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Abstract 

 An  1,2L -labeling of a simple connected graph  EVG ,  is a mapping 

   0: NGV   satisfies the condition        ,,3, GVyxyxyxd    where 

 yxd ,  is the distance between y and x in G. The  1,2L -labeling number of G, denoted by 

),( 12, G  is the least number l such that there is an  1,2L  labeling with maximum label l. 

In this paper, we have newly constructed certain extended networks from Copper-Oxide structure 

 nmCuO ,  containing m rows and n columns of octagons. Further, we have investigated the 

 1,2L  labeling number for Copper-Oxide network  nmCuO ,  and its extended networks. 

1. Introduction 

In the channel assignment problem, transmitters at several landmarks 

within a geographical region must be allotted distinct frequencies or channels 

to avoid channel co-inference. Channels (whole numbers) are allocated to 

every radio transmitter (nodes) so that interfering (adjacent) transmitters get 

distinct channels. Keeping the radio transmitter analogy in mind, in 1992, 
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Griggs et al. [5] introduced a labeling technique called  1,2L  labeling in 

which a graph must to be labeled so that “very close” vertices (at distance 1) 

get labels that are farther apart while “close” vertices (at distance 2) get 

different labels. This quantification led to the definition of an  1,2L  labeling 

as follows: An  1,2L  labeling of a simple connected graph  EVG ,  is a 

mapping    0: NGV   satisfies the condition      yxyxd  ,  

 ,,3 GVyx   where  yxd ,  is the distance between x and y in G. The 

 1,2L -labeling number of G, denoted by ),( 12, G  is the least number l 

such that there is an  1,2L  labeling with maximum label l. 

Griggs et al. [5] observed that for any graph G with maximum degree ∆, a 

greedy algorithm yields .21)( 2
 12,  G  In addition, for ,2  they 

posed a conjecture that 
2

 12, )(  G  and proved that .2)( 2
 12,  G  

Chang et al. [2] improved the bound to 2  and gave a polynomial-time 

algorithm on trees and linear-time algorithm for cographs. Kral et al. [7] 

further reduced the bound to .12   In 2008, Goncalves [4] improved the 

bound by further reducing to .22   For general graphs, the  1,2L -

labeling problem is NP-hard [1]. But it has been studied for several graphs, 

such as hypercubes [7], tree dendrimers [14], circular arc graphs [10], block 

graphs [1], generalized Petersen graphs [6], permutation graphs [9], Silicate 

and oxide networks [13] and chordal graphs [11]. Xavier et al. [12] presented 

that       3,1,,12,  12, 12,  rnrrnSnrrnWS  and 

   .12, 12,  nrnSW  

In this paper, we have newly designed four copper-oxide derived 

networks from the existing copper-oxide structure  nmCuO ,  containing m 

rows and n columns of octagons. Further, we have shown that 

        nmCuOnmCuOnmCuO ,,11,,7,  12, 12, 12,    

   11,,9  12,  nmCuO  and    .10, 12,  nmCuO  
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2. Copper-Oxide and its Extended Networks 

In this section we have constructed certain derived networks from the 

known Copper-Oxide structures. 

2.1 Coper-Oxide Network. The chemical structure of Copper (II) Oxide 

[3, 8] is constructed as follows: The octagon structure of Copper (II) Oxide is 

linked to each other in rows and columns. The connection between two 

octagon is attained by forming each 4Cu  bond between two octagons. The 

resulting network structure named as Copper-Oxide network with m rows 

and n columns of octagons. It is denoted by  ., nmCuO  See in figure 1. The 

cardinality of vertex and edge sets present in  nmCuO ,  are mmmn 34   

and  12 mn  respectively. 

