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Abstract 

The solution of a one-dimensional solute transport equation in a homogeneous medium has 

been obtained. Flow has been taken as uniform and unsteady. A present paper deals with 

temporal variation in dispersion. Two types of variation in the dispersion with time are 

assumed. Initially the medium is not solute free, i.e. assumed that initially, concentration is 

exponentially decreasing with space variable. The velocity is considered proportional to the 

dispersion. Dispersion is exponentially increase in the first case while sinusoidally varies in the 

second case. The analytic solution using the Laplace transform variation iteration method 

(LVIM) are obtained. The obtained results are presented in terms of temporal and spatial 

variation of concentration. The Graphical representation of the developed model have been 

obtained using MATHEMATICA coding. 

1. Introduction 

The increasing demand for groundwater has forced the human being to 

put efforts for further development of ground resources (Todd and Mays, 

[19]). This results in the advanced investigation of the occurrence and 
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movement of groundwater and extension in under-standing through research 

(Todd and Mays, [19]). The quality and quantity of groundwater are the two 

inseparable entities which must be taken into account at the time of study of 

water resource management (Bear, [2]; Bear and Cheng, [3]). Increasing 

pollution and hence, the mismanagement of waste have unconfined the 

research in groundwater resources which was earlier limited to only water 

flow with few water quality aspects. The type and behavior of the 

contaminant source are additional aspects that need to be incorporated 

during the modeling of solute transport through the groundwater. Many 

efforts have been done to model the transport phenomena in groundwater 

with various physical conditions by many researchers (Desai, [5]; Joshi, 

Desai, and Mehta, [14]; Patel and Dhodiya, [15]). A. E. Scheidegger 

(Scheidegger, [17]) has studied the general theory of dispersion in a porous 

medium. The physical concept of flow through porous media has been given 

by A. E. Scheidegger. (Scheidegger, [16]). Warrick et al., (Warrick, Kichen, 

and Thames, [20]) have derived the solution of miscible displacement of soil 

water with temporal velocity and dispersion coefficient. Authors (Warrick et 

al., [20]) have used one dimensional flow with semi-infinite solute free 

medium. Jaiswal et al. (Jaiswal and Kumar, n.d.) developed one dimensional 

model with space dependent variable coefficient advection dispersion 

equation using Laplace transform. In which authors (Jaiswal and Kumar, 

n.d.) have used varying pulse type input point source and dispersion 

coefficient changes with the square of velocity. Using Laplace transform 

technique, the solute transport equation has been solved by Yadav and 

Kumar (R. R. Yadav and Kumar, [22]) considering dispersion as an 

exponentially decreasing function of space and velocity is directly proposed to 

dispersion coefficient. A convective-dispersion equation has been analytically 

solved by Singh et al. (Singh, Mahato, Singh, et al., [18]) with the assumption 

that the aquifer is solute free and uniform source concentration with pulse 

type boundary condition. Longitudinal dispersion is taken into account in 

their article. Numerical solution of one-dimensional advection diffusion 

equation found by Yadav and Roy (R. R. Yadav and Roy, [23]) using implicit 

Crank-Nicolson finite difference method. In their work medium of the aquifer 

has been considered as homogeneous. Either temporally or constant velocity 

was assumed by the author (R. R. Yadav and Roy, [23]). Yadav et al. (S. K. 

Yadav, Kumar, Jaiswal, and Kumar, [24]) have studied phenomena of 
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contaminant transport in a homogeneous medium with unsteady flow. 

Authors (S. K. Yadav et al., [24]) used Laplace integral transform to obtain 

the result and assume that the velocity is increasing function of space 

variable. 

