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Abstract

In this paper, pg-edge independent function, vg-edge independent function, edge

independent function, maximal edge independent function, boundary set and the positive set of
a strong intuitionistic fuzzy graph are defined. Convex combination of two edge dominating
functions, two edge independent functions and two maximal edge independent functions of a
strong intuitionistic fuzzy graph are also discussed with suitable illustration.

1. Introduction

In 1978, Berge has given a lecture on fractional graph at the Indian
Statistical Institute and he also analysed the concepts of fractional matching
number and fractional edge chromatic number [2]. In 1989, Berge devotes a
chapter of his monograph to hypergraphs and combinatorics of finite sets [3]
to fractional transversals of hypergraphs, which includes an exploration of
fractional matchings of graphs. Functional generalizations for vertex subsets
have been extensively studied in literature by Cockayne, McGillivray,
Mynhardt and Yu [4, 5, 13]. Many of the fractional invariants in [12] can be
defined by taking a definition of a standard graph invariant verbatim and
inserting the word “fuzzy” in an appropriate place. One can speculate what

might be meant by a fuzzy or fractional graph. This could mean a pair (V, E)

in which V is a finite set and E is a fuzzy set of 2-element subsets of V.
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Alternatively, one might allow V to be a fuzzy set as well. In general, a
fractional graph means a pair G = (V, E) in which Vs a finite set and E is a

fuzzy set or an intuitionistic fuzzy set of 2-element subsets of V.
Alternatively, one might allow V to be fuzzy or an intuitionistic fuzzy set as
well. i.e., There are nine ways (environments) to interpret a fractional graph

G = (V, E) as follows:

Let G = (V, E) be a fractional graph, where V be the vertex set and E be
the edge set. Then the following are the environments of Vand E of G.

Environment | Vertex Set (V) Edge Set (E)
1 Crisp Crisp(Crisp Graph)
2 Crisp Fuzzy
3 Crisp Intuitionistic Fuzzy
4 Fuzzy Crisp
5 Fuzzy Fuzzy(Fuzzy Graph)
6 Fuzzy Intuitionistic Fuzzy
7 Intuitionistic Fuzzy | Crisp
8 Intuitionistic Fuzzy | Fuzzy
9 Intuitionistic Fuzzy Intuitionistic Fuzzy (Intuitionistic

Fuzzy Graph)

As a result, fuzzy graph is nothing but a fractional graph G = (V, E) in

which Vis a fuzzy set and E is a 2-element set of V which is also fuzzy. An

intuitionistic fuzzy graph is a fractional graph G =(V, E) in which the

vertex V is an intuitionistic fuzzy set and an edge set E is also an
Intuitionistic fuzzy set. In a fractional graph, the above two environments are

termed to be fuzzy and intuitionistic fuzzy graphs.

Let G =(V, E) be a graph. The open neighbourhood N(e;) and the
closed neighbourhood Ne;] of e; are defined by N(e;) ={ej € E : e; is
adjacent to e;} and N[e;] = N(e;)U {e;}. A function f : E - P is called a P-

edge independent function of a graph G if the sum of its function values over
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any closed neighbourhood is at most 1 [6,7]. That is, for ever
eckE, f(N(e)U{e}) =1.

% When P = {0, 1} we get the standard edge independent function of a

fractional graph in G = (V, E), where the vertex and edge sets are

both crisp environments.

% When P = [0, 1] we obtain the fractional edge independent function of
a fractional graph in G = (V, E), where the vertex set is crisp and

edge set is fuzzy environment.

In 2009, Arumugam et al. [1] introduced concept of edge independent
function, maximal edge independent function, edge dominating function,
convex combination of two edge dominating functions, edge independent

functions, boundary set and the positive set of a fractional graph G = (V, E),

where the vertex set V is crisp and the edge set E is fuzzy. A function

f:E —][0,1] is called an edge independent function if for every e with
f(e) > 0, we have erN[e] f(x) =1 [1]. An edge independent function f is

called maximal edge independent function (MEIF) if for every e € E with
f(e) = 0, we have erN[e] f(x) = 1. A function f : E(G) — [0, 1] is called an

edge dominating function (EDF) of G if f(N[e]) = Z | f(x)>1 for every

xeNle

ec E(G). If and g be two EDFs of a graph G and 0 <A <1, then

MM + (1 —L)g is called a convex combination of f and g [1]. If fand be two

MEIFs, then either all convex combinations of f and g are MEIFs or none of
them is an MEIFs. Let f be any edge dominating function of G and the
boundary set B; and the positive set P; of f are defined by

By = {e: erN[e]f(x) =1} and P; = {e: f(e) > 0} [1].

