EDGE INDEPENDENT FUNCTION ON INTUITIONISTIC FUZZY GRAPHS

M. G. KARUNAMBIGAI and A. SATHISHKUMAR

Department of Mathematics Sri Vasavi College Erode Tamil Nadu, India E-mail: karunsvc@yahoo.in sathishattssa@gmail.com

Abstract

In this paper, μ_2 -edge independent function, v_2 -edge independent function, edge independent function, maximal edge independent function, boundary set and the positive set of a strong intuitionistic fuzzy graph are defined. Convex combination of two edge dominating functions, two edge independent functions and two maximal edge independent functions of a strong intuitionistic fuzzy graph are also discussed with suitable illustration.

1. Introduction

In 1978, Berge has given a lecture on fractional graph at the Indian Statistical Institute and he also analysed the concepts of fractional matching number and fractional edge chromatic number [2]. In 1989, Berge devotes a chapter of his monograph to hypergraphs and combinatorics of finite sets [3] to fractional transversals of hypergraphs, which includes an exploration of fractional matchings of graphs. Functional generalizations for vertex subsets have been extensively studied in literature by Cockayne, McGillivray, Mynhardt and Yu [4, 5, 13]. Many of the fractional invariants in [12] can be defined by taking a definition of a standard graph invariant verbatim and inserting the word "fuzzy" in an appropriate place. One can speculate what might be meant by a fuzzy or fractional graph. This could mean a pair (V, E) in which V is a finite set and E is a fuzzy set of 2-element subsets of V.

2020 Mathematics Subject Classification: 05C69, 05C72, 05C07, 03E72, 03F55.

Keywords: Edge independent function, Edge independent domination number, Edge independence number.

Received July 12, 2021; Accepted October 12, 2021

Alternatively, one might allow V to be a fuzzy set as well. In general, a fractional graph means a pair $G = \langle V, E \rangle$ in which V is a finite set and E is a fuzzy set or an intuitionistic fuzzy set of 2-element subsets of V. Alternatively, one might allow V to be fuzzy or an intuitionistic fuzzy set as well. i.e., There are nine ways (environments) to interpret a fractional graph $G = \langle V, E \rangle$ as follows:

Let $G = \langle V, E \rangle$ be a fractional graph, where V be the vertex set and E be the edge set. Then the following are the environments of V and E of G.

Environment	Vertex Set (V)	Edge Set (E)
1	Crisp	Crisp(Crisp Graph)
2	Crisp	Fuzzy
3	Crisp	Intuitionistic Fuzzy
4	Fuzzy	Crisp
5	Fuzzy	Fuzzy(Fuzzy Graph)
6	Fuzzy	Intuitionistic Fuzzy
7	Intuitionistic Fuzzy	Crisp
8	Intuitionistic Fuzzy	Fuzzy
9	Intuitionistic Fuzzy	Intuitionistic Fuzzy (Intuitionistic Fuzzy Graph)

As a result, fuzzy graph is nothing but a fractional graph $G = \langle V, E \rangle$ in which V is a fuzzy set and E is a 2-element set of V which is also fuzzy. An intuitionistic fuzzy graph is a fractional graph $G = \langle V, E \rangle$ in which the vertex V is an intuitionistic fuzzy set and an edge set E is also an intuitionistic fuzzy set. In a fractional graph, the above two environments are termed to be fuzzy and intuitionistic fuzzy graphs.

Let G = (V, E) be a graph. The open neighbourhood $N(e_i)$ and the closed neighbourhood $N[e_i]$ of e_i are defined by $N(e_i) = \{e_j \in E : e_j \text{ is adjacent to } e_i\}$ and $N[e_i] = N(e_i) \cup \{e_i\}$. A function $f : E \to \mathcal{P}$ is called a \mathcal{P} -edge independent function of a graph G if the sum of its function values over

any closed neighbourhood is at most 1 [6,7]. That is, for ever $e \in E$, $f(N(e) \cup \{e\}) = 1$.

