\|_{c}$.

Proof. $\|A\|_{c} \leq\|B\|_{c}$ then $\|A\|_{c}+\|B\|_{c} \max \left\{a_{i j}, b_{i j}\right\}=\left[b_{i j}\right]=B$.
Conversely, if $\|A+B\|_{c}=\|B\|_{c}$ then $a_{i j} \leq b_{i j}$, that is, $\|A\|_{c} \leq\|B\|_{c}$. Thus $\|A\|_{c} \leq\|B\|_{c} \Leftrightarrow\|A+B\|_{c}=\|B\|_{c}$.

Example 3.13.1. If

$$
\begin{gathered}
A=\left[\begin{array}{llll}
0.5 & 0.0 & 0.4 & 0.6 \\
0.1 & 0.9 & 0.7 & 0.5 \\
0.8 & 0.3 & 0.5 & 0.2
\end{array}\right] B=\left[\begin{array}{llll}
0.6 & 0.8 & 0.5 & 0.7 \\
0.3 & 0.9 & 0.8 & 0.6 \\
0.9 & 0.4 & 0.6 & 0.5
\end{array}\right] \\
\|A+B\|_{c}=\left[\begin{array}{llll}
0.6 & 0.8 & 0.5 & 0.7 \\
0.3 & 0.9 & 0.8 & 0.6 \\
0.9 & 0.4 & 0.6 & 0.5
\end{array}\right]=0.8 \\
\|A+B\|_{c}=\|B\|_{c} .
\end{gathered}
$$

Theorem 3.14. Let A, B be NSFM over $\mathcal{F}_{m n}$. If $\|A\|_{c} \leq\|B\|_{c}$ then for any $C \in \mathcal{F}_{n p}\|A C\|_{c} \leq\|B C\|_{c}$ and for any $D \in \mathcal{F}_{p m}\|D A\|_{c} \leq\|D B\|_{c}$.

Proof. If $\|A\|_{c} \leq\|B\|_{c}$ NSFM for C is the compaitable NSFM then $\|A C\|_{c} \leq\|B C\|_{c} A=\left[a_{i j}\right] B=\left[b_{i j}\right] C=\left[c_{j k}\right]$.

Since $\|A\|_{c} \leq\|B\|_{c}, a_{i j} \leq b_{i j}$ for $i=1$ to m and $j=1$ to n by NSFM compaitable

$$
a_{i j} c_{j k} \leq b_{i j} c_{j k}
$$

for $k=1$ to p. by NSFM addition we get $\sum_{k} a_{i j} c_{j k} \leq \sum_{k} b_{i j} c_{j k}$.
Thus $\|A C\|_{c} \leq\|B C\|_{c} \cdot\|D A\|_{c} \leq\|D B\|_{c}$ can be proved in the same manner.

Theorem 3.15. If A and B are NSFM is the set of all $m \times n$ over $\mathcal{F}_{m n}$. We consider $\mathcal{F}=[0,1]$ and any Scalar in $[0,1]$ we have

If $\|A \widetilde{x}\|_{c} \leq\|A\|_{c^{\prime}}\|\widetilde{x}\|_{c^{\prime \prime}}$
(i) $\|\tilde{y} A\|_{c} \leq\|\tilde{y}\|_{c^{\prime}}\|A\|_{c^{\prime \prime}}$
(ii) $\|\alpha A \widetilde{x}\|_{c} \leq \alpha\|A\|_{c^{\prime}}\|\widetilde{x}\|_{c^{\prime \prime}}$
(iii) $\|A \tilde{x}+B \tilde{x}\|_{c}=\|A \tilde{x}\|_{c}+\|B \tilde{x}\|_{c}$.

Proof.

(i) If $m=1$ the norms $\|\cdot\|_{c},\|\cdot\|_{c^{\prime}},\|\cdot\|_{c^{\prime \prime}}, \mathcal{F}_{n}, \mathcal{F}_{p}, \mathcal{F}_{p n}$ respectively, are
compatible if for all $A \in \mathcal{F}_{p n} \bar{y} \in \mathcal{F}_{p}$. Let \bar{y} be any fuzzy vector in $m \times n$ over $\mathcal{F}_{m n}$.