In [10], Nagoorgani et al. introduced the concept of an effective edge, the
neighbourhood of a vertex, the closed neighbourhood degree of a vertex. Let
G =(V, E) be an IFG. An edge e = (x, y) of an IFG G is called an effective

edge if pg(x, y) = pilx) Am(y) and volx, ¥) = vi(x) v vi(y) [10]. The
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neighbourhood of any vertex v is defined as N(v) = (N, (v), N,(v)) where
Ny) ={w e V; pa(v, w) = @) Am)f  and  Ny©) = {w e V; va(v, w)
=v;(v) v i (w)} and N[V]= N(v)U {v} is called the closed neighbourhood of
v [10]. The neighbourhood degree of a vertex in an IFG G, is defined as
A (®) = (dy, ©), dy, @) where  dyg )= 3,y ) and  dy, )

= zweN(v) vi(w). The closed neighbourhood degree of a vertex ‘v’ in an IFG
G, is defined as dy[v] = (dNu [v] dn, [v]) where dy, [v] = [ZweN(v) w (w)]

+1(v) and dy [v] = [ZweN(v) vi(w)] + v1(v) [10].

A strong intuitionistic fuzzy graph was proposed by Parvathi et al. [11].
An IFG G =(V, E), is said to be a strong IFG if pg;; = min(uy;, py;) and
vg;j = max (vy;, v1;) for every (v;,vj)e E. In [8], Karunambigai et al.
introduced the concept of an edge dominating function, minimal edge

dominating function of a fractional graph with an intuitionistic fuzzy

environment. Let G = (V, E) be a strong intuitionistic fuzzy graph and
f: E —[0,1] is called an edge dominating function (EDF) of G = (V, E) if
dNH[ei] > 1, dy [e;] <1 with 0 < pg(e;) + vo(e;) <1 for every ¢; € E where
Hole;) = 0, vole;) #1, i =1, 2, ..., n. An edge dominating function f is called a
minimal edge dominating function (MEDF) [8], if there exist an edge
w € Nle;] such that dNu[ei] =1, dy, [e;]#1 for every e € E where
Hole;) = 0, vole;) #1, i =1, 2, ..., n. An edge dominating function f is called a

minimal edge dominating function (MEDF), if there does not exist a
dominating function g # f for which g(e) < f(e) for all ¢; € E [8].

These observations motivate us to investigate the concept of the
neighbourhood of an edge, the neighbourhood degree of an edge, the closed
neighbourhood degree of an edge, pg-edge independent function, v, -edge
independent function, an edge independent function and maximal edge
independent function, boundary set and the positive set of a fractional graph
with intuitionistic fuzzy environment. Furthermore, convex combinations of

two edge dominating functions, two edge independent functions and two
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maximal edge independent functions of a strong intuitionistic fuzzy graph
and several results based on these concepts are discussed.

2. Edge Independent Function on Intuitionistic
Fuzzy Graphs

Definition 2.1. Let G = (V, E) be an IFG where V = {v, vg, ..., v,}
and E = {e, eg, ..., e,,}. The neighbourhood of an edge e¢; of an IFG
G =(V, E), is defined as N(e;) = (N,(e;), Ny(e;)) where (N,(¢;), Ny(e;))
=1{ej e E;ej is an effective edge in G and adjacent to e¢;} and
Nle;]= N(e;)U{e;} is  called the closed neighbourhood — of

e,1,j=12 .., m

Definition 2.2. Let G = (V, E) be an IFG where V = {v, vy, ..., v,}
and E = {e, ey, ..., e,,}. The neighbourhood degree of an edge ¢; € E of an
IFG G =(V, E), is defined as dy(e;) = (dNH(ei), dn, (e;)) where dy (e;) =