- When $\mathcal{P} = \{0, 1\}$ we get the standard edge independent function of a fractional graph in G = (V, E), where the vertex and edge sets are both crisp environments.
- When $\mathcal{P} = [0, 1]$ we obtain the fractional edge independent function of a fractional graph in G = (V, E), where the vertex set is crisp and edge set is fuzzy environment.

In 2009, Arumugam et al. [1] introduced concept of edge independent function, maximal edge independent function, edge dominating function, convex combination of two edge dominating functions, edge independent functions, boundary set and the positive set of a fractional graph G = (V, E), where the vertex set V is crisp and the edge set E is fuzzy. A function $f: E \to [0, 1]$ is called an edge independent function if for every e with f(e) > 0, we have $\sum_{x \in N[e]} f(x) = 1$ [1]. An edge independent function f is called maximal edge independent function (MEIF) if for every $e \in E$ with f(e)=0, we have $\sum_{x\in N[e]}f(x)\geq 1$. A function $f:E(G)\to [0,1]$ is called an edge dominating function (EDF) of G if $f(N[e]) = \sum_{x \in N[e]} f(x) \ge 1$ for every $e \in E(G)$. If and g be two EDFs of a graph G and $0 < \lambda < 1$, then $h_{\lambda}\lambda f + (1-\lambda)g$ is called a convex combination of f and g [1]. If f and be two MEIFs, then either all convex combinations of f and g are MEIFs or none of them is an MEIFs. Let f be any edge dominating function of G and the boundary set B'_f and the positive set P'_f of f are defined by $B'_f = \{e : \sum_{x \in N[e]} f(x) = 1\} \text{ and } P'_f = \{e : f(e) > 0\} [1].$

In [10], Nagoorgani et al. introduced the concept of an effective edge, the neighbourhood of a vertex, the closed neighbourhood degree of a vertex. Let $G = \langle V, E \rangle$ be an IFG. An edge e = (x, y) of an IFG G is called an effective edge if $\mu_2(x, y) = \mu_1(x) \wedge \mu_1(y)$ and $\nu_2(x, y) = \nu_1(x) \vee \nu_1(y)$ [10]. The

neighbourhood of any vertex v is defined as $N(v) = (N_{\mu}(v), N_{\nu}(v))$ where $N_{\mu}(v) = \{w \in V; \mu_2(v, w) = \mu_1(v) \land \mu_1(w)\}$ and $N_{\nu}(v) = \{w \in V; \nu_2(v, w) = \nu_1(v) \lor \mu_1(w)\}$ and $N[V] = N(v) \cup \{v\}$ is called the closed neighbourhood of v [10]. The neighbourhood degree of a vertex in an IFG G, is defined as $d_N(v) = (d_{N_{\mu}}(v), d_{N_{\nu}}(v))$ where $d_{N_{\mu}}(v) = \sum_{w \in N(v)} \mu_1(w)$ and $d_{N_{\nu}}(v) = \sum_{w \in N(v)} \nu_1(w)$. The closed neighbourhood degree of a vertex 'v' in an IFG G, is defined as $d_N[v] = (d_{N_{\mu}}[v], d_{N_{\nu}}[v])$ where $d_{N_{\mu}}[v] = [\sum_{w \in N(v)} \mu_1(u)] + \mu_1(v)$ and $d_{N_{\nu}}[v] = [\sum_{w \in N(v)} \nu_1(u)] + \nu_1(v)$ [10].