Then it is enough to prove that

$$
\begin{aligned}
\|\bar{y} A\|_{c} & \leq\|\bar{y}\|_{c},\|A\|_{c} \\
\|\bar{y} A\|_{c} & \leq\|\bar{y}\|_{c}\left[a_{i j}\right] \\
& \leq\|\bar{y}\|_{c^{\prime \prime}}\|A\|_{c^{\prime \prime}} .
\end{aligned}
$$

(ii) If $n=1$ the norms $\|\cdot\|_{c},\|\cdot\|_{c^{\prime}},\|\cdot\|_{c^{\prime \prime}}, \mathcal{F}_{m}, \mathcal{F}_{m p}, \mathcal{F}_{p}$ respectively, are compatible if for all $A \in \mathcal{F}_{m p}, \bar{x} \in \mathcal{F}_{p}$.

If α in $[0,1]$ then $\alpha A=\left[\alpha \alpha_{i j}\right]$

$$
\begin{aligned}
\|\alpha A \bar{x}\|_{c} & \leq\left[\alpha a_{i j}\right]\|\bar{x}\|_{c} \\
& \leq \alpha\left[a_{i j}\right]\|\bar{x}\|_{c} \\
& \leq \alpha\|A\|_{c^{\prime}}\|\bar{x}\|_{c^{\prime}} .
\end{aligned}
$$

(iii) If $n=1$ the norms $\|\cdot\|_{c},\|\cdot\|_{c^{\prime}},\|\cdot\|_{c^{\prime}}, \mathcal{F}_{p}, \mathcal{F}_{p}, \mathcal{F}_{p m}$ respectively, are compatible if for all $A, B \in \mathcal{F}_{m p} \bar{x} \in \mathcal{F}_{p}\|A \bar{x}\|_{c}=\left[a_{i j}\right]\|\bar{x}\|_{c} \quad$ and $\|B \bar{x}\|_{c}=\left[b_{i j}\right]\|\bar{x}\|_{c}$

$$
\begin{aligned}
\|A \bar{x}+B \bar{x}\|_{c} & =\left[\left[a_{i j}\right]+\left[b_{i j}\right]\right]\|\bar{x}\|_{c} \\
& =\left[a_{i j}\right]\|\bar{x}\|_{c}+\left[b_{i j}\right]\|\bar{x}\|_{c} \\
& =\|A \bar{x}\|_{c}+\|B \bar{x}\|_{c} .
\end{aligned}
$$

4. Adjoint of Non-Square Fuzzy Matrices with Compatible Norm

Definition 4.1. The Adjoint Matrix of an $m \times n$ NSFM over $\mathcal{F}_{m n} A$ is denoted by the $\left(i, j^{t h}\right)$ entry adj A and is defined as

$$
b_{i j}=\left|A_{j i}\right|,
$$

where $\left|A_{j i}\right|$ is the determinant of the $(m-1) \times(n-1)$. Fuzzy Matrix formed
by deleting row j and column i from A and $B=\operatorname{adj} A$.
Remark 1. We can rewrite $b_{i j}$ of $\operatorname{adj} A=B=\left[b_{i j}\right]$ as follows

$$
b_{i j}=\sum_{\sigma \in S_{n j} m_{i}} \prod_{t \in n_{j} m_{i}} a_{t \sigma(t)}
$$

Example 4.1.1.