A non-linear partial differential equation has been solved by the 

Variation Iteration Method (VIM) by Jihuan He (J. He, [6]). In his study, 

using variation theory, Lagrange’s multiplier was found. He (J.-H. He, [8], 

[7], [9], [10]; J.-H. He and Wu, [11]) has proposed the VIM for solving linear 

and non-linear equations. The method has been incorporated by many 

researchers for various mathematical modeling. Further, to make the VIM 

less complected, a Laplace transform is included along with a VIM to propose 

a more effective Laplace transform variational iteration method (LVIM). The 

applications of the LVIM by many researchers show its sound efficiency 

(Anjum and He, [1]; Biala, Asim, and Afolabi, [4]; Hesameddini and 

Latizadeh, [12]; Wu and Baleanu, [21]). In the present research, the 

concentration of solute transport in the homogeneous medium with the 

uniform unsteady flow has been studied. The current work focuses on the 

analytic solution of the solute transport equation that governs the solute 

transport in a homogeneous porous medium. In many practical aspects, it is 

observed that the contaminant concentration varies with time due to 

temporal variation in the dispersion. Hence, to obtain a clear idea of the 

temporal and spatial pattern of the contaminant concentration, it is required 

to have an analytic solution of the governing equation in such cases. Two 

different types of cases are discussed in the present paper. In case-1 

dispersion is exponentially increasing with time while in a second case it is 

sinusoidally vary with time. The velocity of the containment depends upon 

the dispersion and it is considered in proportional to the dispersion. Hence, 

the effect of the temporal variation in the dispersion also reflects on the 

velocity. Initially, concentration is exponentially decreasing with space 

variables. Analytic solution of solute transport equation is obtained using 

LVIM. Using the obtained solution, the temporal and spatial variation of the 

concentration for each case are presented graphically. A detailed description 

of each of the plots are provided in the respective sections of given below. 
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2. Mathematical Formulation 

The contaminant concentration in the porous medium at any time  Tt  is 

denoted by  txc ,  with dimension  .3ML  The solute particles are also 

transported along with groundwater. The velocity of groundwater is  1LTu  

in the porous medium and D be the solute dispersion  .12 TL  It is considered 

that dispersion is directly proportional to the velocity (u). 

With these notations the contaminant transport equation can be 

expressed as, 
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where yx DD ,  and zD  are dispersion coefficients along yx,  and z directions 

respectively. yx uu ,  and zu  are the velocities of flow along yx,  and z 

directions respectively and c is the solute concentration. 

One-dimensional solute transport equation with variable coefficient and 

initially concentration is exponentially decreasing with space can be written 

as, 
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with initial condition, 

  .0,10;0, 0   txecxc mx  (3) 

Where,  1Lm  is a constant parameter that decide exponential decreasing 

rate and  3
0 LMc  is initial constant concentration. 

3. Methodology 

Consider nonlinear differential equation, 
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     txftxNutxlu ,,,    (4) 

where l is a linear operator, N is a nonlinear operator and  txf ,  is a known 

analytical function. 

According to the variational iteration method, we can construct a 

correction functional as follows: 

             

t

nnnn dxfuNxluxtxutxu
0

1 ,,,,,   (5) 

where  is a general Lagrange multiplier, which can be identified optimally 

via the variational theory. The subscript n denotes the nth approximation and 

nu  is a restricted variation .0 nu  

Operating with Laplace transform on both sides of equation (5) the 

correction functional will be constructed in the following manner: 

                 

t

nnnn dxfxuNxlutxLtxuLtxuL
0

1 ,,,,,,  

(6) 

,3,2,1,0n  

Using convolution theorem, 

               txftxuNtxlutxLtxuLtxuL nnnn ,,,,,,1   (7) 

Take the variation with respect to  txun ,  and hence upon applying the 

variation this simplifies to 

            txuLtxLtxuLtxuL nnn ,,,,1    (8) 

Applying the inverse Laplace transform to equation (8) and using 

variational theory, the value of Lagrange multiplier is obtained. 