A strong intuitionistic fuzzy graph was proposed by Parvathi et al. [11]. An IFG $G=\langle V,E\rangle$, is said to be a strong IFG if $\mu_{2ij}=\min(\mu_{1i},\mu_{1j})$ and $\nu_{2ij}=\max\left(\nu_{1i},\nu_{1j}\right)$ for every $(v_i,v_j)\in E$. In [8], Karunambigai et al. introduced the concept of an edge dominating function, minimal edge dominating function of a fractional graph with an intuitionistic fuzzy environment. Let G=(V,E) be a strong intuitionistic fuzzy graph and $f:E\to [0,1]$ is called an edge dominating function (EDF) of G=(V,E) if $d_{N_\mu}[e_i]\geq 1,\ d_{N_\nu}[e_i]<1$ with $0\leq \mu_2(e_i)+\nu_2(e_i)\leq 1$ for every $e_i\in E$ where $\mu_2(e_i)\geq 0,\ \nu_2(e_i)\neq 1,\ i=1,\ 2,\ ...,\ n.$ An edge dominating function f is called a minimal edge dominating function (MEDF) [8], if there exist an edge $w\in N[e_i]$ such that $d_{N_\mu}[e_i]=1,\ d_{N_\nu}[e_i]\neq 1$ for every $e_i\in E$ where $\mu_2(e_i)\geq 0,\ \nu_2(e_i)\neq 1,\ i=1,\ 2,\ ...,\ n.$ An edge dominating function f is called a minimal edge dominating function (MEDF), if there does not exist a dominating function $g\neq f$ for which $g(e)\leq f(e)$ for all $e_i\in E$ [8].

These observations motivate us to investigate the concept of the neighbourhood of an edge, the neighbourhood degree of an edge, the closed neighbourhood degree of an edge, μ_2 -edge independent function, ν_2 -edge independent function, an edge independent function and maximal edge independent function, boundary set and the positive set of a fractional graph with intuitionistic fuzzy environment. Furthermore, convex combinations of two edge dominating functions, two edge independent functions and two

maximal edge independent functions of a strong intuitionistic fuzzy graph and several results based on these concepts are discussed.

2. Edge Independent Function on Intuitionistic Fuzzy Graphs

Definition 2.1. Let G = (V, E) be an IFG where $V = \{v_1, v_2, ..., v_n\}$ and $E = \{e_1, e_2, ..., e_m\}$. The neighbourhood of an edge e_i of an IFG $G = \langle V, E \rangle$, is defined as $N(e_i) = (N_{\mu}(e_i), N_{\nu}(e_i))$ where $(N_{\mu}(e_i), N_{\nu}(e_i))$ = $\{e_j \in E; e_j \text{ is an effective edge in } G \text{ and adjacent to } e_i\}$ and $N[e_i] = N(e_i) \cup \{e_i\}$ is called the closed neighbourhood of $e_i, i, j = 1, 2, ..., m$.

Definition 2.2. Let G=(V,E) be an IFG where $V=\{v_1,v_2,...,v_n\}$ and $E=\{e_1,e_2,...,e_m\}$. The neighbourhood degree of an edge $e_i\in E$ of an IFG $G=\langle V,E\rangle$, is defined as $d_N(e_i)=(d_{N_\mu}(e_i),d_{N_\nu}(e_i))$ where $d_{N_v}(e_i)=\sum_{e_j\in N(e_i)}\mu_2(e_j)$ and $d_{N_v}(e_i)=\sum_{e_j\in N(e_i)}\nu_2(e_j)$, $e_i,e_j\in E$, i,j=1,2,...,m.

Definition 2.3. Let G=(V,E) be an IFG where $V=\{v_1,v_2,...,v_n\}$ and $E=\{e_1,e_2,...,e_m\}$. The closed neighbourhood degree of an edge $e_i\in E$ of an IFG $G=\langle\ V,\ E\ \rangle$, is defined as $d_N[e_i]=(d_{N_\mu}[e_i],d_{N_\nu}[e_i])$ where $d_{N_\mu}[e_i]=[\sum_{e_j\in N(e_i)}\mu_2(e_j)]$ and $d_{N_\nu}[e_i]=[\sum_{e_j\in N(e_i)}\nu_2(e_j)]+\nu_2(e_j)$, $e_i,\ e_i\in E(i,\ j=1,\ 2,\ ...,\ m)$.

Definition 2.4. Let G = (V, E) be an IFG and a vertex set $V = \{v_1, v_2, v_3, v_4, v_5\}$ edge set $E = \{e_1, e_2, e_3, e_4\}$.

Figure 1. G = (V, E).