If $A=\left[\begin{array}{cccc}0.5 & 0.0 & 0.4 & 0.6 \\ 0.1 & 0.9 & 0.7 & 0.5 \\ 0.8 & 0.3 & 0.5 & 0.2\end{array}\right]$
$\operatorname{adj} A=b_{i j}=\left|A_{j i}\right|$
minor of $M_{i j}=b_{i j}$

$$
\begin{aligned}
& b_{11}=0.5 \quad b_{21}=0.5 \quad b_{31}=0.6 \\
& b_{12}=0.7 \quad b_{22}=0.6 \quad b_{32}=0.5 \\
& b_{13}=0.8 \quad b_{23}=0.6 \quad b_{33}=0.6 \\
& b_{14}=0.8 \quad b_{24}=0.5 \quad b_{34}=0.5 \\
& \operatorname{adj} A=b_{i j}=\left|A_{j i}\right|=\left[\begin{array}{lll}
0.5 & 0.5 & 0.6 \\
0.7 & 0.6 & 0.6 \\
0.8 & 0.6 & 0.6 \\
0.8 & 0.5 & 0.5
\end{array}\right]=0.6 \text {. }
\end{aligned}
$$

Theorem 4.2. For an $m \times n$ NSFM A and B we have the following
(i) $|A| \leq|B|$ implies $|\operatorname{adj} A| \leq|\operatorname{adj} B|$
(ii) $|A|^{T} \leq|B|^{T}$ implies $|\operatorname{adj} A|^{T} \leq|\operatorname{adj} B|^{T}$
(iii) $|\operatorname{adj} A+\operatorname{adj} B| \leq|\operatorname{adj}(A+B)|$
(iv) $\left|\operatorname{adj} A^{T}\right|=\left|(\operatorname{adj} A)^{T}\right|$
(v) $|A(\operatorname{adj} A)|=|(A \operatorname{adj} A)|^{T}$.

Proof.

1. Let $C=|\operatorname{adj} A|$ and $D=|\operatorname{adj} B|$ that is

$$
c_{i j}=\sum_{\sigma \in S_{n_{j} m_{i}}} \prod_{t \in n_{j} m_{i}} a_{t \sigma(t)}
$$

and

$$
d_{i j}=\sum_{\sigma \in S_{n_{j} m_{i}}} \prod_{t \in n_{j} m_{i}} b_{t \sigma(t)}
$$

It is clear that $c_{i j} \leq d_{i j}$ because $a_{t \sigma(t)} \leq b_{t \sigma(t)}$ for every $t \in n_{j} m_{i}$
2. Let $C_{1}=|\operatorname{adj} A|^{T}$ and $D_{1}=|\operatorname{adj} B|^{T}$ that is
and

It is clear that $c_{j i} \leq d_{j i}$ because $a_{t \sigma(t)} \leq b_{t \sigma(t)}$ for every $t \in m_{i} n_{j}$.
3. Because $A, B \leq A+B$, it is clear that $\operatorname{adj} A, \operatorname{adj} B \leq \operatorname{adj}(A+B)$ and so $|\operatorname{adj} A+\operatorname{adj} B| \leq|\operatorname{adj}(A+B)|$.
4. Let $B=\operatorname{adj} A$ and $C=\operatorname{adj} A^{T}$, then

$$
b_{i j}=\sum_{\sigma \in S_{n_{j} m_{i}}} \prod_{t \in n_{j} m_{i}} a_{t \sigma(t)}
$$

and

$$
c_{i j}=\sum_{\sigma \in S_{n_{j} m_{i}}} \prod_{\sigma(t) \in n_{j} m_{i}} a_{t \sigma(t)},
$$

which is the element $b_{i j}$ hence $\left|(\operatorname{adj} A)^{T}\right|=\left|\operatorname{adj} A^{T}\right|$.
Similarly we prove following properties.
(i) If $|A|=\left|A_{1}+A_{2}\right|$ then $|\operatorname{adj} A|=\left|\operatorname{adj} A_{1}+\operatorname{adj} A_{2}\right|$
(ii) If $c|A|=c\left|A_{1}\right|+c\left|A_{2}\right|$ then $|\operatorname{cadj} A|=\left|\operatorname{cadj} A_{1}\right|+\left|\operatorname{cadj} A_{2}\right|$.