ZeJEN(eL)H'Q(e]) and dNV (el) = ZejEN(ei)VZ(ej)’ ei’ ej € E7 i7 .] = 17 27 ceey M.
Definition 2.3. Let G = (V, E) be an IFG where V = {v, vg, ..., v,}

and E ={ej, ey, ..., €,,}. The closed neighbourhood degree of an edge
e e E of an IFG G =(V, E), is defined as dy[e]= (dNu[ei ) dn,[e;])

where dy [e;] = [ZejeN(ei)Hz(ej)] and dy [e;] = [ZejeN(ei)VZ(ej)]+ va(ej),
e, ej e E(i, j=1,2,..., m)

Definition 2.4. Let G =(V,E) be an IFG and a vertex set

V ={uvy, vg, U3, Uy, U5} edge set E = {e}, eq, €3, e4}.

v1(0.7,0.1) v,(0.7,0.1) v5(0.7,0.2)
o ,(0.7,0.1)
£,(0.3,0.2) €:(0.7,0.2)
vst'o.a.o.z) e3(0.3,0.2) 1,(0.7,0.2)

Figure 1. G =(V, E).
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In Figure 1, neighbourhood degree of each edge in an IFG G =(V, E)

is given as follows:

dN(el) = (03? 02) where dN“ (el) = ZeQGN(eI)HQ(ej) = “‘2(62) =0.3,
dn, ()= Ze2 eN(el)VZ(eZ) =0.2. Similarly dp/(ey)=(1,0.3), dn(e3)=(1,0.4),
dn(eq)=1(0.3,0.2).

In Figure 1, closed neighbourhood degree of each edge in an IFG
G=(V,E), is given as follows: dy[e;]=(1, 0.3) where dNu[el]:

[ZeleN(el)Mz(eﬂ] + pg(er) = pgleg) + pole) = 0.3+ 0.7 = 1, dy [e]
= [, ey v2(@)] + valer) = vales) +va(er) = 0.2 +0.1= 0.3, Similarly
dnles] = (1.3, 0.5), dy[es] = (1.3, 0.6), dyfes] = (1, 0.4).

Definition 2.5. A function f : E — [0, 1] of a strong IFG, G = (V, E), is
called pg-edge independent function of G if dNu [e;]=1 for every ¢; € E,

where po(e;)>0,i=1,2,..., m

Definition 2.6. Let G =(V,E) be a strong IFG where

V ={vy, vy, U3, v4} and E = {e;, ey, €3, €4}.
wld) el 2 (53)

«(53)

Gy w6 69

3’3

Figure 2. G = (V, E).

In Figure 2, dy [e]= [zejeN(el)“2(ej)] = ng(er) = [naleq) + nalen)]

+ pg(e) = % + % +% =1. Similarly dNu[el] =1 for i =2, 3, 4. Therefore f

defined on G is a pg-edge independent function.

Definition 2.7. A function f : E — [0, 1] of a strong IFG, G = (V, E) is
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called vy-edge independent function of G if dy [¢;] <1 for every ¢; € E,
where vo(e;)21,1=1,2,..., m.

Definition 2.8. Let G = (V, E) be a strong IFG where V = {v;, vg, v3}
and E = {e|, ey}.

21 21 21
w(zy)  »Gs)  »G3)
Figure 3. G = (V, E).
In  Figure 3, dy[e]= [ZejEN(el)VZ(ej)]"' va(er) = [va(eg)] + va(er)
1. 17
3 3 12°

independent function but fis not a pg -edge independent function.

Similarly dNu[ez] < 1. Therefore f defined on G is a vq -edge

Definition 2.9. A function f : E — [0, 1] of a strong IFG, G = (V, E) is
said to be an edge independent function if it is both p,-edge independent

function and a v, -edge independent function on G.

Definition 2.10. Let G=(V,E) be a strong IFG where

V ={uv;, vy, 3, us} and E = {ey, ey, €3, e4}.

Figure 4. G = (V, E).

Here, the function f on G is py-edge independent function as well as a

vy -edge independent function. Since dy, [e;] =1 and dy, [es] <1 for every

e; € E. Therefore f is defined on G is an edge independent function of G.
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Definition 2.11. Let G =(V, E) be an IFG. An edge independent
function f : E — [0, 1] is called a maximal edge independent function of G if
there does not exist an edge independent function f # g, for which
g(e;) < f(e;) for every e; € E. Equivalently a function f is said to be maximal
edge independent function of G if dy, [e;] > 1, dy [e;] # 1 for every e; € E,
where pg(e;) >0, vole) #1,i=1,2, ..., n.