2274

In Figure 1, neighbourhood degree of each edge in an IFG $G=\langle\ V,\ E\ \rangle$ is given as follows:

$$\begin{split} d_N(e_1) &= (0.3,\, 0.2) \quad \text{ where } \quad d_{N_\mu}(e_1) = \sum_{e_2 \in N(e_1)} \mu_2(e_j) = \mu_2(e_2) = 0.3, \\ d_{N_\nu}(e_1) &= \sum_{e_2 \in N(e_1)} \nu_2(e_2) = 0.2. \quad \text{Similarly } \ d_N(e_2) = (1,\, 0.3), \ d_N(e_3) = (1,\, 0.4), \\ d_N(e_4) &= (0.3,\, 0.2). \end{split}$$

In Figure 1, closed neighbourhood degree of each edge in an IFG $G=\langle V,E\rangle$, is given as follows: $d_N[e_1]=(1,0.3)$ where $d_{N_\mu}[e_1]=[\sum_{e_1\in N(e_1)}\mu_2(e_1)]+\mu_2(e_1)=\mu_2(e_2)+\mu_2(e_1)=0.3+0.7=1,$ $d_{N_\nu}[e_1]=[\sum_{e_1\in N(e_1)}\nu_2(e_1)]+\nu_2(e_1)=\nu_2(e_2)+\nu_2(e_1)=0.2+0.1=0.3.$ Similarly $d_N[e_2]=(1.3,0.5),$ $d_N[e_3]=(1.3,0.6),$ $d_N[e_4]=(1,0.4).$

Definition 2.5. A function $f: E \to [0, 1]$ of a strong IFG, $G = \langle V, E \rangle$, is called μ_2 -edge independent function of G if $d_{N_{\mu}}[e_i] = 1$ for every $e_i \in E$, where $\mu_2(e_i) > 0$, i = 1, 2, ..., m.

Definition 2.6. Let G = (V, E) be a strong IFG where $V = \{v_1, v_2, v_3, v_4\}$ and $E = \{e_1, e_2, e_3, e_4\}$.

Figure 2. G = (V, E).

In Figure 2, $d_{N_{\mu}}[e_1] = [\sum_{e_j \in N(e_1)} \mu_2(e_j)] = \mu_2(e_1) = [\mu_2(e_4) + \mu_2(e_2)]$ + $\mu_2(e_1) = \frac{1}{3} + \frac{1}{3} + \frac{1}{3} = 1$. Similarly $d_{N_{\mu}}[e_1] = 1$ for i = 2, 3, 4. Therefore f defined on G is a μ_2 -edge independent function.

Definition 2.7. A function $f: E \to [0, 1]$ of a strong IFG, $G = \langle V, E \rangle$ is

called v_2 -edge independent function of G if $d_{N_v}[e_i] < 1$ for every $e_i \in E$, where $v_2(e_i) \neq 1, i = 1, 2, ..., m$.

Definition 2.8. Let G = (V, E) be a strong IFG where $V = \{v_1, v_2, v_3\}$ and $E = \{e_1, e_2\}$.

$$e_1\left(\frac{2}{3},\frac{1}{4}\right) \qquad e_2\left(\frac{2}{3},\frac{1}{3}\right)$$

$$v_1\left(\frac{2}{3},\frac{1}{4}\right) \qquad v_2\left(\frac{2}{3},\frac{1}{4}\right) \qquad v_3\left(\frac{2}{3},\frac{1}{3}\right)$$

Figure 3. G = (V, E).

$$\text{In} \quad \text{Figure} \quad 3, \quad d_{N_{\mathbf{v}}}[e_1] = [\sum\nolimits_{e_j \in N(e_1)} \mathsf{v}_2(e_j)] + v_2(e_1) = [\mathsf{v}_2(e_2)] + \mathsf{v}_2(e_1)$$

= $\frac{1}{3} + \frac{1}{3} = \frac{7}{12}$. Similarly $d_{N_{\mu}}[e_2] < 1$. Therefore f defined on G is a v_2 -edge independent function but f is not a μ_2 -edge independent function.