4. Analytic Solution Using LVIM 

4.1 Case-1 exponentially increasing dispersion 

Dispersion coefficient is in proportional to the velocity. Also it is 

exponentially increasing with time can be written as, 
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  ateDtxD 0,   

  ateutxu 0,   

where;  12
0

TLD  is initial dispersion coefficient and  1
0

LTu  is initial 

ground water velocity which are constant. Parameter a  1T  is coefficient 

that decide exponential increasing rate which is fixed. 

Equation (2) can be written as, 
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Using Dimensionless variables, 
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Equation (9) can be written as, 
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with initial condition, 
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The Laplace variational iteration correction functional will be constructed 

as, 
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    
 ,n
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Taking the variation with respect to  ,nC  of equation (13), and use 

extreme condition   0,1  nC  obtain result is, 

  1,   (14) 

Using equations (13) and (14) obtained result is, 
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Let the initial approximation is, 
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By continuing this procedure, the exact solution is given by, 
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Then the solution of equation (11) is given by, 
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The solution of equation (9) is, 
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4.2 Case-2 sinusoidally varies dispersion 

The dispersion varies sinusoidally with time. It is directly proposal to the 

groundwater velocity (Scheidegger, [16]) which can be written as, 
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Where; parameter  1Tb  is the constant coefficient that decides the rate of 

frequency of sinusoidal variation in dispersion. 

Equation (2) can be written as, 
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with initial condition, 
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Using dimensionless variables from equation (10), in equation (22 and 

23), 
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The Laplace variational iteration correction functional will be constructed 

as, 
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Taking the variation with respect to  ,nC  of equation (26) and using 

extreme condition of  ,nC  the value of Lagrange’s Multiplier  1  is 

obtained and equation (26) can be written as, 
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Using equation (27) and (28) and applying the inverse Laplace transform, 

first approximation is given by, 
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In similar manner, 
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With the same procedure, the solution of equation (24) is given by, 



RESHMA R. MALAN and NARENDRASINH B. DESAI 

Advances and Applications in Mathematical Sciences, Volume 22, Issue 1, November 2022 

34 

     
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Then the solution of equation (22) is given by, 
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
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m
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5. Result and Discussion 

The nature of the solution discussed in above section of the paper is 

studied in terms of spatial and temporal variation of concentration (c). 

Figures (1) and (2) show the spatial variation of concentration (c). In the 

present study, the spatial variation of the concentration (c) is obtained with 

four different values of   yearkmD 2
0  (i.e. 0.15, 0.20, 0.25, 0.30). All the 

plots of spatial variation in case-1 and case-2 have been derived at fixed time 

3.0t  year. The initial value of concentration 10 c  and velocity 25.00 u  

have been taken as input for the calculation. The parameter a and m are 

considered  12.1 year  and  14 km  respectively in case-1 and case-2 in the 

calculation of spatial and temporal variation. The spatial variation is shown 

in the  finite domain of  .0.10001.0 kmx   Figure (1) shows that the 

concentration c is decreasing exponentially with x for all .0sD  The minimum 

concentration (c) is obtained with 15.00 D  and the maximum value of the 

concentration (c) is obtained with .30.00 D  This proves that increase in the 

dispersion co-efficient, increases the concentration (c). 

It is observed that the concentration lines for different dispersion are 

more overlapping in the case of sinusoidal then in the exponential. This 

shows that the effect of variation of dispersion on concentration is more in the 

exponential case than in the sinusoidal case. It is also observed that the 

concentration values at 3.0t  for low values of x are lower in sinusoidal 

case than the exponential one. The numerical values of spatial variation in 

case-1 and case-2 are given in Table (1) and Table (2), respectively. 
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Figure 1. Spatial variation of concentration (c) (Case-1). 

 

Figure 2. Spatial variation of concentration (c) (Case-2). 

Table 1. Contaminant concentration at various values of dispersion 

coefficient. Case 1(Spatial variation). 