2.2 Diagonal Copper-Oxide networks. In  ,, nmCuO  if the oxide 

nodes in each octagon are joined diagonally, then the network constructed is 

called O-diagonal Copper-Oxide network. It is denoted  ,, nmCuOOD  where 

m and n are the number of row octagons and column octagons in  ., nmCuO  

In the similar manner, if the copper nodes in each octagon are joined 

diagonally, then the resulting network obtained is named as Cu -diagonal 

Copper-Oxide network. It is symbolized by  ., nmCuOCuD  The number of 

vertices and their names for both the diagonal Copper-Oxide networks are 

same as that of Copper-Oxide network. Also, the number of edges in both 

 nmCuOOD ,  and  nmCuOCuD ,  is nmn 24   see in figure 2. 

2.3 Extended Copper-Oxide networks. In the Copper-Oxide network 

 ,, nmCuO  if both oxide nodes and copper nodes in each octagon are joined 

diagonally, then the constructed network is termed as extended Copper-

Oxide network and denoted by  ., nmCuOEX  Also,   nmCuOV EX ,  

nmmn 34    and    .26, nmnnmCuOE EX   

2.4 Enhanced Copper-Oxide networks. In the extended Copper-Oxide 

network  nmCuOEX ,  if we place a vertex in each face of an octagon to form 

a wheel ,18W  then the resulting obtained derived structure is denoted by 

 nmCuOEX ,  and is named as Enhanced Coper-Oxide networks. Further, 
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the cardinality of vertex and edge sets are nmmn 35   and nmn 210   

respectively. 

Remark 1. In  nmCuO ,  and its extended networks with m rows and n 

columns of octagons we have identified that there are 1m  linear rows and 

n3  linear columns. Moreover, each linear row contains n3  number of 

vertices. 

In this paper, we have named the vertices of the Copper-Oxide and its 

extended networks containing 1m  linear rows and n3  inear columns as 

follows: Let the vertex in jth linear row and ith linear column be named as 

.31,11, nimjwi
j   Rest of the vertices which lies between odd and 

even linear rows are named as 






2

,,2,1,1,,2,1,
m

jniui
j   and 

vertices which lies between even and odd linear row are named as 

.
2

,,2,1,1,,2,1,






m

jniv j
i

  This partition of vertex set is visible 

in figure 1 (a). 

3.  1,2L  Labeling of      ,,,,,, nmCuOnmCuOnmCuO CuDOD  

 nmCuOEX ,  and  nmCuOEN ,  Networks 

In this section we have determined the  1,2L -labeling number for 

copper-oxide  nmCuO ,  and its derived networks. 

Theorem 3.1. Let  nmCuO ,  be a Copper-Oxide network with m rows 

and n columns of octagons. Then the  1,2L  labelling number of Copper-

Oxide network satisfies    .7,1,2  nmCuO  

Proof of Theorem 3.1. Define a mapping     0,: NnmCuOV   

as follows: 
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
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 

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2
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jniv j
i

  It is visible in figure 1(b). 

w 5
1 w 5

2 w 5
3

w 5
4 w 5

5 w 5
6 w 5

7 w 5
8 w 5

9 w 5
10 w 5

11 w 5
12

v 2
1 2 3 4 5

4

0

w 1
1 w 1

2 w 1
3 w 1

4 w 1
5 w 1

6 w 1
7 w 1

8 w 1
9 w 1

10 w 1
11 w 1

12

w 2
2 w 2

3 w 2
4 w 2

5 w 2
6 w 2

7w 2
1 w 2

8 w 2
9 w 2

10 w 2
11 w 2

12

w 3
2 w 3

3w 3
1 w 3

4 w 3
5 w 3

6 w 3
7 w 3

8 w 3
9 w 3

10 w 3
11 w 3

12

w 4
1 w 4

2 w 4
3 w 4

4 w 4
5 w 4

6 w 4
7 w 4

8 w 4
9 w 4

10 w 4
11 w 4

12

v1
1 v1

2 v1
3 v1

4 v1
5

v 2 v 2 v 2 v 2

u 2
1 u 2

2 u 2
3 u 2

4
u 2

5

u 1
2u 1

1 u 1
3 u 1

4
u 1

5

    

4

6

5 3 0 4

6

7

6

7

7

6

0

0

0 2 4

02

6

1

3 15

6

2

4 2 0

1 5 3

3 5 1

7

6

7 7 7

66

7 7
7

2 4 1 5 3 0 2 4 1 5 3

2 0

4 42 2

2

0

043

3

3

3

5

5

5

51

1

1

1

            
(a)                                                      (b) 

Figure 1. Naming of vertices in Copper-Oxide network  4,4CuO  and its 

 1,2L  labelling. 