Definition 2.9. A function $f: E \to [0, 1]$ of a strong IFG, $G = \langle V, E \rangle$ is said to be an edge independent function if it is both μ_2 -edge independent function and a ν_2 -edge independent function on G.

Definition 2.10. Let $G = \langle V, E \rangle$ be a strong IFG where $V = \{v_1, v_2, v_3, v_4\}$ and $E = \{e_1, e_2, e_3, e_4\}$.

Figure 4. G = (V, E).

Here, the function f on G is μ_2 -edge independent function as well as a v_2 -edge independent function. Since $d_{N_{\mu}}[e_i] = 1$ and $d_{N_{\nu}}[e_2] < 1$ for every $e_i \in E$. Therefore f is defined on G is an edge independent function of G.

2276

Definition 2.11. Let $G = \langle V, E \rangle$ be an IFG. An edge independent function $f: E \to [0,1]$ is called a maximal edge independent function of G if there does not exist an edge independent function $f \neq g$, for which $g(e_i) \leq f(e_i)$ for every $e_i \in E$. Equivalently a function f is said to be maximal edge independent function of G if $d_{N_{\mu}}[e_i] \geq 1$, $d_{N_{\nu}}[e_i] \neq 1$ for every $e_i \in E$, where $\mu_2(e_i) \geq 0$, $\nu_2(e_i) \neq 1$, $i = 1, 2, \ldots, n$.

Example 2.12. In Figure 1, $d_{N_{\mu}}[e_i] \ge 1$ and $d_{N_{\nu}}[e_i] \ne 1$ for every $e_i \in E, i = 1, 2, 3, 4$. Therefore f is defined on G is a maximal edge independent function of G.

Definition 2.13. For an edge dominating function f of a strong IFG G = (V, E), the boundary set B'_{if} and positive set P'_{if} are defined by

$$B_{if}' = \{e \in E/d_{N_{\mu}}[e] = 1, \, d_{N_{\nu}}[e] < 1\} \text{ and } P_{if}' = \left\{e \in E/\binom{0 \leq \mu_2(e) \leq 1}{0 \leq \upsilon_2(e) < 1}\right\}.$$

Definition 2.14. Let G = (V, E) be a strong IFG and let $A, B \subseteq E$. A is said to dominate B if each $e \in B - A$ is adjacent to an edge in A. If A dominates B, we write $(A \to B)$.

Example 2.15. In Figure 1, $B'_{if} = \{e_1, e_4\}$ and $P'_{if} = \{e_1, e_2, e_3, e_4\}$. Take $A = \{e_1, e_4\} \subseteq E$, $B = \{e_1, e_2, e_3, e_4\} \subseteq E$. Then $B - A = \{e_1, e_2, e_3, e_4\} - \{e_1, e_4\}$ is adjacent to an edge in A. Therefore B'_{if} dominates P'_{if} denoted by $B'_{if} \to P'_{if}$.

Remark 2.16. An edge dominating function f of a strong IFG G is a minimal edge dominating function f of G if and only if $N[e] \cap B'_{if} \neq \emptyset$ for all $e \in P'_{if}$.

Theorem 2.17. A necessary and sufficient condition for an edge dominating function f of a strong IFG G is a minimal edge dominating function of G if $B'_{if} \rightarrow P'_{if}$, where B'_{if} and P'_{if} denotes a boundary set and apositive set, respectively.