 Concentration(c) 

x 15.00 D  20.00 D  25.00 D  35.00 D  

0.0001  3.412232  4.555125  6.080818  8.117527 

0.0501  2.793699  3.729421  4.978553  6.646069 

0.1001  2.287288  3.053392  4.076094  5.441341 

0.1501  1.872673  2.499906  3.337224  4.454993 
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0.2001  1.533215  2.046750  2.732288  3.647440 

0.2501  1.255290  1.675737  2.237008  2.986271 

0.3001  1.027745  1.371977  1.831507  2.444952 

0.3501  0.841446  1.123280  1.499511  2.001757 

0.4001  0.688918  0.919664  1.227696  1.638900 

0.4501  0.564038  0.752957  1.005152  1.341818 

0.5001  0.461795  0.616469  0.822949  1.098588 

0.5501  0.378086  0.504722  0.673774  0.899448 

0.6001  0.309551  0.413232  0.551639  0.736405 

0.6501  0.253439  0.338325  0.451644  0.602918 

0.7001  0.207498  0.276997  0.369775  0.493627 

0.7501  0.169885  0.226786  0.302746  0.404148 

0.8001  0.139090  0.185677  0.247868  0.330888 

0.8501  0.113877  0.152019  0.202937  0.270908 

0.9001  0.093235  0.124463  0.166151  0.221801 

0.9501  0.076334  0.101902  0.136033  0.181595 

Figure (3) and figure (4) show the temporal variation of the concentration 

(c). To maintain consistency, the temporal variation is also obtained for the 

same sD0  as in the case of spatial variation. Further, input parameters a and 

m are also taken with the same values as in the spatial variation. The space 

variable x is fixed with 0.2km in temporal variation. The temporal variation 

of concentration is calculated in the time interval   .2.00001.0  yeart  An 

exponential increase is found in concentration (c) with time for all four sD0  

under study. The concentration (c) increases with increase in .0D  It can be 

seen that the concentration values at 2.0x  for higher t are higher in the 

exponential case than in the sinusoidal case. Table (3) and Table (4) show the 

contaminant concentration for temporal variation for case-1 and case-2, 

respectively. 
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Table 2. Contaminant concentration at various values of dispersion 

coefficient. Case 2(Spatial variation). 

 Concentration(c) 

x 15.00 D  20.00 D  25.00 D  35.00 D  

0.0001  0.833580  0.798707  0.765293  0.733277 

0.0501  0.682478  0.653926  0.626569  0.600356 

0.1001  0.558765  0.535389  0.512991  0.491530 

0.1501  0.457478  0.438340  0.420002  0.402431 

0.2001  0.374552  0.358882  0.343868  0.329483 

0.2501  0.306657  0.293828  0.281536  0.269757 

0.3001  0.251069  0.240566  0.230502  0.220859 

0.3501  0.205558  0.196959  0.188719  0.180824 

0.4001  0.168297  0.161256  0.154510  0.148046 

0.4501  0.137790  0.132025  0.126502  0.121210 

0.5001  0.112813  0.108093  0.103571  0.099238 

0.5501  0.092363  0.088499  0.084797  0.081249 

0.6001  0.075621  0.072457  0.069426  0.066521 

0.6501  0.061913  0.059323  0.056841  0.054463 

0.7001  0.050690  0.048569  0.046538  0.044591 

0.7501  0.041502  0.039765  0.038102  0.036508 

0.8001  0.033979  0.032557  0.031195  0.029890 

0.8501  0.027819  0.026655  0.025540  0.024472 

0.9001  0.022777  0.021824  0.020911  0.020036 

0.9501  0.018648  0.017868  0.017120  0.016404 
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Figure 3. Temporal variation of concentration (c)(Case-1). 

 

Figure 4. Temporal variation of concentration (c) (Case-2). 

Table 3. Contaminant concentration at various values of dispersion 

coefficient. Case 1(Temporal variation). 