Next, we verify the above labelling pattern satisfies the  1,2L  condition 

      3,  yxyxd   for every distinct pair of copper and oxide nodes in 

 ., nmCuO  Let x and y be any two vertices in  ., nmCuO  

Case 1. Choose the vertices x and y are of the form 12 t
kw  and 

.
2

1
,1,3,1,12






 
 m

tlnskw t
s  

Case 1.1. If ,tl   then x and y lie on different rows and the distance 
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between them is at least 4. Therefore,      12121212 ,   t
s

t
k

t
s

t
k wwwwd   

.34   

Case 1.2. Suppose ,tl   then x and y lie on the same row. If 

6modpk   and ,50,6mod  qpqs  then   8, 1212  t
s

t
k wwd  and 

    .01212   t
s

t
k ww   Also, if 2modpk   and qqs  0,3mod  

,21  p  then the distance between them is at least 4 and 

    .11212   t
s

t
k ww   Otherwise,   1, 1212  t

s
t

k wwd  and 

    .1212   t
s

t
k ww   Hence, in all the options,  1212 ,  t

s
t

k wwd  

    .31212   t
s

t
k ww   

Case 2. Assume l
kwx 2  and .

2

1
,1,3,1,2






 


m
tlnskwy t

k  

Case 2.1. If l and t are distinct, then 
l

k
w2

 and l
sw2  falls on different rows 

so   .4, 22 t
s

l
k wwd  Therefore,       .3, 2222  t

s
l

k
t

s
l

k wwwwd   

Case 2.2. Supposing l and t are equal, then l
k

w2
 and l

sw2  falls on the 

same row. If 6modpk   and ,50,6mod  qpqs  then 
l

k
w2

 and l
sw2  

received the same labelling and   .8, 22 t
s

l
k wwd  Also, if 2modpk   and 

,210,3mod  pqqs  then   4, 22 t
s

l
k wwd  and 

    .122  t
s

l
k

ww   Otherwise,    t
s

l
k ww 22    and   .1, 22 t

s
l

k wwd  

Therefore, in all the possibilities,       .3, 2222  t
s

l
k

t
s

l
k

wwwwd   

Case 3. Suppose x and y are of the form l
ku  and 

.
2

1
,1,1,1,






 


m
tlnskvt

s  If sk   or tl   or both sk   and 

,tl   then the distance between them is at least 4. Therefore, 

      .34,  t
s

l
k

t
s

l
k uuuud   

Case 4. Let l
kux   and ,t

svy   where ,
2

1
1,1,1






 


m
lnsk  
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.
2

1
1






 


m
t  Therefore, from the mapping,     7,6  t

s
l
k vu   and 

  .2, t
s

l
k vud  Hence,       .321,  t

s
l
k

t
s

l
k vuvud   

Case 5. Assume x and y are of the form l
kv  and 

.
2

1
1,

2

1
,1,1,1,






 







 


m
t

m
tlnskvt

s  Then,   4, t
s

l
k vvd  

and     .7 t
s

l
k vv   Hence,       .3,  t

s
l
k

t
s

l
k vvvvd   

Case 6. If l
kux   and ,12  t

swy  where ,
2

1
1,11






 


m
lnk  

.
2

1
1,31






 


m
tns  If   ,512 t

kw  then   2, 12 t
s

l
k wud  and 

  .6l
ku  Otherwise,   412 t

kw  and   .1, 12 t
s

l
k wud  Hence in both the 

possibilities,       .3, 1212   t
s

l
k

t
s

l
k wvwvd   

Case 7. Let l
kux   and ,2t

swy   where ,11,
2

1 





 nk
m

l   

,
2

2
1,31






 


m
tns  then   .6l

ku  If   ,52 t
kw  then 

  1, 12 t
s

l
k wud  else   2, 12 t

s
l
k wud  and   .512 t

kw  Hence, the 

inequality       3, 1212   t
s

l
k

t
s

l
k wvwvd   is verified in this case. 