Proof. Let $f: E \to [0, 1]$ be a minimal edge dominating function of G

with $e \in P'_{if}$ and suppose to the contrary that B'_{if} does not dominate e, where B'_{if} and P'_{if} denotes a positive set and a boundary set, respectively. Then $N[e] \cap B'_{if} \neq \emptyset$ which implies that $d_{N_{\mu}}[e] > 1$, $d_{N_{\nu}}[e] < 1$ for each $e \in N[e]$. Now define $\varepsilon > 0$ where $\varepsilon \leq \min_{u \in N[e]} (d_{N_{\mu}}[e] - 1, 1 - d_{N_{\nu}}[e])$ here $d_{N_{\mu}}[x]$ and $d_{N_{\nu}}[x]$ are related to f and $g: E \to [0, 1]$ by $g(e) = f(e) - \varepsilon$ and g(x) = f(x) for $x \in E - \{e\}$. For each $u \in N[e]$, $g[u] = (d_{N_{\mu}}[e] - \varepsilon \geq 1$, $\varepsilon - d_{N_{\nu}}[e] - \varepsilon < 1$) and for $x \in E - N[e]$, $g[x] = (d_{N_{\mu}}[x] \geq 1, d_{N_{\nu}}[x] < 1)$ here $d_{N_{\mu}}[x]$ and $d_{N_{\nu}}[x]$ are related to f. Therefore g is an edge dominating function. But g < f, which is a contradiction of f. Hence B'_{if} dominates P'_{if} (i.e., $B'_{if} \to P'_{if}$).

Conversely, assume that $B'_{if} \to P'_{if}$ and let $h: E \to [0,1]$ is an minimal edge dominating function if there exist a dominating function h < f for which h(e) < f(e) for some $e \in E$. Then $e \in P'_{if}$ and so, by assumption, $u \in B'_{if}$ for some $u \in N[e]$. Now

$$\begin{split} h[u] &= d_N[u] = (d_{N_\mu}[u], \ d_{N_\nu}[u]) \text{ where } d_{N_\mu}[u] \text{ and } d_{N_\nu}[u] \text{ are related to} \\ h. & \ h[u] = (h(w) + d_N[w]) = (h_{\mu_2}(w) + d_{N_\mu}[w], h_{\nu_2}(w) + d_{N_\nu}[w]), \text{ where } w \in N[u] \\ & -\{e\} < (f_{\mu_2}(w) + d_{N_\mu}[w], f_{\nu_2}(w) + d_{N_\nu}[w]), \end{split}$$

where $w \in N[u] - \{e\}$ $h[u] < f[u] = d_N[u] = (d_{N_\mu}[u], d_{N_v}[u])$ where $d_{N_\mu}[u]$ and $d_{N_\nu}[u]$ are related to f and $d_{N_\mu}[u] = 1, d_{N_\nu}[u] < 1$. Therefore h is not an edge dominating function which implies that f is an minimal edge dominating function.

Definition 2.18. Let f, g be two edge dominating function of an intuitionistic fuzzy graph G. Then $h_{\lambda} = \lambda f + (1 - \lambda)g$ where $0 < \lambda < 1$, called a convex combination of f and g.

Note 2.19.

(1) Convex combination of two edge dominating functions of a strong IFG G is again an edge dominating function of a strong IFG G.

(2) A convex combination of two minimal edge dominating functions of a strong IFG need not be a minimal edge dominating function of a strong IFG.

Theorem 2.20. Let f and g be minimal edge dominating functions of an IFG G, Let $h_{\lambda} = \lambda f + (1 - \lambda)g$, where $0 < \lambda < 1$. Then h_{λ} is a minimal edge dominating function of G if and only if $B'_{if} \cap B'_{ig}$ dominates $P'_{if} \cup P'_{ig}$.

Proof. We prove that $B'_{h_{\lambda}} = B'_{if} \cap B'_{ig}$ and $P'_{h_{\lambda}} = P'_{if} \cup P'_{ig}$. The result is then immediate from Theorem 2.17. If $e \notin P'_{if} \cup P'_{ig}$, then $f(e) = g(e) = h_{\lambda}(e) = 0$. If $e \in P'_{if}$, then $h_{\lambda}(e) \ge \lambda f(e) > 0$. Therefore $P'_{h_{\lambda}} = P'_{if} \cup P'_{ig}$.

Assume $e \in B'_{if} \cap B'_{if}$. In that case $h_{\lambda}[e] = \lambda f[e] + (1 - \lambda) g[e] = (d_{N_{\mu}}[u]) = 1$, $d_{N_{\nu}}[u] < 1$. In the same manner $h_{\lambda}[e] = (d_{N_{\mu}}[u] > 1)$, $d_{N_{\nu}}[u] < 1$ for $e \notin B'_{if} \cap B'_{ig}$ and hence $B'_{h_{\lambda}} = B'_{if} \cup B'_{ig}$.