 Concentration(c) 

t 15.00 D  20.00 D  25.00 D  35.00 D  

0.0001 0.449482 0.449518 0.449554 0.449590 

0.0101 0.465124 0.468921 0.472748 0.476607 

0.0201 0.481510 0.489411 0.497441 0.505603 
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0.0301 0.498681 0.511060 0.523746 0.536747 

0.0401 0.516683 0.533945 0.551785 0.570220 

0.0501 0.535564 0.558151 0.581690 0.606223 

0.0601 0.555375 0.583766 0.613608 0.644976 

0.0701 0.576172 0.610888 0.647695 0.686719 

0.0801 0.598014 0.639620 0.684121 0.731719 

0.0901 0.620962 0.670075 0.723074 0.780264 

0.1001 0.645083 0.702375 0.764755 0.832676 

0.1101 0.670451 0.736651 0.809387 0.889305 

0.1201 0.697140 0.773043 0.857210 0.950541 

0.1301 0.725233 0.811706 0.908489 1.016811 

0.1401 0.754819 0.852804 0.963510 1.088586 

0.1501 0.785991 0.896518 1.022589 1.166388 

0.1601 0.818850 0.943042 1.086071 1.250792 

0.1701 0.853504 0.992586 1.154332 1.342436 

0.1801 0.890071 1.045379 1.227788 1.442025 

0.1901 0.928674 1.101669 1.306890 1.550340 

Table 4. Contaminant concentration at various values of dispersion 

coefficient. Case 2(Temporal variation). 

 Concentration(c) 

t 15.00 D  20.00 D  25.00 D  35.00 D  

0.0001 0.301194 0.301194 0.301194 0.301194 

0.0101 0.301132 0.301117 0.301102 0.301087 

0.0201 0.300946 0.300888 0.300829 0.300771 

0.0301 0.300638 0.300507 0.300377 0.300246 
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0.0401 0.300208 0.299976 0.299745 0.299514 

0.0501 0.299656 0.299296 0.298935 0.298576 

0.0601 0.298984 0.298466 0.297949 0.297434 

0.0701 0.298192 0.297490 0.296789 0.296090 

0.0801 0.297281 0.296367 0.295457 0.294549 

0.0901 0.296252 0.295101 0.293954 0.292812 

0.1001 0.295107 0.293693 0.292286 0.1001 

0.1101 0.293848 0.292146 0.290453 0.288770 

0.1201 0.292476 0.290461 0.288460 0.286474 

0.1301 0.290992 0.288642 0.286311 0.283999 

0.1401 0.289400 0.286692 0.284010 0.281353 

0.1501 0.287700 0.284614 0.281561 0.278540 

0.1601 0.285896 0.282410 0.278968 0.275567 

0.1701 0.283989 0.280085 0.276236 0.272439 

0.1801 0.281982 0.277642 0.273370 0.269163 

0.1901 0.279878 0.275085 0.270375 0.265746 

6. Conclusion 

The LVIM method has been applied to propose an analytic solution of one 

dimensional solute transport equation for uniform unsteady flow in 

homogeneous medium. The applied method LVIM has been found suitable to 

obtain the analytic solution for the said physical conditions. The presently 

adopted method is less complected method than those which require 

discretization or linearization. A rapidly converging more realistic series 

solution obtained by LVIM reduces the lengthiness of the computation. 

Through the present work, it becomes possible to express the close form of a 

solution with appropriate initial condition. Initially concentration is 

exponentially decreasing with space variable. Exponentially increasing and 

sinusoidal temporal variation in dispersion is directly proportional to the flow 



AN ANALYTIC SOLUTION OF THE ONE-DIMENSIONAL … 

Advances and Applications in Mathematical Sciences, Volume 22, Issue 1, November 2022 

41 

velocity. An exponentially decreasing nature of concentration variation with 

distance is predicted for the solution obtained, whereas the exponentially 

increasing and sinusoidal nature of temporal variation is proposed by LVIM. 

The presented nature of both of the variations may help as an effective 

predictive tool in many groundwater hydrological problems, since it provides 

the concentration at required time and position. 
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