Theorem 4.3. Let A be a NSFM and adj A of NSFM, the multiple A and $\operatorname{adj} A$ is equal to a Square Fuzzy Matrix.

$$
\|A(\operatorname{adj} A)\|_{c} \neq\|(\operatorname{adj} A) A\|_{c} .
$$

Proof. Let $C=A(\operatorname{adj} A)$ and $D=(\operatorname{adj} A) A$ then

$$
C_{i j}=\sum_{j=1}^{n} a_{i j}\left|A_{j i}\right| \text { (Square Fuzzy Matrix) }
$$

and

$$
d_{i j}=\sum_{i=1}^{m}\left|A_{j i}\right| a_{i j} . \text { (Square Fuzzy Matrix) }
$$

Example 4.3.1.

If

$$
\begin{gathered}
A=\left[\begin{array}{llll}
0.5 & 0.0 & 0.4 & 0.6 \\
0.1 & 0.9 & 0.7 & 0.5 \\
0.8 & 0.3 & 0.5 & 0.2
\end{array}\right] \\
\| \text { adj } A \|_{c}=\left[\begin{array}{lll}
0.5 & 0.5 & 0.6 \\
0.7 & 0.6 & 0.6 \\
0.8 & 0.6 & 0.6 \\
0.8 & 0.5 & 0.5
\end{array}\right] \\
\|A(\operatorname{adj} A)\|_{c}=\left[\begin{array}{llll}
0.5 & 0.0 & 0.4 & 0.6 \\
0.1 & 0.9 & 0.7 & 0.5 \\
0.8 & 0.3 & 0.5 & 0.2
\end{array}\right]\left[\begin{array}{lll}
0.5 & 0.5 & 0.6 \\
0.7 & 0.6 & 0.6 \\
0.8 & 0.6 & 0.6 \\
0.8 & 0.5 & 0.5
\end{array}\right] \\
=\left[\begin{array}{lll}
0.6 & 0.5 & 0.5 \\
0.7 & 0.6 & 0.6 \\
0.5 & 0.5 & 0.6
\end{array}\right]
\end{gathered}
$$

its 3×3. Square Fuzzy Matrix

$$
\|A(\operatorname{adj} a)\|_{c}=0.6 .
$$

$$
\begin{gathered}
\|(\operatorname{adj} A) A\|_{c}=\left[\begin{array}{lll}
0.5 & 0.5 & 0.6 \\
0.7 & 0.6 & 0.6 \\
0.8 & 0.6 & 0.6 \\
0.8 & 0.5 & 0.5
\end{array}\right]\left[\begin{array}{llll}
0.5 & 0.0 & 0.4 & 0.6 \\
0.1 & 0.9 & 0.7 & 0.5 \\
0.8 & 0.3 & 0.5 & 0.2
\end{array}\right] \\
\|(\operatorname{adj} A) A\|_{c}=\left[\begin{array}{llll}
0.6 & 0.5 & 0.5 & 0.5 \\
0.6 & 0.6 & 0.6 & 0.6 \\
0.6 & 0.6 & 0.6 & 0.6 \\
0.5 & 0.5 & 0.5 & 0.6
\end{array}\right] \text { its } 4 \times 4 \text { Square Fuzzy Matrix } \\
\|(\operatorname{adj} A) A\|_{c}=0.5 .
\end{gathered}
$$

Theorem 4.4. For any $m \times n$ NSFM A, the NSFM A(adjA) and $(\operatorname{adj} A) A$ is compatible.