Remark 2.21. If a function $f: E \to [0, 1]$ is an edge independent function of a strong IFG G, then $P'_{if} \subseteq B'_{ig}$.

Theorem 2.22. Every maximal edge independent function of a strong IFG G is a minimal edge dominating function of G.

Proof. Let $f: E \to [0, 1]$ be a maximal edge independent function of a strong IFG G. It follows from the definition that $d_{N_{\mu}}[e] \ge 1$, $d_{N_{\nu}}[e] < 1$ for each $e \in E$. Hence f is an edge dominating function of a strong IFG G. Further $P'_{if} \subseteq B'_{ig}$ so that $B'_{ig} \to P'_{if}$. Hence it follows from Theorem 2.17 that f is a minimal edge dominating function of G.

Remark 2.23. Convex combination of two edge independent functions of a strong IFG G need not be an edge independent function of G. Further f and g are both maximal edge independent functions of a strong IFG G and hence a convex combination of two maximal edge independent functions of a strong IFG G need not be an edge independent function of G.

Example 2.24. Let G = (V, E) be an IF path P_3 and a vertex set $V = \{v_1, v_2, v_3\}$, edge set $E = \{v_1v_2 = e_1, v_2v_3 = e_2\}$. Let us take

 $(f(e_1),\,f(e_2))=\left(\left(\frac{2}{3}\,,\,\frac{1}{4}\right)\!,\left(\frac{1}{3}\,,\,\frac{1}{4}\right)\right) \text{ and } (g(e_1),\,g(e_2))=((1,\,0),\,(0,\,0.4)). \text{ Here } f$ and g are maximal edge independent functions of a strong IFG G. Now the convex combination of f and g is $h_\lambda=\lambda f+(1-\lambda)g$ where $0<\lambda<1$. Take $\lambda=0.5$ then $(h_{0.5}(e_1),\,h_{0.5}(e_5))=((1.17,\,0.17),\,(0.17,\,0.2)).$ Then h_λ is an minimal not an edge independent function of a strong IFG G.

Remark 2.25. Let f and g be two edge independent functions of an IFG G. Then $h_{\lambda} = \lambda f + (1 - \lambda)g$ where $0 < \lambda < 1$, is an edge independent function if and only if $P'_{if} \cup P'_{ig} \subseteq B'_{if} \cap B'_{ig}$. Hence either all convex combinations of f and g are edge independent functions of G or none of them is an edge independent function of G.

Theorem 2.26. Let f and g be two maximal edge independent functions of an IFG G. Then either all convex combinations of f and g are maximal edge independent functions of G or none of them is a maximal edge independent functions of G.

Proof. Consider $h_{\lambda}=\lambda f+(1-\lambda)g$ where $0<\lambda<1$. Assume that h_{λ_1} is an maximal edge independent functions of an IFG G and take $\lambda\neq\lambda_1$. We prove that h_{λ} is an maximal edge independent functions of G. Take $e\in E$. Assume $h_{\lambda}(e)=(\mu_2(e)=0,\ 0<\nu_2(e)<1)$. In that case $f(e)=g(e)=(\mu_2(e)=0,\ 0<\nu_2(e)<1)$. Since f and g are maximal edge independent functions of an IFG G, we have $d_{N_{\mu}}[e]\geq 1,\ d_{N_{\nu}}[e]<1$ are related to f and $d_{N_{\mu}}[e]\geq 1,\ d_{N_{\nu}}[e]<1$ are related to g. Hence it follows that $d_{N_{\mu}}[e]\geq 1,\ d_{N_{\nu}}[e]<1$ are related to h_{λ} .