Example 2.12. In Figure 1, dNu [e;]>1 and dy [e;]#1 for every
¢ ek i=12 3 4. Therefore f is defined on G is a maximal edge
independent function of G.

Definition 2.13. For an edge dominating function f of a strong IFG
G = (V, E), the boundary set Bj; and positive set P} are defined by

: : 0<pyle)<1
B ={ee E/dNu[e] =1,dy,[e] <1} and P = {e € E’/O B vz(e) . 1}.

Definition 2.14. Let G = (V, E) be a strong IFG and let A, BC E. A

is said to dominate B if each e € B— A is adjacent to an edge in A. If A
dominates B, we write (A — B).

Example 2.15. In Figure 1, Bj; = {ej, ¢4} and Pj = {e, ey, e3, e4}.
Take A = {el, 64} [ E, B = {61, €9, €3, 64} = E. Then B-A = {61, €9, €3,
ey} —{ey, e4} is adjacent to an edge in A. Therefore Bj; dominates P}
denoted by Bj; — Fj.

Remark 2.16. An edge dominating function f of a strong IFG G is a
minimal edge dominating function f of G if and only if N[e]N Bis # ¢ for all
e i'f'

Theorem 2.17. A necessary and sufficient condition for an edge

dominating function f of a strong IFG G is a minimal edge dominating

function of G if Bjf — Py, where By and Pj; denotes a boundary set and

apositive set, respectively.

Proof. Let f: E — [0, 1] be a minimal edge dominating function of G
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with e € Py and suppose to the contrary that Bjs does not dominate e,

where Bjs and Pjr denotes a positive set and a boundary set, respectively.
Then Nle]N Bjf # ¢ which implies that dNM [e] > 1, dy [e] <1 for each
e € Nle]. Now define ¢ > 0 where ¢ < min,,. N[e](dNH [e]-1,1- dn, [e]) here
dNu [x] and dy [x] are related to fand g : E — [0, 1] by g(e) = f(e) — & and
glx)=f(x) for x e E-{e}. For each u e Nle], glu]= (dNH[e] —-e>1,
e—dy,[e]-e<1) and for x € E - Nle], g[x] = (dNu [x] > 1, dy, [x] <1) here
dNll [x] and dy [x] are related to f. Therefore g is an edge dominating
function. But g < f, which is a contradiction of f. Hence Bj; dominates P}

(.e., By > Pj).

Conversely, assume that Bj; - Py and let h:E —[0,1] is an

minimal edge dominating function if there exist a dominating function
h < f for which h(e) < f(e) for some e e E. Then eec Py and so, by

assumption, u € Bjs for some u € N[e]. Now

hu] = dylu] = (dN” [u], dy, [u]) where dn, [u] and dy, [u] are related to
h. hlu]= (h(w)+dyn[w]) = (A, (w)+dNH [w], Ay, (W) +dp, [w]), where w e N[u]
—te} < (fu, ) + dn, [w], £y, @) + dp, [w]),

where w e Nlu] - {e} hlu] < flu] = dn|u] = (dNu [u] dy, [u]) where dNu [«] and
dy, [u] are related to f and dn, [u]=1,dpy, [u]<1. Therefore A is not an edge

dominating function which implies that f is an minimal edge dominating

function.

Definition 2.18. Let f, g be two edge dominating function of an
intuitionistic fuzzy graph G. Then h) = Af + (1 —2)g where 0 < & <1, called

a convex combination of f and g.
Note 2.19.

(1) Convex combination of two edge dominating functions of a strong
IFG G is again an edge dominating function of a strong IFG G.
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(2) A convex combination of two minimal edge dominating functions of
a strong IFG need not be a minimal edge dominating function of a strong
IFG.

Theorem 2.20. Let f and g be minimal edge dominating functions of an
IFG G, Let hy =M + (1 -1L)g, where 0 <A <1. Then hy is a minimal edge

dominating function of G if and only if Bjs (| Bjg dominates Pjy U Plg.