Proof.
(i) $\|A(\operatorname{adj} A)\|_{c} \leq\|A\|_{c^{\prime}}\|\operatorname{adj} A\|_{c^{\prime \prime}}$
$0.6=(0.6)(0.6)$
$0.6 \leq 0.6$
(ii) $\|(\operatorname{adj} A) A\|_{c} \leq\|(\operatorname{adj} A)\|_{c^{\prime \prime}}\|A\|_{c^{\prime}}$
$0.5 \leq(0.6)(0.6)$
$0.5 \leq 0.6$
(iii) $\left\|(A(\operatorname{adj} A))^{2}\right\|_{c} \leq\|A(\operatorname{adj} A)\|_{c}$

$$
\begin{aligned}
\left\|(A(\operatorname{adj} A))^{2}\right\|_{c} & =\left[\begin{array}{lll}
0.6 & 0.5 & 0.5 \\
0.7 & 0.6 & 0.6 \\
0.5 & 0.5 & 0.6
\end{array}\right]\left[\begin{array}{ccc}
0.6 & 0.5 & 0.5 \\
0.7 & 0.6 & 0.6 \\
0.5 & 0.5 & 0.6
\end{array}\right] \\
& =\left[\begin{array}{lll}
0.6 & 0.5 & 0.5 \\
0.6 & 0.6 & 0.6 \\
0.5 & 0.5 & 0.6
\end{array}\right] \leq\|A(\operatorname{adj} A)\|_{c}
\end{aligned}
$$

(iv) $\left\|((\operatorname{adj} A) A)^{2}\right\|_{c} \leq\|(\operatorname{adj} A) A\|_{c}$

$$
\begin{aligned}
\left\|((\operatorname{adj} A) A)^{2}\right\|_{c} & =\left[\begin{array}{llll}
0.6 & 0.5 & 0.5 & 0.5 \\
0.6 & 0.6 & 0.6 & 0.6 \\
0.6 & 0.6 & 0.6 & 0.6 \\
0.5 & 0.5 & 0.5 & 0.6
\end{array}\right]\left[\begin{array}{llll}
0.6 & 0.5 & 0.5 & 0.5 \\
0.6 & 0.6 & 0.6 & 0.6 \\
0.6 & 0.6 & 0.6 & 0.6 \\
0.5 & 0.5 & 0.5 & 0.6
\end{array}\right] \\
& =\left[\begin{array}{llll}
0.6 & 0.5 & 0.5 & 0.5 \\
0.6 & 0.6 & 0.6 & 0.6 \\
0.6 & 0.6 & 0.6 & 0.6 \\
0.5 & 0.5 & 0.5 & 0.6
\end{array}\right] \leq\|(\operatorname{adj} A) A\|_{c} .
\end{aligned}
$$

5. Distributive Law of Non-Square Fuzzy Matrices with Compatible Norm

(i) $\|A(B+C)\|_{c}=\|A B\|_{c}+\|A C\|_{c}$ and $\|A(B+C)\|_{c}=\|A\|_{c^{\prime}}+\|B+C\|_{c^{\prime \prime}}$
(ii) $\|(B+C) A\|_{c}=\|B A\|_{c}+\|C A\|_{c}$ and $\|(B+C) A\|_{c}=\|B+C\|_{c^{\prime}}+\|A\|_{c^{\prime \prime}}$.

Then the NSFM are over $\mathcal{F}=[0,1] A$ and $(B+C),(B+C)$ and A compatible in $\mathcal{F}_{m n}$
(i) A, B, C are $m \times n, n \times p, n \times p$ respectively $\|A(B+C)\|_{c}=\|A B\|_{c}+\|A C\|_{c}$.

Let $|A|=\left[a_{i j}\right],|B|=\left[b_{j k}\right]$ and $|C|=\left[c_{j k}\right]$ such that the ranges i, j, k are $i=1$ to $m, j=1$ to $n, k=1$ to p respectively.

$$
\|B+C\|_{c}=\left[b_{j k}+c_{j k}\right]=\max \left\{b_{j k}, c_{j k}\right\}
$$

$(i k)^{\text {th }}$ element in the product of A and $(B+C)$ that is $A(B+C)$ is the sum of the products of the corresponding elements in the $i^{\text {th }}$ row of A and $k^{\text {th }}$ column of $B+C$
$=\sum_{j=1}^{n} a_{i j}\left(b_{j k}+c_{j k}\right)$
$=\sum_{j=1}^{n} \min \left(a_{i j} b_{j k}\right)+\sum_{j=1}^{n} \min \left(a_{i j} c_{j k}\right)$
$=(i k)^{\mathrm{th}}$ entries of $A B+(i k)^{t h}$ entries of $A C$
$=(i k)^{\text {th }}$ entries of $(A B+A C)$
$=\|A B+B C\|_{c}=\|A B\|_{c}+\|A C\|_{c}$
(ii) A, B, C are $p \times m, n \times p, n \times p$ respectively $\|(B+C) A\|_{c}=\|B A\|_{c}+\|C A\|_{c}$.