Now, suppose $h_{\lambda}(e)=(\mu_2(e)=0.0<\nu_2(e)<1)$. Then either $f(e)=(\mu_2(e)=0.0<\nu_2(e)<1)$. Then either $f(e)=(\mu_2(e)=0.0<\nu_2(e)<1)$. Hence $h_{\lambda_1}(e)=(\mu_2(e)=0.0<\nu_2(e)<1)$. Hence $h_{\lambda_1}(e)=(\mu_2(e)=0.0<\nu_2(e)<1)$. Since h_{λ_1} is an maximal edge independent function of G, $d_{N_{\mu}}[e]=1$, $d_{N_{\nu}}[e]<1$ are related to h_{λ_1} , so that $d_{N_{\mu}}[e]=1$ is related to f and f are equal and f are equal and f are related to f and f are equal. Hence f and f are related to f and f are related to f and f are equal.

 $d_{N_{\mu}}[e] \ge 1$, and $d_{N_{\nu}}[e] < 1$ are related to h_{λ} , for all $e \in E$. Hence h_{λ} is an maximal edge independent function of an IFG G.

Lemma 2.26. Any minimal edge dominating function f of a IFG G with $B'_{if} = E$ is a maximal edge independent function of G.

Proof. Since $B'_{if}=E$, we have $P'_{h_{\lambda}}\subseteq B'_{h_{\lambda}}$ and hence f is an edge independent function of an IFG G. Also since f is an minimal edge dominating function of G, $d_{N_{\mu}}[e]\geq 1$, $d_{N_{\nu}}[e]<1$ for all $e\in E$ and hence f is an maximal edge independent function of G.

References

- [1] S. Arumugam and Jerry Sithara, Fractional edge domination in graphs, Appl. Anal. Discrete Math. 3 (2009), 359-370; available online at http://www.doiserbia.nb.rs/Article.aspx?ID=1452-86300902359A#.YOfyMxszY2x.
- [2] C. Berge, Fractional graph theory, ISI Lecture Notes 1, Macmillan of India, (1978).
- [3] C. Berge, Hypergraphs: Combinatorics of Finite Sets, North-Holland, (1989).
- [4] E. J. Cockayne, C. M. Mynhardt and Yu Bo, Universal minimal total dominating functions in graphs, Networks 24 (1994), 83-90.
- [5] E. J. Cockayne, G. McGillivray and C. M. Mynhardt, Convexity of minimal dominating functions of trees, Utilitas Mathematica 48 (1995), 129-144.
- [6] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Domination in Graphs: Advanced topics, Marcel Dekker Inc., New York, (1998).
- [7] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker Inc., New York, (1998).
- [8] M. G. Karunambigai and A. Sathishkumar, Edge dominating function on strong intuitionistic fuzzy graphs, Nonlinear studies-Communicated, (2020).
- [9] M. G. Karunambigai and R. Parvathi, Intuitionistic fuzzy graphs, Computational Intelligence, Theory and Applications, Springer Berlin Heidelberg (2006), 139-150; available online at https://link.springer.com/chapter/10.1007/3-540-34783-6_15.
- [10] A. Nagoor Gani and S. Shajitha Begum, Degree order and size in Intuitionistic fuzzy Graphs, International Journal of Algorithms, Computing and Mathematics 3(3) (2010).
- [11] R. Parvathi, M. G. Karunambigai and K. T. Atanassov, Operations on intuitionistic fuzzy graphs, In: Proceedings of the IEEE International Conference on Fuzzy Systems, IEEE, athttps://ieeexplore.ieee.org/abstract/document/5277067 available online (2009), 1396-1401
- [12] E. R. Scheinerman and D. H. Ullman, Fractional Graph Theory; A rational approach to

EDGE INDEPENDENT FUNCTION ON INTUITIONISTIC ... 2281

the theory of graphs, John Wiley and Sons Inc. (2008), 134-138, available online at https://www.ams.jhu.edu/ers/books/fractional-graph-theory-a-rational-approach-to-the-theory-of-graphs/.

[13] Yu Bo, Convexity of minimal total dominating functions in graphs. J. Graph Theory 24(4) (1997), 313-321.