Proof. We prove that By, = Bj; (1 Blg and P, = Py U Bj,. The result is
then immediate from Theorem 2.17. If e ¢ P}y U Ps, then f(e) = g(e) = My (e)
= 0. If e € Py, then My (e) > Af(e) > 0. Therefore P}, = Py U P.

Assume e € Bj; (| Bis. In that case M [e] = Affe] + (1 - 1) gle] = (dNu [u]
=1,dy [u] <1). In the same manner /[e] = (dNH[u] > 1, dy [u] <1) for

e ¢ By (| Bj; and hence By, = Bj U Bj,.

Remark 2.21. If a function f: E —[0,1] is an edge independent
function of a strong IFG G, then Py c Bi,.

Theorem 2.22. Every maximal edge independent function of a strong
IFG G is a minimal edge dominating function of G.

Proof. Let f : E — [0, 1] be a maximal edge independent function of a
strong IFG G. It follows from the definition that dy, le] > 1, dy, [e] <1 for
each e € E. Hence f is an edge dominating function of a strong IFG G.
Further P}y c B, so that B/, — P/;. Hence it follows from Theorem 2.17
that fis a minimal edge dominating function of G.

Remark 2.23. Convex combination of two edge independent functions
of a strong IFG G need not be an edge independent function of G. Further f
and g are both maximal edge independent functions of a strong IFG G and
hence a convex combination of two maximal edge independent functions of
a strong IFG G need not be an edge independent function of G.

Example 2.24. Let G =(V, E) be an IF path P; and a vertex set
V ={v, v9, 03}, edge set E ={vvy =e, U3 =eg}. Let us take
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(e, flea) =((2. 5 ) (5 5)) and (eler). glex) = (1 0) (0, 0.0). Here 7

and g are maximal edge independent functions of a strong IFG G. Now the
convex combination of fand gis h; = Af + (1 —L)g where 0 <A <1. Take
L =0.5 then (hgs(e), hosles)) = ((1.17, 0.17), (0.17, 0.2)). Then h; is an

minimal not an edge independent function of a strong IFG G.

Remark 2.25. Let f and g be two edge independent functions of an IFG
G. Then h, = Af +(1—21)g where 0 < A <1, is an edge independent function

if and only if P}y U P/; < Bjs (1 Bj,. Hence either all convex combinations of f

and g are edge independent functions of G or none of them is an edge
independent function of G.

Theorem 2.26. Let f and g be two maximal edge independent functions of
an IFG G. Then either all convex combinations of f and g are maximal edge
independent functions of G or none of them is a maximal edge independent
functions of G.

Proof. Consider &) =Af +(1-2)g where 0 <X <1. Assume that 7,

is an maximal edge independent functions of an IFG G and take A = X;. We
prove that A, is an maximal edge independent functions of G. Take e € E.
Assume Ay (e) = (pg(e) = 0, 0 < vy(e) < 1). In that case f(e) = g(e) = (uy(e)
=0, 0 < vy(e) < 1). Since f and g are maximal edge independent functions of

an IFG G, we have dy, le]>1,dy [e] <1 are related to f and
dn, le]>1,dy,[e]<1 are vrelated to g Hence it follows that
dy, [e] > 1, dy [e] <1 are related to hy.

Now, suppose h; (e) = (ng(e) = 0,0 < vg(e) < 1). Then either f(e) = (ug(e)
=0,0 < vg(e) <1) or gle) = (ug(e) = 0,0 < vy(e) < 1). Hence Ay, (e) = (na(e)
=0, 0 < vg(e) < 1). Since 7, is an maximal edge independent function of G,
dn, [e] =1, dy,[e] <1 are related to A, so that dn, [e] =1 is related to f
and g are equal and dy, [e] <1 is related to f and g are equal. Hence

dNu[e]=1 and dy [e]<1 are related to &. Thus Pj; < Bj and
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d N,

[e] > 1, and dy [e] <1 are related to h,, for all e € E. Hence h; is an

maximal edge independent function of an IFG G.

Bif

Lemma 2.26. Any minimal edge dominating function f of a IFG G with

= FE is a maximal edge independent function of G.

Proof. Since Bj; = E, we have Pj < Bj and hence f is an edge

independent function of an IFG G. Also since fis an minimal edge dominating

function of G, dn, [e] > 1, dpy, [e] <1 forall e € E and hence f is an maximal

edge independent function of G.
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