Let $|A|=\left[a_{k i}\right],|B|=\left[b_{j k}\right]$ and $|C|=\left[c_{j k}\right]$ such that the ranges i, j, k are $i=1$ to $m, j=1$ to $n, k=1$ to p respectively.

$$
\|B+C\|_{c}=\left[b_{j k}+c_{j k}\right]=\max \left\{b_{j k}, c_{j k}\right\}
$$

$(j i)^{\text {th }}$ element in the product of $(B+C)$ and A that is $(B+C) A$ is the sum of the products of the corresponding elements in the $j^{\text {th }}$ row of $B+C$ and $i^{\text {th }}$ column of A

$$
\begin{aligned}
& =\sum_{j=1}^{n}\left(b_{j k}+c_{j k}\right) a_{k i} \\
& =\sum_{j=1}^{n} \min \left(b_{j k} a_{k i}\right)+\sum_{j=1}^{n} \min \left(c_{j k} a_{k i}\right) \\
& =(j i)^{\text {th }} \text { entries of } B A+(j i)^{\text {th }} \text { entries of } C A \\
& =(j i)^{\text {th }} \text { entries of }(B A+C A) \\
& =\|(B+C) A\|_{c}=\|B A\|_{c}+\|C A\|_{c} .
\end{aligned}
$$

6. Conclusion

In this paper new definition for the Equivalence of Non-Square Fuzzy Matrices and its properties are suggested in Fuzzy environment. A numerical example is given to clarify the developed theory and the proposed Adjoint of Non-Square Fuzzy Matrices with Compatible Norm.

References

[1] M. Arunkumar, S. Murthy and G. Ganapathy, Determinant for Non-Square Matrices, An international Journal of Mathematical Science and Engineering Applications 5(5) (2011), ISSN 0973-9424 p.389-401.
[2] S. Dennis, Bernstein Matrix Mathematics Theory, Facts and Formulas Second edition (2009), 350-352.
[3] A. R. Meenakshi, Fuzzy Matrix Theory and Applications, MJP Publishers, Chennai-5, ISBN 978-81-8094-054-5.
[4] Madhumangal Pal and Rajkumar Pradhan Triangular Fuzzy Matrix Norm and its properties, Journal of Fuzzy Mathematics 25(4) (2017), 823-834.
[5] A. Nagoorgani and G. Kalyani, On Fuzzy m-Norm Matrices, Bulletin of Pure and Applied Sciences 22E(1) (2003), 1-11.
[6] A. Nagoorgani and A. R. Manikandan, Integral over Fuzzy Matrices international Journal of Mathematical Science and Engineering Applications 7(6) (2013), 225-232 ISSN 0973-9424.
[7] A. Nagoorgani and A. Pappa, Determinant for Non-Square fuzzy matrices with compatible norm, American International Journal of Research in Science, Technology, Engineering and Mathematics ISSN(online) 2328-3580 p.354-359 (Special issue ICOMAC -(2019).
[8] M. Z. Ragab and E. G. Emam, The Determinant and Adjoint of Square Fuzzy Matrix, An International Journal of Information Sciences-Intelligent Systems 84 (1995), 209-220.
[9] A. K. Shymal and Madhumangal Pal, Triangular Fuzzy Matrices, Iranian Journal of Fuzzy Systems 4 (2007), 75-87.
[10] L. A. Zadeh, Fuzzy Sets, J. Information and Control 8 (1965), 338-353.