Case 8. Assume x and y takes the values     7 l
kvx   and 

    ,512  t
swx   where 






 tns
m

lnk 1,31,
2

1,11  

.
2

2





 m
 Therefore,   1, 12 t

s
l
k wvd  and     .212  t

s
l
k wv   So, 

      .3, 1212   t
s

l
k

t
s

l
k wvwvd   

Case 9. Take l
kvx   and ,2t

swy   where ,11,
2

1 





 nk
m

l  

,
2

2
1,31






 


m
tns  then   .7l

kv  If   ,52 t
sw  then 

  ,2, 2 t
s

l
k wvd  otherwise   1, 12 t

s
l
k wud  and   .52 t

sw  Therefore, 
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      .3, 212  t
s

l
k

t
s

l
k wvwvd   

Thus, in all the possibilities,       yxyxyxd ,3,    

  ., nmCuOV  Hence,    .7,1,2  nmCuO  

Theorem 3.2. Let  nmCuOOD ,  be a O-diagonal Copper-Oxide network 

with m rows and n columns respectively. Then the  1,2L  labelling number 

satisfies    .11,1,2  nmCuOOD  

Proof of Theorem 3.2. Define a mapping 

    0,: NnmCuOV OD   as follows:  
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Figure 2. The diagonal Copper-Oxide networks    3,4,3,4 uDOD CuOCuO  

and their  1,2L  labellings. 

Since, verifying the  1,2L  labelling condition for the above mapping is 

parallel to Theorem 3.1, we ignore the remaining proof. 

Theorem 3.3. For the Cu -diagonal Copper-Oxide network 

 nmCuOCuD ,  the  1,2L  labelling number satisfies 

   .9,1,2  nmCuOCuD  

Proof of Theorem 3.3. The proof of this theorem can be easily verified 

for the labelling pattern from the following mapping  from   nmCuOV CuD ,  

to  .0N  

  ,
4

1
,,2,1,,,2,1,

3mod0 if,1
3mod2 if,9
3mod1 if,0

23






 















 m
jni

i
i
i

w j
i

  

  ,
4

,,2,1,,,2,1,
3mod0 if,2
3mod2 if,9
3mod1 if,3

13




















 m
jni

i
i
i

w j
i



  ,
4

1
,,2,1,,,2,1,

3mod0 if,5
3mod2 if,9
3mod1 if,4

3






 
















m

jni
i
i
i

w j
i

  

  ,
4

1
,,2,1,1,,2,1,7






 


m
jniu j

i
  

  .
2

,,2,1,1,,2,1,8






m

jniv j
i

  The mapping is visible in 

figure 2(b). 
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Theorem 3.4. Let  nmCuOEX ,  be an extended Copper-Oxide network 

with m octagon rows and n octagon columns respectively. Then the  1,2L  

labeling number satisfies    .11,1,2  nmCuOEX  

Proof of Theorem 3.4. It can be easily proved by using the following 

labelling pattern. 
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3 (a). 
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(a)                                                            (b) 

Figure 3. An  1,2L  labelling of  nmCuOEX ,  and  nmCuOEX ,  for 

.4 nm  

 Theorem 3.5. The  1,2L  labelling number of enhanced Copper-Oxide 

network  nmCuOEX ,  satisfies    .10,1,2  nmCuOEX  
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Proof of Theorem 3.5. As the proof is similar to previous theorems, the 

mapping and proof is left to the reader. The result can be verified using figure 

3(b). 

Conclusion 

In this research work, we have introduced four different copper-oxide 

derived networks. Further, we have obtained the upper bounds for the  

 1,2L  labelling number of Copper-Oxide and its extended networks. This 

work can be extended by studying different graph theory problems for the 

newly introduced networks and also the same problem can be study for other 

chemical structures. 
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